


Contents

List of Tables ix

Foreword xi

Preface xiii

I Getting Started with Lasso 1

1 A Taste of Lasso 3
1.1 Lasso Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Lasso Language Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Serving Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Lasso Installation 11
2.1 Lasso Platform Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 OS X Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 CentOS 5/6/7 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Ubuntu Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Windows Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Lasso Server Management 21
3.1 Lasso Instance Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Instance Administration and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Datasource Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

II Language Elements 51

4 Calling Lasso 53
4.1 Calling Lasso Web Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Calling Lasso from the CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Literals 57
5.1 String Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Boolean Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Integer Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Decimal Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Tag Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 Staticarray Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

i



5.7 Series Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.8 Null and Void . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.9 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Variables 65
6.1 Variable Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Local Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Thread Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Type Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5 Decompositional Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Operators 69
7.1 Assignment Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Arithmetical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Boolean Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.5 Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.6 Target Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.7 Method Escaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Control Flow 79
8.1 Conditional Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2 Loop Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Captures 83
9.1 Capture Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2 Creating Captures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.3 Executing Captures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.4 Producing Values and Detaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.5 Capture Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10 Query Expressions 89
10.1 Query Expression Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.3 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.4 GenerateSeries Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.5 Making an Object Queriable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

11 Methods 99
11.1 Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.2 Defining Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.3 Multiple Dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

12 Types 109
12.1 Defining Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
12.2 Modifying Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.3 Type/Object Introspection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

13 Traits 123
13.1 Trait Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
13.2 Defining Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13.3 Trait Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.4 Checking Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.5 Applying Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.6 Trait Manipulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

ii



14 Error Handling 129
14.1 Error Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
14.2 Error Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
14.3 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

15 Threading 137
15.1 Splitting Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
15.2 Thread Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

III Data Handling 141

16 Strings 143
16.1 String Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
16.2 Converting Values to Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
16.3 String Inspection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
16.4 String Manipulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
16.5 String Encoding Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
16.6 String Iteration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
16.7 String Export Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

17 Byte Streams 157
17.1 Creating Bytes Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
17.2 Bytes Inspection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
17.3 Bytes Export Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
17.4 Bytes Decoding/Encoding Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
17.5 Bytes Iteration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
17.6 Bytes Manipulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

18 Math 165
18.1 Creating Integer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
18.2 Formatting Integer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
18.3 Integer Bitwise Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
18.4 Creating Decimal Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
18.5 Formatting Decimal Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.6 Arithmetical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.7 Basic Math Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
18.8 Trigonometry and Advanced Math Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

19 Date and Duration 177
19.1 Date Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
19.2 Date Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
19.3 Duration Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
19.4 Date and Duration Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

20 Regular Expressions 197
20.1 Regular Expression Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
20.2 Regexp Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
20.3 String Methods Taking Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

21 Collections 213
21.1 Ordered Collection Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
21.2 Unordered Collection Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

22 Encryption 223
22.1 Encryption Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

iii



22.2 Cipher Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

23 Serialization and Compression 229
23.1 Serializing and Deserializing Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
23.2 Supporting Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
23.3 Compression Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

IV System Input and Output 233

24 File System 235
24.1 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
24.2 File Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
24.3 Dir Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

25 Images and Media 241
25.1 Image File Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
25.2 Referencing Images as Lasso Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
25.3 Image Information Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
25.4 Converting and Saving Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
25.5 Images Manipulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
25.6 Extended ImageMagick Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
25.7 Serving Image and Media Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

26 Portable Document Format 257
26.1 Lasso and PDF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
26.2 Reading PDF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
26.3 Creating PDF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
26.4 Adding Content to PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
26.5 Accessing PDF File Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
26.6 Saving PDF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
26.7 Creating Text Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
26.8 Creating and Using Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
26.9 Creating Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
26.10 Creating Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
26.11 Creating Barcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
26.12 PDF File Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
26.13 Serving PDF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

27 XML Documents 293
27.1 Creating XML Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
27.2 XPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
27.3 XSLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

28 Logging 301
28.1 Logging Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
28.2 Logging to Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
28.3 Log Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

29 Shell Commands with sys_process 305
29.1 Using sys_process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
29.2 OS X and Linux Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
29.3 Windows Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

iv



V Application Development 311

30 Web Requests and Responses 313
30.1 Web Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
30.2 Web Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
30.3 At Begin and End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

31 Authentication 325
31.1 Authenticating Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
31.2 Managing Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

32 Sessions 329
32.1 How Sessions Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
32.2 Session Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
32.3 Starting a Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
32.4 Session Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
32.5 Using Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

33 LassoApps 337
33.1 LassoApp Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
33.2 Constructing a LassoApp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
33.3 Serving Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
33.4 Special Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
33.5 LassoApp Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
33.6 Packaging and Deploying LassoApps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
33.7 Server Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
33.8 LassoApp Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

34 Command-Line Tools 349
34.1 lassoserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
34.2 lassoim(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
34.3 lasso9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
34.4 lassoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
34.5 Special Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
34.6 Lasso Shell Scripts on OS X and Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
34.7 Loading Libraries in Shell Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
34.8 Compiling Lasso Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

VI External Communication 361

35 Network Requests with Curl 363
35.1 Lasso Curl API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
35.2 Curl Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
35.3 Using the Curl Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
35.4 include_url . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
35.5 FTP Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

36 Sending Email 381
36.1 SMTP Email Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
36.2 Composing and Sending Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
36.3 Email Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
36.4 Email Sending Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
36.5 Composing and Queueing Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
36.6 Sending SMTP Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

v



37 Retrieving Email 395
37.1 Sending POP Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
37.2 Parsing Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
37.3 Email Helper Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

38 DNS 409
38.1 Domain Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
38.2 IP Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
38.3 Querying for DNS Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
38.4 DNS Response Helper Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

39 LDAP 413
39.1 LDAP Searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
39.2 LDAP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
39.3 LDAP Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

40 Networking Protocols and Named Pipes 417
40.1 TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
40.2 TCP/SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
40.3 UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
40.4 Named Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

VII Database Operations 423

41 Database Interaction Fundamentals 425
41.1 Using Inlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
41.2 Inline Introspection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
41.3 Inline Action Result Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
41.4 Database Schema Inspection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
41.5 Inline Connection Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

42 Searching and Displaying Data 443
42.1 How Searches are Performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
42.2 Character Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
42.3 Error Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
42.4 Searching Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
42.5 Search Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
42.6 Returning Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
42.7 Finding All Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
42.8 Finding Random Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
42.9 Displaying Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

43 Adding and Updating Records 457
43.1 Adding Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
43.2 Updating Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
43.3 Deleting Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

44 SQL Data Sources 469
44.1 Supported Features for SQL Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
44.2 SQL Data Source Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
44.3 Security Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
44.4 SQL Data Source Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
44.5 Searching Records with SQL Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
44.6 Adding and Updating Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
44.7 Value Lists for ENUM or SET Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

vi



44.8 SQL Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
44.9 SQL Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
44.10 Prepared Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

45 ODBC Data Sources 491
45.1 Supported Features for ODBC Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
45.2 ODBC Data Source Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
45.3 Using ODBC Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

46 FileMaker Data Sources 493
46.1 Lasso and FileMaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
46.2 FileMaker Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
46.3 Primary Key Field and Record ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
46.4 Sorting Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
46.5 Displaying Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

VIII Extending Lasso 507

47 Lasso C API 509
47.1 LCAPI Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
47.2 Creating Lasso Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
47.3 Creating Lasso Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
47.4 Creating Lasso Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
47.5 C/C++ Reference for LCAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

48 Lasso Java API 575
48.1 LJAPI Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
48.2 Lasso Types and Methods for LJAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Index 593

vii





List of Tables

5.1 Supported String Escape Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

14.1 Lasso Error Codes and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

18.1 Arithmetical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
18.2 Arithmetical Assignment Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
18.3 Arithmetical Equality Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

19.1 Classic Date Formatting Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
19.2 ICU Date Formatting Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
19.3 Date Field Element Parameters for get and set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

20.1 Unicode Property Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

25.1 Tested and Certified Image Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
25.2 Composite Image Tag Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

26.1 Supported PDF Escape Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
26.2 Form Placement Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

27.1 XML Object Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

30.1 Web Request Variable Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

37.1 Email Header Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

39.1 Common LDAP Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

41.1 Database Action Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
41.2 Host Array Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

42.1 -Search Action Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
42.2 Search Operator Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
42.3 Search Field Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
42.4 Result Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
42.5 -FindAll Action Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
42.6 -Random Action Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

43.1 -Add Action Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
43.2 -Update Action Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
43.3 -Delete Action Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

ix



44.1 MySQL Additional Search Field Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
44.2 SQL Additional Result Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
44.3 SQL Statement Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

46.1 FileMaker Search Field Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
46.2 FileMaker Search Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
46.3 FileMaker Search Operator Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
46.4 FileMaker Additional Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

x



Foreword

Lasso has been around for decades, and will be around for decades to come.

Although other languages have become known as the more “popular” languages, the criteria used to measure popularity have
rarely been challenged. Lasso came out of the Mac world—a world filled with artists, educators, and medical practitioners—in
the nascent days of the Internet. It has been used by a wide variety of people, whether they be occasional programmers,
hard-core developers or anything in between. It has been used to create systems which support and manage the Internet, to
drive billions of dollars in sales, and to monitor simple events of everyday life.

Lasso presented the world with a novel and logical way to script, develop, and write code poetry. Tens of thousands of people
owe their livelihoods to Lasso, and almost all live their lives unaware of Lasso’s importance. Lasso has become a foundation
block of the world’s digital future, steadily inspiring joy and value to those who use it regularly.

This latest version of Lasso, Lasso 9, makes a monumental leap in its underlying theory and architecture to secure the future of
the platform. With countless hours of effort, a group of dedicated contributors have worked together to ensure that a strong
central manual—a canon—would exist for this new language. These individuals include:

Kyle Jessup

Fletcher Sandbeck

Jonathan Guthrie

Paul Higgins

Brad Lindsay

Steve Piercy

Michael Collins

Aaron Smalser

Eric Knibbe

It is with great pleasure that I thank this group for their concerted and tireless efforts over several years to bring this endeavour
to bear. May this be the book which shines a light for the Lasso development community, allowing it to be seen from around
the world and shared with others.

Long Live Lasso!

Sean Stephens

CEO

LassoSoft Inc.

xi





Welcome to LassoGuide

Lasso is a powerful programming language used to drive millions of web pages from servers around the world. It has an
easy-to-master syntax and allows fast, flexible development and scripting. Lasso can be used in many ways, and as a language,
provides a virtually infinite set of shortcuts for achieving development goals.

This guide is meant to serve as both an introduction and comprehensive manual to Lasso and Lasso Server 9.3. The material
in this guide will evolve and improve along with Lasso. The most up-to-date version of this documentation containing all
improvements can be found at http://lassoguide.com/.

Organization of This Guide

This guide is divided up into eight parts covering all aspects of the Lasso programming language.

• Getting Started with Lasso introduces the basic features of the Lasso language and server, as well as instructions for
installing and configuring Lasso.

• Language Elements covers the syntax and features of the Lasso language. Read this thoroughly for a complete under-
standing of how Lasso code is structured.

• DataHandling, SystemInputandOutput,ApplicationDevelopment, and ExternalCommunicationdetail the capabilities
of the libraries that ship with Lasso, divided into appropriate categories. Method definitions and examples of common
use cases are included.

• Database Operations describes Lasso’s database connection interface. Basic database operations as well as pointers
about specific database types are covered.

• Extending Lasso includes tutorials and references for adding your own functionality using Lasso’s C and Java APIs.

Explanations, method definitions, and code examples are arranged within the text to teach you the Lasso platform
step-by-step. An index is also available to help find information about a particular language element.

Conventions Used in This Guide

There are many code samples used throughout this guide. References to methods, types, or traits and small snippets of code
inlined with other text are set in a monospace typeface, e.g. sample_methodor short code snippet. References to variable
names or to values will be in double quotes “like this”.

Longer blocks of sample code will be slightly offset from the surrounding text and will have syntax highlighting applied to
them. The result produced by running the code will be displayed using line comments. If the result fits on one line, a line
comment in the form of // => Value Produced will be used. If multiple lines are needed, the first line will just have // =>
while all subsequent lines will start with a line comment and space, followed by the value for that line. For example:

// Single-line value produced
2 + 3
// => 5

// Multi-line value produced
'Line one.' + '\n' + 'Line two.'

// =>
// Line one.
// Line two.

xiii

http://lassoguide.com/


For examples involving running commands from the command line, a shell prompt ($>) will be used. Any output to standard
out that is generated from the command will be shown below the command as you would see it in your terminal. For examples
of issuing Lasso commands from the interactive interpreter, a Lasso prompt (>:) will be used, and any values produced from
running those commands will be shown using the line comment convention as outlined above for sample code blocks.

Additional Resources

Here are some additional resources you may find useful:

Lasso Reference1

Reference to the built-in types, methods, and traits.

LassoTalk2

The online Lasso community/email list is a great place to ask questions and get answers.

TagSwap3

Methods, types, and traits created by members of the Lasso community to solve common problems.

LassoSoft Website4

The latest information about Lasso.

Lasso source code repository5

An SVN repository containing source code for a number of Lasso components.

LassoGuide PDF6

The 9.3 version of LassoGuide in PDF format.

LassoGuide source7

The Git repository containing the full LassoGuide source.

1 http://www.lassosoft.com/LassoDocs/LanguageReferenceCategories
2 http://www.lassotalk.com/
3 http://www.lassosoft.com/tagswap
4 http://www.lassosoft.com/
5 http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/
6 http://lassoguide.com/LassoGuide9.3.pdf
7 https://github.com/LassoSoft/LassoGuide

xiv

http://www.lassosoft.com/LassoDocs/LanguageReferenceCategories
http://www.lassotalk.com/
http://www.lassosoft.com/tagswap
http://www.lassosoft.com/
http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/
http://lassoguide.com/LassoGuide9.3.pdf
https://github.com/LassoSoft/LassoGuide


Part I

Getting Started with Lasso

1





Chapter 1

A Taste of Lasso

1.1 Lasso Basics

Welcome to Lasso! This guide is meant to assist you in diving into the language. It assumes you have prior programming
experience and that you have properly installed Lasso and configured Lasso to work with your web server. (See the appropriate
installation instructions for your operating system in the index_server.)

The examples in this particular chapter can all be run inside the Lasso Quick Code area in the Lasso Server Admin web appli-
cation. (Be sure to leave the “<?lasso” and “Auto-collect” checkboxes checked.)

1.1.1 Hello World

The obligatory “Hello World” example is extremely simple in Lasso:

'Hello, world.'
// => Hello, world.

As you can see, the code just declares the string 'Hello, world.', and that value is produced when you run the code.

Here is what’s going on behind the scenes: Lasso is an object-oriented language, so everything is an object. Every object has a
member method named asString that it can implement. (Left unimplemented, it just returns the name of the object’s type.)
Any statement that is just an object by itself or produces an object will have that object’s asString method implicitly called,
and that value will therefore be produced. (For a counter-example, assignment statements don’t produce an object and so
will not cause any value to be produced.)

In our example, we used a string literal to create a string object. Since that statement produces an object, Lasso then calls the
string->asString method on that object which has been implemented to return the value of the string.

1.1.2 Captures

This implicit call of the asString method is important for code inside a capture. Captures form the backbone of Lasso: all
Lasso code executes inside a capture. (See the Captures chapter for more information.) They can also be used for code within
a conditional. However, not all captures output the values generated by calls to asString. In the example below, the values
in the if statement won’t be displayed, but the values in the loop statement will be:

if(false) => {
'will never get to me'

else(false)
"will never get to me either"

else
`got to me, but I won't be displayed`

}

loop(5) => {^
loop_count + ', '

^}

3



LassoGuide, Release 9.3

// => 1, 2, 3, 4, 5,

Here we have a basic if statement using a normal capture ({ ... }) and a loop statement using an auto-collected capture
({^ ... ^}). The auto-collect capture concatenates all the values produced using asString and returns them while the
normal capture just ignores them.

1.1.3 Variables

There are two different types of variables in Lasso: local variables and thread variables. Local variables are lexically scoped while
thread variables are available anywhere in the execution of the thread they are defined in. Here is an example of creating and
using both types of variables:

local(localVar) = 30 // Creates a local variable
var(threadVar) = 12 // Creates a thread variable
$threadVar + #localVar

// => 42

One handy feature of local variables is decompositional assignment. This makes it easy to assign values from array-like types
into locals:

local(a, b, c) = array('rhino', 'runs', 'rapidly')

#a
// => rhino
#b
// => runs
#c
// => rapidly

For more information on variables, see the Variables chapter.

1.2 Lasso Language Features

The Lasso programming language has a number of great features that make coding in it enjoyable. This tutorial will scratch
the surface of some of the best features of Lasso while also giving an introduction to defining methods, types, and traits.

1.2.1 Type Constraints

Lasso allows programmers to specify that a variable they create can only store objects of a specific type or trait. The following
example creates a local variable that can only store integer values:

local(myInt::integer) = 5
#myInt = 8
#myInt = '44'
// => // Throws an error since we are trying to assign a string

This syntax also works for type-constraining thread variables.

4 Chapter 1. A Taste of Lasso



LassoGuide, Release 9.3

1.2.2 Methods

Defining your own methods in Lasso is extremely easy. The following example returns the time of day (“morning”, “afternoon”,
or “evening”) given a specified hour:

define time_of_day(hour::integer) => {
// Check to make sure the hour value is valid
fail_if(#hour < 0 or #hour > 23,

error_code_invalidParameter,
error_msg_invalidParameter + ': hour must be between 0 and 23'

)

if(#hour >= 5 and #hour < 12) => {
return 'morning'

else(#hour >= 12 && #hour < 17)
return 'afternoon'

else
return 'evening'

}
}

The first line contains the define keyword, followed by the name for the method and its the parameter list in parentheses
(the method signature), followed by the association operator (=>) and an open brace. All the code between that open brace
and its matching closing brace is the capture associated with the method, which is executed when the method is called.

The method starts by making sure that the hour passed to it is valid. If it is, the code that determines the time of day will run
and return the proper value.

Notice that the type constraint in the method definition’s signature constrains hour to be an integer object. This enables a
handy feature in Lasso called “multiple dispatch”. Let’s say we want a similar function that accepts a date object. No need for
a different method name; instead we can define that method like this:

define time_of_day(datetime::date=date) => time_of_day(#datetime->hour)

This defines a second method that also has the name “time_of_day”, but accepts a date object and returns the value of calling
the time_of_day method that takes an integer, passing it the hour of the date object. This method definition doesn’t have
a capture associated with it. If your method is going to just return the value of an expression, you can put that expression to
the right of the association operator. It’s equivalent to this code:

define time_of_day(datetime::date=date) => {
return time_of_day(#datetime->hour)

}

Besides multiple dispatch, methods can also have optional parameters and named parameters. In the time_of_day example
method that takes a date object, the datetime parameter is actually optional: the current date and time will be used if no
value is passed. See the Methods chapter for more information on parameter definition and use.

1.2.3 Types

Lasso is an object-oriented language that comes with a number of core types already defined, but you can also create your
own types. Below is a simple type definition to demonstrate how:

define person => type {
data public nameFirst::string
data

public nameMiddle::string,
public nameLast::string

1.2. Lasso Language Features 5



LassoGuide, Release 9.3

public onCreate(first::string, last::string, middle::string='') => {
.'nameFirst' = #first
.'nameMiddle' = #middle
self->'nameLast' = #last

}

public nameFirstLast => self->nameFirst + ' ' + .nameLast
}

The type definition starts off with the define keyword followed by the type name, the association operator, the type keyword,
and finally the braces for the capture containing the type definition code. The definition starts with two data sections that
define three data members for the type. Two member methods are then defined using the access level keyword public
instead of the define keyword. The onCreate methods are special for types: they define type creator methods that are
automatically called when you create instances of your type. The following code would use the person->onCreate method
to create an object of type “person” and then output their first and last name:

local(cool_dude) = person('Bill', 'Doerrfeld') // "middle" is defined as an optional parameter
#cool_dude->nameFirstLast

// => Bill Doerrfeld

Types in Lasso also have single inheritance and can implement and import traits, described next. For more information on
types, see the Types chapter.

1.2.4 Traits

Traits are a great way to package up and make available reusable code for types. If there is functionality that needs to be shared
between different types, it can be packaged up as a trait instead of creating a different implementation for each type or forcing
a complex inheritance scheme.

Defining traits is similar to defining types. The following example is a slightly modified version of the definition for
trait_positionallyKeyed:

define ex_trait_positionallyKeyed => trait {
import trait_doubleEnded

require size()::integer, get(key::integer)

provide
first() => (.size > 0 ? .get(1) | null),
second() => (.size > 1 ? .get(2) | null),
last() => (.size > 0 ? .get(.size) | null)

}

The definition starts with the define keyword followed by the name of the trait, the association operator, the trait keyword,
and then a set of braces enclosing the trait definition. There are then three sections that start with their own keyword:

import
This section can contain a comma-separated list of traits that the current trait implements. In this case, because our trait
implements a first and lastmethod, it can import trait_doubleEndedwhich allows for types that use this trait to also
get the methods that trait_doubleEnded provides. (Alternatively, if trait A imports trait B but doesn’t implement trait
B’s required traits, any type that imports trait A must also meet the requirements for trait B by implementing the missing
methods.)

require
This section can contain a comma-separated list of method signatures that must be implemented by any type wanting to

6 Chapter 1. A Taste of Lasso



LassoGuide, Release 9.3

import this trait. In this case it requires a size method that returns an integer and a get method that takes a single integer
parameter.

provide
This section can contain a comma-separated list of method definitions. This is where the reusable code is defined that
types importing this trait will be able to access.

The result of this trait definition is that types defining a size method and a get method can import this trait and have the
following methods available as member methods: first, second, last. For more information on defining and using traits,
see the Traits chapter.

1.2.5 Query Expressions

Query expressions allow creation of highly readable code that can do complex manipulation of data sets. Here is a quick
example:

local(data_set) = (: 42, 11, 72, 13, 14, 88, 92, 35)

with number in #data_set
where #number % 2 == 0
skip 1
take 3
sum #number

// => 174

Every query expression starts as with newLocalName in trait_queriable, where newLocalName becomes the name
of a local variable only accessible in the query expression, and trait_queriable is an object whose type implements and
imports trait_queriable, such as the staticarray in the example.

After this initialwith clause, a query expression can have zero or more operation clauses that each start with their own keyword.
The example above uses three: where which filters the input using an expression, skip which skips a set number of elements,
and take which returns a set number of elements. Order does matter.

Every query expression ends with one action clause that specifies what should be done for each iteration. In this case, we’re
using the sum action to add each value in the iteration together. Other actions are min, max, average, and select, which
return a new set of values rather than a single value; and do, which runs a block of code for each value.

The example above iterates over each element in the staticarray and first tests to see if it is an even number. It then skips the
first even number it finds and only executes the sum action on the next three. The end result is that it adds 72, 14, and 88
together.

The best part about query expressions is that most of the actions are lazily executed. This means you can store a query expres-
sion in a variable, and it will wait to be executed until the value for the variable is expected. For a more thorough description,
see the Query Expressions chapter.

1.3 Serving Lasso

There are lots of ways to create websites using Lasso. There are a number of frameworks available8 , plus other ones not listed
on that page, that can help. You could even easily create your own framework. In this chapter, we will look at how easy it is to
use files that embed Lasso in HTML code, and examine a simple packaging architecture that Lasso provides called LassoApps.

8 http://www.lassosoft.com/Lasso-frameworks

1.3. Serving Lasso 7

http://www.lassosoft.com/Lasso-frameworks


LassoGuide, Release 9.3

1.3.1 Embedding Lasso Code

Lasso is designed to make it easy to intermix HTML and Lasso code in a single file. Just create a normal HTML file with the
“.lasso” extension and add Lasso code between the following delimiters: [ ... ], <?lasso ... ?>, or <?= ... ?>.

For example, you could place the following code in a file named “test.lasso” in the server’s web root:

<?lasso
local(now) = date

?>
<!DOCTYPE html>
<html>
<head>

<title>Test Lasso</title>
</head>
<body>

<p>
This page was loaded on [#now->format(`E, MMMM d, YYYY`)] at <?= #now->format(`h:mm:ss a`) ?>.

</p>
It is currently
[if(date->hour >= 5 and date->hour < 12) => {^]

morning!
[else(date->hour >= 12 && date->hour < 17)]

afternoon!
[else]

evening!
[^}]

</body>

Now all you need to do is use a web browser to request the URL from the server (e.g. http://example.com/test.lasso) and it will
use Lasso to return an HTML page with something like the following content:

This page was loaded on Wed, July 31, 2013 at 10:36:42 AM
It is currently morning!

1.3.2 Creating LassoApps

A LassoApp is a bundle of Lasso source files, HTML files, images, and other media into a single deployable unit. While develop-
ing, this deployable unit is a folder with the above contents, but you can also choose to compile the bundle and have a binary
file to distribute.

To create a LassoApp, create a directory in the “LassoApps” directory of your instance’s home directory. By default, URLs for
the LassoApp will start with /lasso9/AppName/. The discussion that follows will assume an app named “AddressBook” with
URLs that look like http://example.com/lasso9/AddressBook.

Special Files

_install Files
The first time an instance loads a LassoApp, it will execute any files with a file name beginning with “_install” and ending
with “.lasso” or “.inc”. For example, an install file that performs a specific task, such as creating a database required by the
app, could be named “_install.create_dbs.lasso”.

_init File
Another special file is the “_init” file. While the “_install” files will only ever execute once at installation, a file such as
“_init.lasso” will be executed every time the instance starts. Initialization files are used to define all of the types, traits,

8 Chapter 1. A Taste of Lasso



LassoGuide, Release 9.3

and methods used within the application; along with any code set by define_atBegin. (Defining methods, types, etc. is
best done at startup on a production system, since redefining a method can have an impact on system resources.)

Matching URLs to Code Files

LassoApps match the code files they process based on the type of content requested as represented by the extension in the
URL path. The default type is HTML if no extension is used or if the “.lasso” extension is used. That means the following example
URLs will all match the same code:

http://example.com/lasso9/AddressBook/people
http://example.com/lasso9/AddressBook/people.html
http://example.com/lasso9/AddressBook/people.lasso

Lasso matches those URLs to a file named “people.lasso” in the root of the AddressBook directory. It processes that file and
then it checks for any secondary files to process. These secondary files are based on the content extension, so in the case of
the above URLs, it will execute a file named “people[html].lasso”. The primary file can return a value that can be used by the
secondary file. This allows you to easily separate code for logic from code for display. (Note that if you use the URL ending in
“people.lasso”, Lasso won’t look for a secondary file to run based on content; only that code file will be run.)

For example, your “people.lasso” file could contain code to create an array of people objects and then return that array at the
end:

local(found_people) = array

// ... populate the array ...

return #found_people

Your “people[html].lasso” file might look something like this:

<?lasso
// Store the value returned from people.lasso
local(contacts) = #1

?>
<!DOCTYPE html>
<html>
<head>

<title>Your Contacts</title>
</head>
<body>

<table>
<thead>

<tr><th>First Name</th><th>Middle Name</th><th>Last Name</th></tr>
</thead>
<tbody>
[with person in #contacts do {^]

<tr>
<td>[#person->firstName]</td>
<td>[#person->middleName]</td>
<td>[#person->lastName]</td>

</tr>
[^}]
</tbody>
</table>

</body>
</html>

1.3. Serving Lasso 9



LassoGuide, Release 9.3

This separation of logic and presentation allows for some rather powerful features. For example, let’s say we
wanted our application to return a JSON representation of the array of people when accessed via the URL
http://example.com/lasso9/AddressBook/people.json. We already have the logic that finds the people and creates the array, so
all that’s required is add a file named “people[xhr].lasso” to create and display the array of maps:

<?lasso
local(people) = #1
json_serialize(

with person in #people
select map(

'firstName' = #person->firstName,
'middleName' = #person->middleName,
'lastName' = #person->lastName

)
)

?>

For more information on creating and compiling LassoApps, see the LassoApps chapter.

1.4 Next Steps

This has been just a taste of Lasso programming. Hopefully this chapter has whet your appetite, and you can now begin to
use it for your own projects, which is always the best way to learn any language.

As you start to use Lasso, we recommend reading through all of Part II, Language Elements, as it will go into detail about the
grammar, syntax, and features only outlined in this chapter. Also, take a look at the section and chapter titles in the rest of this
book to familiarize yourself with its contents. When you find yourself needing to know more about those features, capabilities,
or types, you’ll then know where to find the chapter for it.

10 Chapter 1. A Taste of Lasso



Chapter 2

Lasso Installation

2.1 Lasso Platform Overview

Lasso Server is a powerful and comprehensive tool for building and hosting data-driven web applications. This chapter intro-
duces important concepts and information you should know before starting to use the Lasso Platform or Lasso Server.

Lasso Server (and Lasso Developer) is server-side software that runs along with any FastCGI-capable web server. It adds a suite
of dynamic functionality and database connectivity to your website. This functionality empowers you to build and serve just
about any dynamic web application that you need with maximum productivity and ease.

Lasso Server works by receiving requests from the web server and routing those requests to specific server-side resources.
Generally, these local resources are files written in the Lasso language. Lasso can be easily embedded in templates with HTML,
XML, or other data types. Lasso Server manages processing and executing these files and responding to the client with the
resulting data. The details of programming in the Lasso language are covered in this book starting with Part II, Language
Elements.

2.1.1 Lasso Runtime

The Lasso runtime is a language platform designed from the ground up with the single purpose of hosting online applications.
It was engineered with a focus on scalability and performance. Lasso’s threading model is integrated with its transparent
event-driven I/O subsystem to make efficient use of hardware with multiple CPUs and to ensure that network requests are
served promptly under heavy load.

The Lasso runtime system manages the dynamic compilation of Lasso language code down to native machine code with
integrated caching schemes and automatic optimization of the most frequently used methods and object types. It also sup-
ports a flexible array of options for ahead-of-time compilation of code into dynamically loaded libraries as well as stand-alone
executables for OS X and Linux platforms.

Although the Lasso runtime can operate in the role of a quick command-line utility, it is designed with features to support the
needs of an “always-on” application process. Internally, such an application consists of a set of subprocesses, or threads, each
waiting to receive messages and sleeping until they arrive. Each thread maintains its own set of variables, and a thread cannot
directly access the variables of another thread.

2.1.2 Lasso Language

This version of the Lasso language builds upon many years of success with providing a versatile and full-featured program-
ming language. Lasso is a dynamically typed, object-oriented language with close ties to its database abstraction layer.
The language integrates closely to the Lasso runtime to give access to the lower level operating system in a uniform and
performance-minded manner. It improves upon this by already including many of the most useful third-party libraries, data
sources, technologies, and protocols.

Lasso’s type system combines the dynamic nature of scripting languages with some of the safety and features normally only
available in statically typed languages. Types can be extended through a “traits” system, promoting code re-use, and methods
are open to multiple dispatch which uses type annotations to provide pattern matching over method calls.

11



LassoGuide, Release 9.3

New types and methods can be added at runtime, which means that a running system is not required to be brought down
for most changes. This is helpful not only during development but also while a system is in service and urgent, well-tested
patches need to be applied.

Object types and methods can be compiled ahead of time using the Lasso compiler (lassoc). The result of this compilation
is a dynamic library that can be automatically loaded on demand when the type or method is first required. This helps keep
unused data out of memory, improves startup time, and lets an application be built and deployed in a modular manner.

2.1.3 Lasso Server

Lasso Server offers a suite of tools and methodologies for developing, serving, and administering data-driven web sites written
in the Lasso language. Lasso Server operates with any web server supporting FastCGI, such as Apache, IIS, lighttpd, and nginx.
A full complement of methods and objects are included for accessing web server parameters and variables as well as for
encoding and decoding data and for responding to requests.

Lasso Server provides an object model for programmatically building response documents in addition to a simple template
mode for creating or customizing HTML, XML, PDF, or any other sort of data on the fly. This system is designed to make it easy
to separate logic from presentation.

Lasso Server provides easy to use, yet powerful, control over content type and character encoding. Combined with the Lasso
language’s highly integrated support for Unicode strings, Lasso Server can readily serve content for any language using just a
single string object and API.

Also provided are built-in support for logging, bulk email sending, users and groups security, sessions, and more; including
integration with many third-party libraries such as curl, OpenSSL, and SQLite. Lasso Server brings a rich set of tools together
into one package.

The Lasso Instance Manager and Lasso Server Admin applications are included with Lasso Server. These applications provide
administrative access to a running system via a web browser. Lasso Instance Manager handles creation, licensing, and status of
individual Lasso Server instances, while Lasso Server Admin gives access to database configuration, users and groups, sessions,
email queues, error logs, and more. Lasso Instance Manager and Lasso Server Admin provide an accessible access point for
the server administrator to monitor and configure the operations of the server.

2.1.4 Lasso Developer

Lasso Developer is a free of charge, single-user edition of Lasso Server that can be used by a single developer to create and test
interactive web sites on their own machine. Lasso Developer has a client IP addresses limitation and per-minute transaction
limit. Lasso Developer is designed for authoring and demonstrating web sites and is the perfect way to get started with Lasso
Server.

Any installation of Lasso Server will default to Lasso Developer functionality when run without a valid serial number.

2.2 OS X Installation

These instructions are for installing Lasso Server on OS X. An Intel-based Mac running OS X 10.7 or later is required.

2.2.1 OS X Prerequisites

• Lasso’s PDF functions require a Java 8 runtime. The latest version of Oracle’s Java Runtime Environment can be down-
loaded from the Java support site9 .

9 http://www.java.com/

12 Chapter 2. Lasso Installation

http://www.java.com/


LassoGuide, Release 9.3

• OS X 10.11 and later also requires Java 6 from Apple10 due to an outstanding bug in Oracle’s Java distribution.

2.2.2 Installation

1. Download and expand the Lasso Server for OS X11 installer from the LassoSoft website.

2. Run the installer to perform a standard installation, which will install Lasso Server and start or restart the system’s Apache.
By default the following files and folders will be installed:

Apache config

• /etc/apache2/other/mod_lasso9.conf (OS X 10.7 and later)

• /etc/apache2/sites/mod_lasso9.conf (OS X Server 10.7)

• /Library/Server/Web/Config/apache2/sites/mod_lasso9.conf (OS X Server 10.8 and later)

Apache plugin

• /usr/libexec/apache2/mod_lasso9-2.2.so (OS X 10.7 to 10.9)

• /usr/local/libexec/apache2/mod_lasso9-2.4.so (OS X 10.10 and later)

shared library

• /Library/Frameworks/Lasso9.framework

launchd item

• /Library/LaunchDaemons/com.lassosoft.lassoinstancemanager.plist

binaries

• /etc/paths.d/lasso

• /usr/local/lasso/lasso9

• /usr/local/lasso/lassoc

• /usr/local/lasso/lassoim

• /usr/local/lasso/lassoserver

• /usr/local/lasso/lassospitfire

user data

• /var/lasso

This installer supports installing to other mounted bootable volumes, and can be run on the command line with sudo
installer -pkg Lasso*.pkg -target /.

3. When the installer has finished, click on the link on the web page that appears to load the initialization form (found on
your own machine at http://localhost:8090/lasso9/lux) and complete your Lasso installation.

From here on, you can read up on using the Lasso InstanceManager and InstanceAdministrationandConfiguration interfaces.

Note: On OS X Server, verify that the Web or Websites service is running in the Server application.

Important: If you upgrade your OS X installation or install OS X Server after installing Lasso Server, use the installer to reinstall
the Apache component to place its files in the correct locations.

10 https://support.apple.com/kb/dl1572
11 http://www.lassosoft.com/Lasso-9-Server-Download#Mac

2.2. OS X Installation 13

https://support.apple.com/kb/dl1572
http://www.lassosoft.com/Lasso-9-Server-Download#Mac


LassoGuide, Release 9.3

2.3 CentOS 5/6/7 Installation

These instructions are for installing Lasso Server on 64-bit CentOS 5, 6, or 7.

Note: Installing Lasso on CentOS 5 requires that SELinux be disabled or set to permissive mode.

2.3.1 Installation with yum

To install Lasso Server via yum, the LassoSoft yum repository must be configured on the server.

CentOS 5 64-bit
Import the LassoSoft public key:

$> rpm --import http://centosyum.lassosoft.com/RPM-GPG-KEY-lassosoft

Add the LassoSoft repository to /etc/yum.repos.d:

$> rpm -ivh http://centosyum.lassosoft.com/Lasso-CentOS-repo-1.0-1.el5.noarch.rpm

CentOS 6 64-bit
Import the LassoSoft public key:

$> rpm --import http://centos6yum.lassosoft.com/RPM-GPG-KEY-lassosoft

Add the LassoSoft repository to /etc/yum.repos.d:

$> rpm -ivh http://centos6yum.lassosoft.com/Lasso-CentOS-repo-1.0-1.el6.noarch.rpm

CentOS 7 64-bit
Import the LassoSoft public key:

$> rpm --import http://centos7yum.lassosoft.com/RPM-GPG-KEY-lassosoft

Add the LassoSoft repository to /etc/yum.repos.d:

$> rpm -ivh http://centos7yum.lassosoft.com/Lasso-CentOS-repo-1.0-1.el7.noarch.rpm

Then run the following as root to install Lasso Server:

$> yum install Lasso-Instance-Manager

When done, open http://your-server-domain.name:8090/lasso9/lux to load the initialization form and complete your Lasso in-
stallation. From here on, you can read up on using the Lasso InstanceManager and InstanceAdministrationandConfiguration
interfaces.

2.3.2 RPM Installation

To install Lasso Server directly from an RPM, download the latest release for CentOS 512 , CentOS 613 , or CentOS 714 , then as
root run:

12 http://centosyum.lassosoft.com/Lasso_Server_9.3/
13 http://centos6yum.lassosoft.com/Lasso_Server_9.3/
14 http://centos7yum.lassosoft.com/Lasso_Server_9.3/

14 Chapter 2. Lasso Installation

http://centosyum.lassosoft.com/Lasso_Server_9.3/
http://centos6yum.lassosoft.com/Lasso_Server_9.3/
http://centos7yum.lassosoft.com/Lasso_Server_9.3/


LassoGuide, Release 9.3

$> yum --nogpgcheck localinstall Lasso-Instance-Manager-9.3*.rpm

2.4 Ubuntu Installation

These instructions are for installing Lasso Server on 64-bit Ubuntu 14.

2.4.1 Installation with apt

If you don’t already have the add-apt-repository program, install it with the following command:

$> sudo apt-get install python-software-properties

Import the LassoSoft public key:

$> sudo apt-key adv --fetch-keys http://debianrepo.lassosoft.com/lassosoft-public.gpg.key

To install Lasso Server via apt, the LassoSoft apt repository must be configured on the server. Add the repository by running
the following command:

$> sudo add-apt-repository "deb [arch=amd64] http://debianrepo.lassosoft.com/ stable main"

Then run the following to install Lasso Server:

$> sudo apt-get update
$> sudo apt-get install lasso-instance-manager

Lasso’s Java support (which includes methods for PDF manipulation) and ImageMagick support are provided as separate
packages. If you need the functionality these packages provide, they can be installed with the following commands:

$> sudo apt-get install lasso-java-api
$> sudo apt-get install lasso-imagemagick

When done, open http://your-server-domain.name:8090/lasso9/lux to load the initialization form and complete your Lasso in-
stallation. From here on, you can read up on using the Lasso InstanceManager and InstanceAdministrationandConfiguration
interfaces.

2.4.2 Package Installation

To install Lasso directly from the Debian packages, download the latest releases from the repository archive15 , then run these
commands (ignore errors when running dpkg):

$> sudo apt-get update
$> sudo apt-get install apache2
$> sudo dpkg -i lasso-instance-manager_9.3*.deb lasso-imagemagick_9.3*.deb lasso-java-api_9.3*.deb
$> sudo apt-get install -f

15 http://debianrepo.lassosoft.com/9.3/

2.4. Ubuntu Installation 15

http://debianrepo.lassosoft.com/9.3/


LassoGuide, Release 9.3

2.5 Windows Installation

These instructions are for installing Lasso Server on 64-bit Windows Server 2012, Windows Server 2008 R2, Windows 8, and
Windows 7. Supported web servers are IIS 7, IIS 8, and Apache 2.2.

2.5.1 Windows Prerequisites

Lasso Server requires the following Microsoft updates:

• Microsoft Visual C++ 2012 Redistributable16 (auto-installed if required)

• Servers running IIS 7 or 8 need ISAPI enabled:

– For Windows Server, use the Roles Wizard to add “ISAPI Extensions” and “ISAPI Filters” under Web Server → Appli-
cation Development.

– For other Windows versions, open Control Panel→ Programs and Features and click Turn Windows features on or off,
then under Internet Information Services → World Wide Web Services → Application Development Features, enable
“ISAPI Extensions” and “ISAPI Filters”.

These installs are optional, but recommended:

• Lasso’s PDF functions require a Java runtime. The latest version of Oracle’s Java Runtime Environment can be down-
loaded from the Java support site17 .

• Lasso’s image functions require ImageMagick. Download and install “ImageMagick-6.7.7-7-Q16-windows-x64-dll.exe”
or later from an ImageMagick installers archive18 .

• Running Lasso under Apache requires a 64-bit installation of Apache 2.2. Only 32-bit installers of Apache 2.2 are officially
available from http://httpd.apache.org/, but unofficial 64-bit installers19 can be found elsewhere online.

If either is installed after Lasso, restart Lasso Instance Manager by opening the built-in Services application, selecting the “Lasso
Instance Manager” service, and clicking the “Restart Service” icon.

2.5.2 Installation

1. Download the Lasso Server for Windows20 installer for your preferred web server from the LassoSoft website and run the
installer package. (Their contents are identical, but only the IIS installer configures IIS for you automatically.) By default
the following files and folders will be installed:

Lasso folder
C:\Program Files\LassoSoft\Lasso Instance Manager\

IIS plugin
C:\Windows\System32\isapi_lasso9.dll

2. When the installer has finished and your web server has been configured, open
http://your-server-domain.name:8090/lasso9/lux to load the initialization form and complete your Lasso installation.
From here on, you can read up on using the Lasso Instance Manager and Instance Administration and Configuration
interfaces.

16 http://www.microsoft.com/en-us/download/details.aspx?id=30679
17 http://www.java.com/
18 http://ftp.icm.edu.pl/packages/ImageMagick/binaries/
19 https://www.anindya.com/apache-http-server-2-4-4-and-2-2-24-x86-32-bit-and-x64-64-bit-windows-installers/
20 http://www.lassosoft.com/Lasso-9-Server-Download#Win

16 Chapter 2. Lasso Installation

http://www.microsoft.com/en-us/download/details.aspx?id=30679
http://www.java.com/
http://ftp.icm.edu.pl/packages/ImageMagick/binaries/
http://httpd.apache.org/
https://www.anindya.com/apache-http-server-2-4-4-and-2-2-24-x86-32-bit-and-x64-64-bit-windows-installers/
http://www.lassosoft.com/Lasso-9-Server-Download#Win


LassoGuide, Release 9.3

2.5.3 Configuring IIS 7 or 8

These steps will replicate the configuration commands run by the IIS installer.

To add Lasso Connector for IIS to the list of allowed ISAPI extensions:

• Open IIS Manager21 and select your computer name from the nodes on the left.

• In the main panel, double-click on ISAPI and CGI Restrictions.

• Click Add... to add a new entry:

– ISAPI or CGI path: C:\Windows\System32\isapi_lasso9.dll

– Description: Lasso9

– Check Allow extension path to execute

• Back in the main panel, double-click on ISAPI Filters.

• Click Add... to add a new entry:

– Filter name: isapi_lasso9.dll

– Executable: C:\Windows\System32\isapi_lasso9.dll

To pass requests for “*.lasso” files to Lasso Server:

• Open IIS Manager22 and select your computer name from the nodes on the left, or a site within it.

• In the main panel, double-click on Handler Mappings.

• Click Add Script Map... to add a new script map:

– Request path: *.lasso

– Executable: C:\Windows\System32\isapi_lasso9.dll

– Name: Lasso9Handler

– Request Restrictions...: under Mapping, uncheck “Invoke handler only if request is mapped” (leave other settings
at “All verbs” and “Script”)

To configure access to Lasso Instance Manager and Lasso Server Admin:

• Open IIS Manager23 and expand your computer name from the nodes on the left.

• Right-click a web site under your computer name, e.g. “Default Web Site”.

• Select Add Application... to add a new application:

– Alias: lasso9

– Application pool: select an appropriate pool (generally DefaultAppPool is acceptable)

– Physical path: C:\Program Files\LassoSoft\Lasso Instance Manager\www\

• Select the newly created application from the nodes on the left and double-click on Handler Mappings.

• Click Add Script Map... to add a new script map:

– Request path: *

– Executable: C:\Windows\System32\isapi_lasso9.dll

– Name: LassoAdmin
21 https://technet.microsoft.com/en-us/library/cc770472(v=ws.10).aspx
22 https://technet.microsoft.com/en-us/library/cc770472(v=ws.10).aspx
23 https://technet.microsoft.com/en-us/library/cc770472(v=ws.10).aspx

2.5. Windows Installation 17

https://technet.microsoft.com/en-us/library/cc770472(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc770472(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc770472(v=ws.10).aspx


LassoGuide, Release 9.3

– Request Restrictions...: under Mapping, uncheck “Invoke handler only if request is mapped” (leave other settings
at “All verbs” and “Script”)

Restart IIS when finished to apply the new configuration.

2.5.4 Configuring Apache 2.2

These steps must be run manually for Apache to serve Lasso pages.

• Open C:\Program Files\LassoSoft\Lasso Instance Manager\home\LassoExecutables\ and copy these
files:

– mod_lasso9.dll into the Apache modules\ folder

– mod_lasso9.conf into the Apache conf\ folder

• In the conf\ folder, open the Apache httpd.conf file for editing and add the following line: Include conf/
mod_lasso9.conf

• Restart Apache.

• In a browser, open http://localhost/lasso9/instancemanager to load the initialization form and complete your Lasso in-
stallation.

2.5.5 Troubleshooting

ISAPI and CGI Restrictions or ISAPI Filters options for IIS are missing.

• If you cannot find either ISAPI option, it is most likely not installed. To install the ISAPI options on IIS 7 or 8:

Windows Server

1. Open Server Manager

2. Navigate to the list of currently installed Web Server roles

3. Expand Web Server → Application Development

4. Check “ISAPI Extensions” and “ISAPI Filters”

5. Continue through installation wizard

Windows 7 or 8

1. Open “Control Panel”

2. Open Programs and Features

3. Click Turn Windows features on or off”

4. Expand Internet Information Services → World Wide Web Services → Application Development Features

5. Check “ISAPI Extensions” and “ISAPI Filters”

6. Click OK

7. Continue through installation wizard

18 Chapter 2. Lasso Installation



LassoGuide, Release 9.3

IIS gives the error Handler "Lasso9Handler" has a bad module "IsapiModule" in its module listwhen load-
ing “*.lasso” files.

• IIS’s ISAPI options are not installed, or were installed after Lasso Server. Follow the steps above to ensure ISAPI is installed
and manually add Lasso Connector for IIS to the list of allowed ISAPI extensions.

Lasso pages are not loading.

• The Application Pool for the site may be set to run 32-bit applications. To disable:

1. Open IIS Manager

2. Select the site’s “Application Pool”

3. Click Advanced Settings

4. Set “Enable 32-bit Applications” to “False”

• IIS may be missing required features. To check:

Windows Server

1. Open Server Manager

2. Navigate to the list of currently installed Web Server roles

3. Expand Web Server → Common HTTP Features

4. Check “Default Document” and “Static Content”

5. Continue through installation wizard

Windows 7 or 8

1. Open “Control Panel”

2. Open Programs and Features

3. Click Turn Windows features on or off”

4. Expand Internet Information Services → World Wide Web Services → Common HTTP Features

5. Check “Default Document” and “Static Content”

6. Click OK

7. Continue through installation wizard

Standard 404 error page is returned instead of Lasso’s default not found page.

• IIS’s handler for “*.lasso” files may have a request restriction set. To disable:

1. Open IIS Manager

2. Select your computer name from the nodes on the left or a site within it, depending where the handler was first
defined

3. In the main panel, double-click on Handler Mappings

4. Edit the script map for “*.lasso” files

5. Click Request Restrictions...

6. Under Mapping, uncheck “Invoke handler only if request is mapped”

2.5. Windows Installation 19



LassoGuide, Release 9.3

7. Click OK twice, then Yes to apply the change

Standard 500 error page is returned instead of Lasso’s default error page.

• IIS’s “HTTP Errors” feature may be enabled. To disable:

Windows Server

1. Open Server Manager

2. Navigate to the list of currently installed Web Server roles

3. Expand Web Server → Common HTTP Features

4. Uncheck “HTTP Errors”

5. Continue through installation wizard

Windows 7 or 8

1. Open “Control Panel”

2. Open Programs and Features

3. Click Turn Windows features on or off”

4. Expand Internet Information Services → World Wide Web Services → Common HTTP Features

5. Uncheck “HTTP Errors”

6. Click OK

7. Continue through installation wizard

20 Chapter 2. Lasso Installation



Chapter 3

Lasso Server Management

3.1 Lasso Instance Manager

Lasso Instance Manager is a companion tool integrated into Lasso Server that permits the management of one or more Lasso
Server instances, which are isolated lassoserver processes each running within their own environment. This tool can install
and uninstall new Lasso Server instances and allows those instances to be configured in one convenient location.

Lasso Instance Manager stands as an intermediary between the individual Lasso Server instances and the web server. Each
Lasso Server instance is configured with a host name pattern. By default, Lasso Instance Manager catches all requests with the
file extension “.lasso” and all requests where the URI path begins with “/lasso9/”, and it uses the instance’s host name patterns
to determine which running instance should serve each request.

3.1.1 Initialization

After the initial installation, you will be presented with a simple install acknowledgment and a process to initialize and cre-
ate the first instance. Under OS X this will be a web page; under Linux you will see output in the terminal giving the URL
http://your-server-domain.name/lasso9/instancemanager.

When Lasso Instance Manager is run for the first time, it will look for an existing Lasso Server installation that was installed
through the Lasso Server 9.0 installer and will import that instance. No files will be removed. The Admin LassoApp will be
updated and any existing Lasso Server 9.0 Apache 2 configuration file will be disabled.

If no existing Lasso Server 9.0 instance is located, a new Lasso Server instance will be created named “default”. This default
instance will be configured with the same administrative username and password that was selected when first initializing
Lasso Instance Manager, and is set up to respond to all host names.

3.1.2 User Interface

The main interface for Lasso Instance Manager consists of a list of all known Lasso Server instances on that machine. Below
this list is a button for creating new instances.

21



LassoGuide, Release 9.3

Fig. 3.1: Lasso Instance Manager – Main Screen

Each instance in the list shows:

• Current licensing mode, based on the instance serial number, if any.

• Current run status: red is not running, yellow is running but with a developer license, green is running and fully licensed.

• Instance name

• Instance version (as of 9.2.5)

• Instance uptime

Additionally, a row of buttons on the right permit access to the following:

• Instance configuration: instance name, description, admin URL, home path, OS user, host pattern, Disable Instance but-
ton, Delete Instance button

• Instance notes

• Instance output log

• Instance environment variables

• Instance admin link

• Restart Instance button

Note that Lasso Instance Manager periodically updates the interface automatically to show each instance’s status.

Add a New Instance

Click the ++ Add New Instance ++ button at the bottom of the interface. This will present a form for customizing the Lasso
instance to be created. When done, click the + Add button at the bottom to create your new instance.

22 Chapter 3. Lasso Server Management



LassoGuide, Release 9.3

Fig. 3.2: Lasso Instance Manager – Adding an Instance

Instance Creation Fields

Instance Name
This is the name of the new instance. It serves to uniquely identify the instance among the others.

Host Patterns
A host pattern is a string of characters that are matched against the incoming HOST field of the HTTP request. An instance
may have several of these patterns. These patterns serve to direct individual requests to specific Lasso instances. A host
pattern resembles a domain name, and can contain the wildcard character “%”. The pattern %foo.com would match
“www.foo.com” and “foo.com”. The pattern localhost would match only “localhost”. If no instance is configured to re-
spond to a given host, an error will be returned to the client.

Note that the host pattern uses globbing rather than regular expressions for pattern matching.

Instance URL
This URL is used only within the Instance Manager. This URL provides a convenient way to link from the Instance Manager
to a page served by that Lasso instance.

Description
An optional description of this Lasso instance.

3.1. Lasso Instance Manager 23



LassoGuide, Release 9.3

Serial Number
If you already have a license serial number for the new instance, enter it here.

OS User
The new instance will consist of a process that runs as this specific operating system user. Additionally, the Lasso home
directory will have its permissions adjusted to restrict access to users other than this one. The default username is “_lasso”.

OS Group
This group name will be used for adjusting the Lasso home directory permissions. If left blank, the OS user’s default group
will be used. The default group is “_lasso”, which is used with the OS username of “_lasso”.

Home Parent Directory
Every Lasso Instance has a home directory. This directory is automatically created within the path specified by this form
field when the instance is created. This field only specifies the path up to the directory in which the new instance’s home
directory will be created. The name of the new instance’s home directory will be the name of the instance (specified in the
first form field). Note that illegal characters and spaces will be stripped from the new directory name.

• Unless manually edited, new instance home directories are created in a specific location within the directory housing
the Lasso Instance Manager. This location will differ based on the platform on which Instance Manager is running.
This location is shown at the time a new instance is being created. If this path is edited, the new value will become
the default for subsequently created instances (though the path can still be edited).

• By default, ownership of the new instance’s home directory will be set to what is specified in the “OS User” and “OS
Group” fields.

The most important bits of information to fill in are the instance name and the host pattern. The rest can be left as they are
unless you have a specific need to tailor this instance.

By default, all new instances run as the “_lasso” operating system user. For enhanced security between different Lasso instances,
use a different OS user and group for each. As an OS user is permitted to read files owned by that user, Lasso instances with
the same OS user are able to share files among themselves. In many cases this is not a problem, or may not even be desired,
but if a single computer is hosting many instances for many different users, differing usernames may be required.

Change Instance Configuration

After an instance has been created, the instance’s host patterns and URL can still be modified. Click the instance’s “Configura-
tion” button (the first of the five in the top right) to reveal the configuration for the instance. A button is shown next to the
editable items. Click the button and follow the directions to edit these items.

Disable an Instance

If an instance needs to be temporarily disabled, first click the instance’s “Configuration” button to reveal the configuration for
the instance. Then, click the Disable Instance button. This will terminate the instance’s process. The instance will no longer be
automatically started and can no longer serve requests. To re-enable the instance, click the Start Instance button near the top
right of the instance view.

Delete an Instance

When an instance is no longer required, it can be removed. First, click the instance’s “Configuration” button to reveal the
configuration for the instance. This view contains a Delete Instance button and a checkbox for specifying that the instance’s
home directory should be deleted as well. If this checkbox is not checked when the Delete Instance button is clicked, the
instance’s home directory will be left in place. Deleting an instance will terminate that instance’s process, remove the instance
from the list, and optionally delete the instance’s home directory.

24 Chapter 3. Lasso Server Management



LassoGuide, Release 9.3

Add Instance Notes

Instance notes are for your own reference. They permit reminders or important details to be associated with an instance. To
add an instance note, click the instance’s “Notes” button to reveal the instance notes view. Type your note in the provided text
area and then click the + Add Note button.

View Instance Logs

Lasso Instance Manager captures the last number of lines of console output generated by a Lasso instance. Click the Logs
button to show the log for an instance. While the view is shown, the log data will automatically refresh. The data can be man-
ually refreshed by clicking the Refresh Log File View button. Each log can be cleared or downloaded by clicking the appropriate
button in this view.

Fig. 3.3: Lasso Instance Manager – Viewing Instance Logs

3.1. Lasso Instance Manager 25



LassoGuide, Release 9.3

Modify Instance Environment Variables

Environment variables control how an instance runs or how the software that an instance is using (e.g. ImageMagick or Java)
operates. Click the instance’s “Variables” button to reveal the environment variables view. All current variables are shown in
this view. Existing variables can be removed, and new variables can be added. Any variable modifications will not take effect
until the instance is restarted.

New instances are automatically configured with the LASSO9_HOME and LASSO9_MASTER_HOME variables. It is recommended
that these not be modified or removed unless a highly customized instance is required.

Fig. 3.4: Lasso Instance Manager – Adding Instance Environment Variables

Restart an Instance

Clicking the Restart Instance button will open an alert, confirming your intention to restart the instance. Pressing Cancel will
clear the alert window and nothing further will happen. Pressing OK will terminate the instance’s process and then restart that
process. The instance’s running light will switch to green or yellow once the instance is fully running again.

If the instance isn’t currently running, the button will say Start Instance. Pressing the button will not result in a prompt, and will
instead immediately start the instance.

26 Chapter 3. Lasso Server Management



LassoGuide, Release 9.3

Update License Serial Number

Click the button in the instance’s main view which shows the instance’s licensing status (upper left corner button). A dialog
will appear, permitting a new serial number to be entered. Setting an instance’s serial number will restart that instance.

3.1.3 Instance Home Directory Contents

A Lasso instance’s home directory can contain several folders and files that can be used to tailor the instance. Specifically, these
are the “LassoApps”, “LassoLibraries”, “LassoModules”, and “LassoStartup” directories. However, by default, an instance will also
look for the first three directories in the Instance Manager’s home directory. Files can be placed in the appropriate location
inside of the instance’s home directory in order to override the files provided by the Instance Manager.

LassoApps
The LassoApps directory contains applications that are loaded when an instance starts up. At startup, the instance finds
all the applications in the Instance Manager’s “LassoApps” directory and compares it with the applications in its own “Las-
soApps” directory. Any applications in the Instance Manager’s “LassoApps” directory with the same name as those in the
instance’s home directory are skipped. This allows an instance to install its own version of a Lasso application with the same
name without ever loading the Instance Manager’s version.

LassoLibraries
The LassoLibraries directory contains all available on-demand libraries. These libraries are loaded as required as the instance
runs. Whenever an attempt is made to use a non-existent method or type, the “LassoLibraries” directory is searched for a
suitable implementation. An instance will first look in its own home directory for such a library. If not found, the Instance
Manager’s home directory is searched. This permits an instance to override a library that would have been loaded from
the Instance Manager’s home directory with its own version or to have its own instance-specific library.

LassoModules
The LassoModules directory contains all Lasso C API (LCAPI) modules. These are all loaded when an instance is first started.
The instance will first load all modules located in the Instance Manager’s home, and then all modules located in the
instance’s home. This permits an instance to replace an LCAPI module with its own version, if required, or to have an
instance-specific LCAPI module.

LassoStartup
The LassoStartup directory contains plain-text Lasso files which are read when the instance starts. Any uncompiled custom
types or methods can be placed in files ending in either “.lasso” or “.inc” and will be available across the instance.

Note: Lasso only searches for “LassoStartup” in each instance’s home directory, and not in the Instance Manager’s home
directory.

3.1.4 Starting and Stopping Lasso Instance Manager

Stopping the Lasso Instance Manager process differs on each platform.

OS X
The OS X installer creates a launchd service that manages the Instance Manager process. To stop this service, execute
the following command from the terminal:

$> sudo launchctl unload /Library/LaunchDaemons/com.lassosoft.lassoinstancemanager.plist

Linux
The CentOS and Ubuntu installers create a service “lassoimd” for the Instance Manager executable, which loads at
startup. To stop this service, execute the following command from the terminal:

3.1. Lasso Instance Manager 27



LassoGuide, Release 9.3

$> sudo service lassoimd stop

Windows
The Windows installer creates a service that can be stopped using Windows’ built-in Services application by selecting
the “Lasso Instance Manager” service and clicking the square “Stop Service” button.

Stopping the Instance Manager will also stop all Lasso instances. No Lasso instance will be able to serve any requests while
the Instance Manager is not running.

When installed, Lasso Instance Manager is configured to automatically start when the computer boots up. If the Instance
Manager has been manually stopped, it can be manually started again.

OS X
The OS X installer creates a launchd service that manages the Instance Manager process. To start this service, execute
the following command from the terminal:

$> sudo launchctl load /Library/LaunchDaemons/com.lassosoft.lassoinstancemanager.plist

You can then verify that Lasso Instance Manager is running:

$> ps -ax | grep lassoim
62 ?? 7:10.95 /usr/local/lasso/lassoim

Linux
The CentOS and Ubuntu installers create a service “lassoimd” for the Instance Manager executable, which loads at
startup. To start this service, execute the following command from the terminal:

$> sudo service lassoimd start

You can then verify that Lasso Instance Manager is running:

$> sudo service lassoimd status
lassoimd (pid 4653) is running...

Windows
The Windows installer creates a service that can be started using Windows’ built-in Services application by the “Lasso
Instance Manager” service and clicking the triangle “Start Service” button. You can then verify that Lasso Instance
Manager is running by checking if the “Status” column for the “Lasso Instance Manager” service says “Started”.

3.1.5 Uninstallation

OS X
An uninstaller is provided in the same package as the original installer. Run this to uninstall Lasso Instance Manager.
This action will remove any Lasso instance home directories that were created in the default location (/var/lasso).
This will not remove any home directories that were created in custom locations.

Linux
Use the standard package manager (yum or apt) to uninstall Lasso Instance Manager.

Windows
Use the system’s built-in uninstall utility via the Programs and Features control panel.

28 Chapter 3. Lasso Server Management



LassoGuide, Release 9.3

3.2 Instance Administration and Configuration

Lasso Server provides a convenient, web-based interface for configuring a Lasso instance’s settings, managing and maintaining
databases, and much more. This interface is referred to as the Lasso Server Admin.

3.2.1 Accessing Lasso Server Admin

Lasso Server can have multiple independent instances defined within Lasso Instance Manager. Requests are distributed to
each host based on the value of each request’s Host header.

The default instance will catch all incoming web requests. If no additional instances have been created, Lasso Server Admin
for the sole instance can be accessed using any domain name pointing at the server that’s enabled for Lasso Server. (Use
“localhost” if accessing Lasso Server Admin from a browser on the same machine Lasso Server is installed on. Otherwise,
replace “www.example.com” with the server’s actual domain name or IP address.)

http://localhost/lasso9/admin
http://www.example.com/lasso9/admin

To access Lasso Server Admin for a particular instance, it is necessary to construct a URL that meets the criteria for the instance.
For example, if an instance only serves requests for the domain “secure.example.com” then the following URL would load the
Lasso Server Admin for that instance:

http://secure.example.com/lasso9/admin

The web browser should prompt for the administrator username and password using a standard HTTP authentication prompt.
The web browser will not prompt if Lasso Server Admin has already been accessed using the browser in the current session
or if the authentication information has been stored in a keychain, passport, or browser preferences.

If an error is displayed, make sure Lasso Server and the web server are running as described in the installation instructions for
your operating system elsewhere in this guide.

3.2.2 User Interface

All settings for a particular instance are configured here.

System Status

The System Status tab, located in the top right portion of the page, contains information regarding the Lasso Server instance.

• Uptime – length of time the instance has been running

• CPU Time – how much CPU time has been consumed by the instance

• Threads – number of threads in use by the instance

• Memory – amount of memory consumed by the instance

• Free – memory Lasso has been allocated but is not currently using

3.2. Instance Administration and Configuration 29



LassoGuide, Release 9.3

Fig. 3.5: Lasso Server Admin – Landing Page and System Status

Lasso Quick Code

Lasso Quick Code allows running code snippets within the Lasso Server Admin web interface. The Lasso Quick Code console
can be opened by clicking the arrow tab in the top center of the page.

Fig. 3.6: Lasso Server Admin – Lasso Quick Code

The Lasso Quick Code console has two configurable options:

30 Chapter 3. Lasso Server Management



LassoGuide, Release 9.3

• <?lasso – When this option is checked, anything entered in the “Code” field is treated as having been wrapped in <?
lasso ... ?> delimiters.

• Auto-collect – When this option is checked, the Lasso Quick Code console will display the results of auto-collecting the
code in the “Result” field.

Main Menu

The Lasso Server Admin is primarily navigated by using the pop-up menu on the upper left portion of the page. This is the
“Main Menu” which contains the following divisions and options:

Lasso

• Datasources – Configure database connections.

• License – Enter license serial number. (This can also be entered in Lasso Instance Manager.)

Auth

• Users – Configure Lasso users.

• Groups – Configure Lasso groups.

Monitors

• Log Book – View log messages and configure logging settings.

• Email Queue – View emails currently in queue.

• Sessions – View active sessions, delete expired sessions, and change session storage settings.

Utilities

• DB Browser – Manage and browse databases.

Fig. 3.7: Lasso Server Admin – Main Menu

3.2.3 Administrative Tasks

Each of the links in the Main Menu leads to different sections in Lasso Server Admin to perform specific administrative tasks.
These tasks are outlined in the sections that follow.

3.2. Instance Administration and Configuration 31



LassoGuide, Release 9.3

Configuring Datasources

Clicking on the “Datasources” link in the Main Menu will lead to a web page that lists the datasources your instance can access.
Clicking on a data source will reveal a list of hosts that have already been configured as well as an Add host button. Clicking
on that button reveals a form to enter the “Host”, “Port”, “Username”, and “Password” information for a new host. Entering this
information and clicking Add Host will add the new host to the list of hosts for that data source.

Clicking on a host in the list of hosts for a data source will reveal a form that allows editing the connection information for the
host or to delete the host. Below that form is a list of databases that the credentials entered can access.

Clicking on a database reveals a form that allows the alias name for that database to be set. The alias name is what is matched
when the -database parameter is used in an inline method. Below that form is a list of tables in the database that the
entered credentials can access.

See the Datasource Setup chapter for detailed information on connecting Lasso Server to various data sources.

Entering a License Serial Number

Clicking on the “License” link in the Main Menu will lead to a web page that displays the current license of the instance. There
is also an Add Serial Number button that allows adding or changing the serial number. This information can also be viewed
and updated in Lasso Instance Manager.

Managing Lasso Users

Clicking on the “Users” link in the Main Menu will lead to an interface that allows adding, removing, and searching for Lasso
users. Lasso users are stored in the instance’s internal SQLite databases. Each user has a name, password, and a status (enabled
or disabled). They can optionally have a comment and belong to one or more Lasso groups. These users can be used with the
auth_… methods for HTTP authentication.

During the initial installation and setup of the instance, Lasso Server Admin creates a user in the “ADMINISTRATORS” group and
authenticates anyone trying to access itself against those credentials. Be sure you don’t delete this user without first creating
another user in the “ADMINISTRATORS” group. In fact, you should always have at least one administrator that can log in to
Lasso Server Admin.

Search for a User

You have two ways to filter the list of Lasso users to find the user(s) you are seeking. You can filter users based on their member-
ship in a group by selecting a group in the Group drop-down list. Changing this selection will cause the list of users to update
itself based on the criteria you have selected. You can also search for a user by name by typing part or all of the name in the
“Name” text field. As you type, the list of users will filter itself based on the data you enter.

Add a User

To add a Lasso user, click the Add User button in the top right of the “Users” interface. A dialog will appear for entering the
name, password, and a comment as well as selecting the status and which groups they should be a member of. Once all the
data is correctly entered, click the Add button to add the user.

Delete a User

To delete a user, first find the name in the listing of users. Once you have found the user, click the minus button in the column
to the left of the name. You will receive a dialog box double-checking your intentions. Click the OK button in that dialog box
to delete the user.

32 Chapter 3. Lasso Server Management



LassoGuide, Release 9.3

Managing Lasso Groups

Clicking on the “Groups” link in the Main Menu will lead to an interface that allows adding, removing, and searching for Lasso
groups. Lasso groups are stored in the instance’s internal SQLite databases. Each group has a name and a status (enabled or
disabled). They can optionally have a comment. These groups can be used with Lasso users and with the auth_… methods
for HTTP authentication.

During the initial installation and setup of the instance, Lasso Server Admin creates a group named “ADMINISTRATORS” and
any user assigned to that group can authenticate into Lasso Server Admin. There is also a special group named “Any Group”
that will appear in the “Users” interface of Lasso Server Admin. This is a way to reference every user since everyone is a member
of this special group.

Search for a Group

You can filter groups based on their names by typing part or all of the name in the “Name” text field. As you type, you will
notice the list updating itself based on the data you enter.

Add a Group

To add a Lasso group, click the Add Group button in the top right of the “Groups” interface. A dialog will appear for entering the
name and a comment as well as selecting the status of the group. Once all the data is correctly entered, click the Add button
to add the group.

Delete a Group

To delete a group, first find it in the listing of groups. Once you have found the group, click the minus button in the column to
the left of its name. You will receive a dialog box double-checking your intentions. Click the OK button in that dialog box to
delete the group.

Monitoring and Managing Lasso Logs

Clicking on the “Log Book” link in the Main Menu will lead to an interface for managing the instance’s Log Book. The “Log Book”
interface allows viewing and delete errors, warnings, detail messages, and deprecated functionality warnings that have been
logged by Lasso Server via the log_… methods. This interface can also specify the site’s logging settings.

Note: Configuring error logging in Lasso Server Admin is not the same as configuring page-level error handling, such as for
syntax errors and security errors. Page-level error handling is described in the Error Handling chapter.

Filter Log Messages

You can filter log entries based on their message by typing part of the message in the “Message” text field. As you type, the
list of log messages will filter itself based on the data you enter.

Delete Log Messages

There are two action buttons below the log entries table:

• Delete All Messages – delete all log entries stored in the SQLite database

3.2. Instance Administration and Configuration 33



LassoGuide, Release 9.3

• Delete All Found – delete all log entries that have been found based on the search term in the “Message” text field
above

Log Book Settings

Click on the Settings button at the top right of the “Log Book” interface. A dialog will appear with a matrix of checkboxes
that allows selecting where each type of log message is sent. Make your selections, then click the Save button to update the
instance’s logging settings.

Monitoring and Managing the Email Queue

Clicking on the “Email Queue” link in the Main Menu will lead to a web page displaying the instance’s email queue. The email
queue logs all email messages that are being sent from the instance. Messages remain in the queue while they are being sent
to the SMTP mail server looked up by Lasso or specified in the email_send method by the developer. For more information,
see the Sending Email chapter.

Filter Email Messages

You can filter the email messages being displayed in the queue by their status: “Any”, “Queued”, “Sending”, or “Error”. Simply
choose one of those statuses from the Queue Status drop-down list and the queue entries will automatically update to reflect
your selection.

Delete Email Messages

To remove an email message from the queue, first find it in the listing of entries. Once you have found the message, click the
minus button in the column to the left of its ID. You will receive a dialog box double-checking your intentions. Click the OK
button in that dialog box to remove the message from the queue.

Managing Lasso Sessions

Clicking on the “Sessions” link in the Main Menu will lead to an interface that allows browsing and managing sessions in real
time as well as configuring the location for storing sessions.

View Sessions

Sessions can be stored in any of the available data sources for your instance of Lasso Server as well as in memory. The default
is to use a SQLite database and table to store session information. You can view the session information you have stored in
any of the data sources by selecting the data source from the Driver drop-down list and then selecting the appropriate values
in the Database and Sessions Table drop-down lists if appropriate. (These last two lists will be disabled for the “SQLite” and “In
Memory” drivers. Otherwise, they will show the databases/tables you have access to for the selected driver’s data source.)

Delete Expired Sessions

Clicking the Delete Expired Sessions button beneath the Driver drop-down list will remove all expired session entries from the
currently selected session data source’s table. By default, Lasso Server periodically clears out expired sessions, so it is not usually
necessary to run it manually.

34 Chapter 3. Lasso Server Management



LassoGuide, Release 9.3

Configure Session Storage Location

By default, Lasso Server is configured to store session information using the “SQLite” session driver. You can change this by
following these steps:

1. Select the driver you wish to use from the Driver drop-down list.

2. If the driver is not “SQLite” or “In Memory”, select a value from the Database drop-down list and the Sessions Table
drop-down list. (You can click the Create Sessions Table button below the Sessions Table drop-down list to have Lasso
Server create a table in the selected database with the correct schema for storing sessions. If you click this button, you
will be given the chance to name the table whatever you desire, and then that new table will be selected in the Sessions
Table drop-down list.)

3. Click the Select As Default Driver button to have the session_start method use your selection for storing session
information.

Browsing Data Sources

Clicking on the “DB Browser” link in the Main Menu will lead to an interface that allows issuing SQL queries to accessible
SQL databases. This includes any SQLite, MySQL, or SQL-compliant ODBC database that has been set up in the “Datasources”
interface of Lasso Server Admin.

Browsing data is as easy as selecting the appropriate values in the Datasource, Host, Database, and Table drop-down lists. Lasso
Server Admin will automatically issue a SELECT * on the chosen table and display the results in the table below.

You can run your own SQL statements on the chosen host/database/table by entering them in the provided “Statement” text
area and clicking the Issue Statement button below the text area. The results will be shown in the table below. If there are any
errors in your SQL statement, an alert message will inform you of the error, and no results will be displayed.

3.3 Datasource Setup

Lasso Server communicates with data sources, which are any type of software mechanism for storing and retrieving data
(including databases), using Lasso data source connectors, which are modular components that translate Lasso requests into
commands specific to each data source. Connections to data sources, or datasources, are configured in the “Datasources”
section of Lasso Server Admin. Lasso Server provides built-in connectors for all of the data sources listed below.

Most connectors can access data sources that are installed on the same machine as Lasso Server or on a remote machine.
Some connectors can only access files on the local machine. Whether or not an ODBC data source can communicate with
Lasso on a separate machine depends on whether or not the driver can communicate via TCP/IP.

Custom data source connectors for other data sources can also be created for use with Lasso Server using Lasso’s C API (LCAPI),
Java API (LJAPI) or Lasso itself using the dsinfo type. (Information about creating and using LCAPI third-party data source
connectors can be found in the Creating Lasso Data Sources chapter of the LCAPI documentation.)

FileMaker Server Data Sources
Supports FileMaker Server 9–15 and FileMaker Server 7–12 Advanced.

MySQL Data Sources
Supports MySQL Server 3.x, 4.x, or 5.x data sources. The MySQL client libraries need to be installed when using this data
source.

Oracle Data Sources
Supports Oracle data sources. The Oracle “Instant Client” libraries must be installed in order to activate this data source.

PostgreSQL Data Sources
Supports PostgreSQL data sources. The PostgreSQL client libraries must be installed in order to activate this data source.

3.3. Datasource Setup 35



LassoGuide, Release 9.3

ODBCData Sources
Support any data source with a compatible ODBC driver.

SQL Server Data Sources
Supports Microsoft SQL Server. The SQL Server client libraries must be installed in order to activate this data source.

SQLite Data Sources
SQLite is also the internal data source used for the storage of Lasso’s preferences and security settings.

3.3.1 Lasso Data Source Connectors

Data source connectors allow performing database actions via Lasso code. Database actions can be used in Lasso to search
for records in a database that match specific criteria; to navigate through the found set from a search; to add, update, or delete
a record in a database; to fetch schema information about a database; and more. Additionally, database actions can execute
SQL statements in SQL-compliant databases.

Interacting with data sources via Lasso generally involves these steps:

1. Configuring the data source application or service to accept connections from Lasso. This is done in the data source
itself, outside of Lasso. This chapter describes configuring each data source to accept connections from Lasso.

2. Configuring Lasso Server to communicate with a data source host. This involves adding the data source connection
information in the “Datasources” section of Lasso Server Admin. This chapter details creating connections with the data
sources described above.

3. Writing Lasso code to interact with the data source. This is covered in the Database Interaction Fundamentals chapter.

Alternatively, data sources can be connected to directly by specifying all the connection parameters within an inline. Using
this method does not require setting up the data source host in Lasso Server Admin, and can be used when some security
can be sacrificed for coding efficiency. In this case, the following steps need to be taken:

1. Configuring the data source application or service to accept connections from Lasso, as described above.

2. Writing Lasso code to interact with the data source and passing in the host parameters to the inline. Each of the data
sources documented below will give examples of interfacing with a data source host in this manner.

3.3.2 FileMaker Server Data Sources

Lasso Server communicates with FileMaker Server 9–15 and FileMaker Server 7–12 Advanced through their built-in XML inter-
face. Lasso cannot communicate with any other products in the FileMaker 7, 8, or 9 product line such as FileMaker Pro.

Requirements

One of the following:

• FileMaker Server 9–15 for Windows or OS X

• FileMaker Server 9–12 Advanced for Windows or OS X

• FileMaker Server Advanced 7 or 8 for Windows or OS X

Additionally, the Web Publishing Engine must be installed and each database must be configured according to the instructions
in the following section.

36 Chapter 3. Lasso Server Management



LassoGuide, Release 9.3

Configuring FileMaker Server 9 or Higher

This section describes setting up FileMaker Server 9–15 or FileMaker Server 9–12 Advanced for use with Lasso. These versions
will be referred to collectively as FileMaker Server.

Follow the instructions included with FileMaker Server carefully. Starting with version 9, setting up FileMaker Server is consid-
erably easier than setting up earlier versions.

• Make sure that the “Web Serving” options are turned on and that the XML interface is enabled.

• The databases that are to be accessed by Lasso must be in the FileMaker Server Data/Databases folder and must be
“Open” within FileMaker Server.

• Each database to be accessed by Lasso must have the “fmxml” keyword added to the “Extended Privileges” section
of the “Accounts & Privileges” dialog box. The username and password entered into Lasso Server Admin must use a
Privilege Set that has access to this extended privilege.

• FileMaker Server database security is only as secure as the Publishing Engine setup. It is possible for web browsers to
communicate directly with the Publishing Engine. It is strongly recommended that the security features of FileMaker
Server be used to secure web-accessible databases.

• It is strongly recommended that only a single IP address corresponding to the machine on which Lasso Server runs be
permitted to access the Publishing Engine.

• For tips on optimizing performance for FileMaker databases, see the FileMaker Data Sources chapter.

Configuring FileMaker Server Advanced 7 or 8

This section describes setting up FileMaker Server Advanced for use with Lasso.

Follow the instructions included with FileMaker Server Advanced carefully. There are several steps in the process that are not
obvious and require reading the documentation to set up properly. Configuring FileMaker Server Advanced is beyond the
scope of this documentation, but some common pitfalls are listed below.

• Make sure both FileMaker Server and the FileMaker Server Advanced Publishing Engine are installed. The machine with
the Publishing Engine must be running a supported web server.

• Configure FileMaker Server with a Client Services identifier and passcode. Enter this same identifier and passcode in the
Web Publishing Administration Console.

• Verify XML Publishing is turned on in the Web Publishing Administration Console.

• The databases that are to be accessed by Lasso must be in the FileMaker Server Data/Databases folder and must be
“Open” within FileMaker Server.

• Each database to be accessed by Lasso must have the “fmxml” keyword added to the “Extended Privileges” section
of the “Accounts & Privileges” dialog box. The username and password entered into Lasso Server Admin must use a
Privilege Set that has access to this extended privilege.

• FileMaker Server Advanced database security is only as secure as the Publishing Engine setup. It is possible for web
browsers to communicate directly with the Publishing Engine. It is strongly recommended that the security features of
FileMaker Server Advanced be used to secure web-accessible databases.

• It is strongly recommended that only a single IP address corresponding to the machine on which Lasso Server runs be
permitted to access the Publishing Engine.

• For tips on optimizing performance for FileMaker databases, see the FileMaker Data Sources chapter.

3.3. Datasource Setup 37



LassoGuide, Release 9.3

Adding a FileMaker Server Data Source Host

For general information about navigating Lasso Server Admin and adding a host to a data source, see the section Configuring
Datasources in the Instance Administration and Configuration chapter.

To add a new FileMaker Server host:

1. In the “Datasources” section of Lasso Server Admin, click the filemakerds item.

2. Click the Add host item to reveal the host connection form.

3. Enter the IP address or domain name where the FileMaker Server data sources are being hosted.

4. Enter the TCP port the FileMaker Server communicates on in the “Port” field. See the FileMaker Server documentation24

for information on where to find or set this. It is commonly “80” for FileMaker Server, or “443” to connect over https.

5. Select “Yes” from the Enabled drop-down to enable the host.

6. Enter a username for the host in the “Username” field and a password for the host in the “Password” field. Lasso will
connect to the data source and all databases therein using this username and password by default. If the host does not
require a username or password, leave either field blank.

7. Click the Add host button.

8. Once the host is added, the new host appears in the “Hosts” listing below.

Databases in newly created hosts are enabled by default. The administrator can disable databases by expanding the database
listing and setting the Enabled drop-down to “No”. With the FileMaker Server data source added here, inline methods can
use the -database parameter to specify the name of the FileMaker database to perform an action on.

Specifying FileMaker Server Hosts in Inlines

Setting up a data source host in Lasso Server Admin is the best way to ensure that access to the data source is centrally
controlled. However, it can sometimes be beneficial to access a data source host without a lot of configuration. This section
describes how to construct an inlinemethod to access a FileMaker Server data source host. See the section InlineConnection
Options for full details about specifying hosts in inlines.

To access a FileMaker Server host directly in an inline method, the -host parameter can specify all of the connection pa-
rameters. The -host parameter takes an array that should contain the following elements:

• -datasource should be specified as “filemakerds”.

• -name should be specified as the IP address or domain name of the machine hosting FileMaker Server.

• -port is optional, defaulting to “80” if no port is specified.

• -username set to the user to authenticate as.

• -password set to the specified user’s password to authenticate the connection.

The following code shows how a connection to a FileMaker Server data source hosted on the same machine as Lasso might
appear:

inline(
-host=(:

-datasource='filemakerds',
-name='localhost',
-port='80',
-username='username',
-password='secret'

),

24 http://www.filemaker.com/support/product/documentation.html

38 Chapter 3. Lasso Server Management

http://www.filemaker.com/support/product/documentation.html


LassoGuide, Release 9.3

-findAll,
-database='database',
-table='table'

) => {^
found_count

^}

If there are no databases or tables listed, check the following links in a web browser to verify that the Web Publishing Engine
is working correctly. Replace “filemaker_host” and “database_name” with values for your particular situation.

• http://filemaker_host/fmi/xml/FMPXMLRESULT.xml?-dbnames

• http://filemaker_host/fmi/xml/FMPXMLRESULT.xml?-db=database_name&-layoutnames

If either URL returns an error code other than 0 or fails in any way, Lasso will be unable to submit requests to FileMaker Server.
Verify that XML Publishing is enabled or consult the FileMaker Server documentation25 on how to proceed.

3.3.3 MySQL Data Sources

Lasso Server can communicate with MySQL servers configured to accept TCP/IP client connections. For more information on
MySQL, visit http://www.mysql.com/.

Requirements

• MySQL Server 3.23 or MySQL Server 4.x or MySQL Server 5.x

• The MySQL service must be running and accepting TCP/IP connections on a port with no conflicts. This is port 3306 by
default.

• MySQL access privileges must be properly assigned for the machine running Lasso Server to be allowed to authenticate.

• The MySQL client libraries are included with the connector, or automatically installed by the package manager.

Configuring MySQL Server

MySQL is operated via a command-line interface application which is normally located in the “bin” directory of the MySQL
installation on the server machine. For information on how to use this, consult the MySQL documentation. Various installers
for MySQL may have the service automatically start when the machine boots up, so also check the installation instructions for
the installation method you are using.

Security for MySQL data sources can be set at any level (server-level, database-level, table-level, etc.). For unrestricted operation,
all permissions for all levels of security need to be given to the user Lasso Server uses to connect. This involves setting a new
user and password for Lasso Server in MySQL with the appropriate permissions, and then entering the username and password
in Lasso Server Admin. Follow the procedure below for granting all permissions to Lasso Server in MySQL using the MySQL
command-line utility.

1. From the command line, log in to MySQL as your root user by entering the following command:

$> mysql -u root -p

You will be prompted for the MySQL root user’s password specified during the MySQL installation.

2. After entering the password, you’ll see the MySQL command prompt (mysql>). Enter the following to create a new user
with a username and password and access to all levels of security in MySQL:

25 http://www.filemaker.com/support/product/documentation.html

3.3. Datasource Setup 39

http://www.filemaker.com/support/product/documentation.html
http://www.mysql.com/


LassoGuide, Release 9.3

mysql> GRANT ALL ON *.* TO Username@Hostname IDENTIFIED BY "Password";

Replace “Username” and “Password” with the username and password values you wish for the user to have, and replace
“Hostname” with the IP address or domain name that Lasso Server will be connecting from.

Now there is a user with all permissions that can communicate with MySQL from the machine Lasso Server is running on. This
user can now be used when configuring the MySQL host in the “Datasources” section of Lasso Server Admin.

Important: You may, of course, wish to tighten security and restrict the user Lasso Server uses. It is possible to assign limited
privileges to the user Lasso Server uses one at a time by replacing “ALL” in the “GRANT” statement with an individual per-
mission (e.g. INSERT, SELECT, DELETE), and replacing “*.*” with a specific database or database.table name. This will restrict
the functionality of Lasso Server to the privileges that are assigned to it. For example, giving Lasso Server only the “SELECT”
privilege will allow searching a MySQL database using Lasso, but records cannot be added, updated, or deleted using Lasso.

Adding a MySQL Data Source Host

For general information about navigating Lasso Server Admin and adding a host to a data source, see the section Configuring
Datasources in the Instance Administration and Configuration chapter.

To add a new MySQL host:

1. In the “Datasources” section of Lasso Server Admin, click the MySQLDS item.

2. Click the Add host item to reveal the host connection form.

3. Enter the IP address or domain name where the MySQL databases are being hosted in the “Host” field.

4. Enter the TCP port the MySQL service communicates on in the “Port” field. This is commonly “3306” for MySQL.

5. Select “Yes” from the Enabled drop-down to enable the host.

6. Enter a username for the host in the “Username” field and a password for the host in the “Password” field. Lasso will
connect to the data source and all databases therein using this username and password by default.

7. Click the Add host button.

8. Once the host is added, the new host appears in the “Hosts” listing below.

Databases in newly created hosts are enabled by default. The administrator can disable databases by expanding the database
listing and setting the Enabled drop-down to “No”. With the MySQL data source added here, inline methods can use the
-database parameter to specify the name of the MySQL database to perform an action on.

Specifying MySQL Hosts in Inlines

Setting up a data source host in Lasso Server Admin is the best way to ensure that access to the data source is centrally
controlled. However, it can sometimes be beneficial to access a data source host without a lot of configuration. This section
describes how to construct an inline method that accesses a MySQL data source host. See the section Inline Connection
Options for full details about specifying hosts in inlines.

To access a MySQL host directly in an inlinemethod, the -host parameter can specify all of the connection parameters. The
-host parameter takes an array that should contain the following elements:

• -datasource should be specified as “mysqlds”.

• -name should be specified as the IP address or domain name of the machine hosting MySQL.

• -port is optional, defaulting to “3306” if no port is specified.

• -username set to the user to authenticate as.

40 Chapter 3. Lasso Server Management



LassoGuide, Release 9.3

• -password set to the specified user’s password to authenticate the connection.

The following code shows how a connection to a MySQL data source hosted on the same machine as Lasso might appear:

inline(
-host=(:

-datasource='mysqlds',
-name='localhost',
-port='3306',
-username='username',
-password='secret'

),
-findAll,
-database='database',
-table='table'

) => {^
found_count

^}

3.3.4 Oracle Data Sources

Lasso Server can communicate with an Oracle service running on a host machine via a TCP/IP connection. For more informa-
tion on Oracle, visit https://www.oracle.com/.

Requirements

• Oracle Database 10g or later

• The Lasso Server machine must have the Oracle “Instant Client” installed if Lasso Server and Oracle are running on
separate machines. The Instant Client download26 can be found on the Oracle website. (Make sure to download just
the basic Instant Client files rather than the complete Oracle 10g client or database installer.)

Installing Oracle Instant Client

Lasso must be restarted after installing the Instant Client. You can use the command line to verify that Lasso is loading the
libraries correctly by checking the output of lasso9 -s "database_initialize".

OS X

1. Ensure that the paths /usr/local/oracle/ and /usr/local/lib/ exist and are writable by the current user.

2. Download version 12.1.0.2 of the Instant Client Package - Basic for OS X.

3. Decompress the archive, which will create a folder named “instantclient_12_1”.

4. Copy the entire folder into /usr/local/oracle/.

5. Execute the following commands to create symbolic links so that Lasso can find the Oracle libraries.

$> cd /usr/local/lib
$> ln -sf /usr/local/oracle/instantclient_12_1/libclntsh.dylib.12.1 libclntsh.dylib
$> ln -sf /usr/local/oracle/instantclient_12_1/libocci.dylib.12.1 libocci.dylib

Linux

1. Ensure that the path /usr/local/oracle/ exists and is writable by the current user.

26 http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

3.3. Datasource Setup 41

https://www.oracle.com/
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html


LassoGuide, Release 9.3

2. Download the zipfile package of version 12.1.0.2 of the Instant Client Package - Basic for Linux.

3. Decompress the archive, which will create a folder named “instantclient_12_1”.

4. Copy the entire folder into /usr/local/oracle/.

5. Execute the following commands to create symbolic links and update ldconfig so that Lasso can find the Oracle
libraries.

$> cd /usr/local/oracle/instantclient_12_1/
$> ln -sf libclntsh.so.12.1 libclntsh.so
$> ln -sf libocci.so.12.1 libocci.so
$> cd ..
$> ln -sf instantclient_12_1 lib
$> echo "/usr/local/oracle/lib" > /etc/ld.so.conf.d/oracle.conf
$> ldconfig

Windows

1. Download and install the Visual C++ 2010 x64 Redistributable27 package from Microsoft.

2. Download version 12.1.0.2 of the Instant Client Package - Basic for Windows.

3. Extract the archive contents to an accessible location, such as C:\instantclient_12_1.

4. In Control Panel → System → Advanced System Settings → Advanced → Environment Variables... → System Vari-
ables, append the string ;C:\instantclient_12_1\ to the Path environment variable.

Configuring Oracle

The Oracle database server must be configured with a user that has access to all of the databases, tables, and other resources
that will be published through Lasso. Consult the Oracle documentation for help configuring Oracle’s built-in security. The
Oracle website has a “Getting Started” section which explains how to install and perform basic configuration of an Oracle
database server28 .

Adding an Oracle Data Source Host

For general information about navigating Lasso Server Admin and adding a host to a data source, see the section Configuring
Datasources in the Instance Administration and Configuration chapter.

To add a new Oracle host:

1. In the “Datasources” section of Lasso Server Admin, click the Oracle item. (Restart Lasso if necessary to make it appear.)

2. Click the Add host item to reveal the host connection form.

3. Enter the IP address or domain name where the Oracle data sources are being hosted, the port, and the database name
using the “host:port/database” format in the “Host” field (e.g. “www.example.com:1521/MyDatabase”).

4. Enter the TCP port of the Oracle service in the “Port” field. This is commonly “1521” for Oracle.

5. Select “Yes” from the Enabled drop-down to enable the host.

6. Enter a username for the host in the “Username” field and a password for the host in the “Password” field. Lasso will
connect to the data source and all databases therein using this username and password by default.

7. Click the Add host button.

8. Once the host is added, the new host appears in the “Hosts” listing below.

27 https://www.microsoft.com/en-us/download/details.aspx?id=26999
28 http://docs.oracle.com/cd/B28359_01/nav/portal_1.htm

42 Chapter 3. Lasso Server Management

https://www.microsoft.com/en-us/download/details.aspx?id=26999
http://docs.oracle.com/cd/B28359_01/nav/portal_1.htm
http://docs.oracle.com/cd/B28359_01/nav/portal_1.htm


LassoGuide, Release 9.3

Databases in newly created hosts are enabled by default. The administrator can disable databases by expanding the database
listing and setting the Enabled drop-down to “No”. With the Oracle Server data source added here, inline methods can use
the -database parameter to specify the name of the Oracle database to perform an action on.

Specifying Oracle Hosts in Inlines

Setting up a data source host in Lasso Server Admin is the best way to ensure that access to the data source is centrally
controlled. However, it can sometimes be beneficial to access a data source host without a lot of configuration. This section
describes how to construct an inline method that accesses an Oracle data source host. See the section Inline Connection
Options for full details about specifying hosts in inlines.

To access an Oracle host directly in an inline method, the -host parameter can specify all of the connection parameters.
The -host parameter takes an array that should contain the following elements:

• -datasource should be specified as “oracle”.

• -name should be specified as the IP address or domain name of the machine hosting Oracle, followed by a colon and
the port to connect on, and ending with a slash and the database name (e.g. “www.example.com:1521/MyDatabase”).

• -port is optional, defaulting to “1521” if no port is specified.

• -username set to the user to authenticate as.

• -password set to the specified user’s password to authenticate the connection.

The following code shows how a connection to an Oracle data source might appear:

inline(
-host=(:

-datasource='oracle',
-name='oracle.example.com:1521/MyDatabase',
-port='1521',
-username='username',
-password='secret'

),
-findAll,
-database='database',
-table='table'

) => {^
found_count

^}

3.3.5 PostgreSQL Data Sources

Lasso Server can communicate with PostgreSQL servers configured to accept TCP/IP client connections. For more information
on PostgreSQL, visit https://www.postgresql.org/.

Requirements

• PostgreSQL 8.x

• The Lasso Server machine must have the PostgreSQL “libpq” library installed. This comes packaged with OS X and is
installed automatically with Lasso on Linux. Windows users can find libpq.dll included with the PostgreSQL ODBC
driver29 package; once installed, adding the containing directory to the Path environment variable will allow Lasso to
load the native driver.

29 https://www.postgresql.org/ftp/odbc/versions/

3.3. Datasource Setup 43

https://www.postgresql.org/
https://www.postgresql.org/ftp/odbc/versions/
https://www.postgresql.org/ftp/odbc/versions/


LassoGuide, Release 9.3

Configuring PostgreSQL

The PostgreSQL database server must be configured with a user that has access to all of the databases, tables, and other
resources that will be published through Lasso. Consult the PostgreSQL documentation30 for help configuring its built-in
security.

Adding a PostgreSQL Data Source Host

For general information about navigating Lasso Server Admin and adding a host to a data source, see the section Configuring
Datasources in the Instance Administration and Configuration chapter.

To add a new PostgreSQL server host:

1. In the “Datasources” section of Lasso Server Admin, click the PostgreSQL item.

2. Click the Add host item to reveal the host connection form.

3. Enter the IP address or domain name where the PostgreSQL data source is being hosted in the “Host” field.

4. Enter the TCP port the PostgreSQL service is listening on in the “Port” field. This is commonly “5432” for PostgreSQL.

5. Select “Yes” from the Enabled drop-down to enable the host.

6. Enter a username for the host in the “Username” field and a password for the host in the “Password” field. Lasso will
connect to the data source and all databases therein using this username and password by default.

7. Click the Add host button.

8. Once the host is added, the new host appears in the “Hosts” listing below.

Databases in newly created hosts are enabled by default. The administrator can disable databases by expanding the database
listing and setting the Enabled drop-down to “No”. With the PostgreSQL data source added here, inline methods can use
the -database parameter to specify the name of the PostgreSQL database to perform an action on.

Specifying PostgreSQL Hosts in Inlines

Setting up a data source host in Lasso Server Admin is the best way to ensure that access to the data source is centrally
controlled. However, it can sometimes be beneficial to access a data source host without a lot of configuration. This section
describes how to construct an inlinemethod that accesses a PostgreSQL data source host. See the section InlineConnection
Options for full details about specifying hosts in inlines.

To access a PostgreSQL host directly in an inlinemethod, the -host parameter can specify all of the connection parameters.
The -host parameter takes an array that should contain the following elements:

• -datasource should be specified as “postgres”.

• -name should be specified as the IP address or domain name of the machine hosting PostgreSQL.

• -port is optional, defaulting to “5432” if no port is specified.

• -username set to the user to authenticate as.

• -password set to the specified user’s password to authenticate the connection.

The following code shows how a connection to a PostgreSQL data source hosted on the same machine as Lasso might appear:

inline(
-host=(:

-datasource='postgres',
-name='localhost',

30 https://www.postgresql.org/docs/manuals/

44 Chapter 3. Lasso Server Management

https://www.postgresql.org/docs/manuals/


LassoGuide, Release 9.3

-port='5432',
-username='username',
-password='secret'

),
-findAll,
-database='database',
-table='table'

) => {^
found_count

^}

3.3.6 ODBC Data Sources

ODBC (Open Database Connectivity) is a generalized API for providing access to databases. Lasso Server can communicate
with any ODBC-compliant data source as long as the operating system has a compatible ODBC driver properly installed. For
more information on ODBC, see theODBCDataSources chapter and the documentation included with your operating system.

Requirements

• An ODBC driver that has been configured as a System DSN in the ODBC control panel.

OS X
ODBC data sources are configured using “ODBC Manager” which can be downloaded from http://www.
odbcmanager.net/ and installed in the /Applications/Utilities folder. (Note that the folder /Library/
ODBC must be created first.)

Linux
Consult the documentation of the ODBC drivers for information about how to set up data sources on Linux.
Many ODBC drivers ship with a control panel that allows configuration of those drivers.

Windows
ODBC data sources are configured using “ODBC Data Source Administrator” which is normally accessed
through the Windows Control Panel under Administrative Tools.

Configuring ODBC Connections

Consult the documentation for your data sources and ODBC drivers for details about how to secure access to the data made
available through the driver. Most data sources will require the following steps:

1. Install your ODBC driver using the provided installer or instructions. This may involve creating an odbcinst.ini file.

2. Create a System DSN in the ODBC administration application, or edit the odbc.ini file. Note that the System DSN
name, username, and password configured here will need to be entered in Lasso.

3. Locate and configure the SQL.ini file for your driver, if applicable. This file sets the options for your ODBC driver includ-
ing the location of your data source. Consult your driver’s documentation for details about where to find this file and
what options can be configured.

4. Follow the steps below to add the data source to Lasso.

FreeTDS for SQL Server via ODBC Examples

Here’s how to configure FreeTDS on OS X to allow Lasso to access a SQL Server data source via ODBC:

1. Install the Homebrew package manager using the instructions at http://brew.sh/.

3.3. Datasource Setup 45

http://www.odbcmanager.net/
http://www.odbcmanager.net/
http://brew.sh/


LassoGuide, Release 9.3

2. Use Homebrew to first install a newer version of the iODBC libraries than what OS X ships with, and then the FreeTDS
drivers with Unicode support.

$> brew install libiodbc
$> brew install freetds --with-odbc-wide

3. Use tsql and iodbctestw to verify that FreeTDS and iODBC are working.

$> tsql -H hostname -p 1433 -U username -P password
locale is "en_CA.UTF-8"
locale charset is "UTF-8"
using default charset "UTF-8"
1> quit
$> iodbctestw "DRIVER=/usr/local/lib/libtdsodbc.so;UID=username;PWD=password;SERVER=hostname;
↪→DATABASE=databasename;PORT=1433"
iODBC Unicode Demonstration program
This program shows an interactive SQL processor
Driver Manager: 03.52.1216.0712
Driver: 01.00.0009 (libtdsodbc.so)
SQL> quit

4. Create a folder for system-level ODBC configuration files.

$> sudo mkdir -p /Library/ODBC

5. Use “ODBC Manager” from http://www.odbcmanager.net/ to add a new driver:

Driver Name
FreeTDS

Driver File
/usr/local/lib/libtdsodbc.so

Setup File
/usr/local/lib/libtdsodbc.so

Define As
System

Then add a new System DSN:

Driver
FreeTDS

DSN
datasourcename

Server
hostname

Database
databasename

Port
1433

6. Use iodbctestw to verify that the DSN is working.

$> iodbctestw "DSN=datasourcename;UID=username;PWD=password"

These are the configuration steps for CentOS or Ubuntu Linux:

46 Chapter 3. Lasso Server Management

http://www.odbcmanager.net/


LassoGuide, Release 9.3

1. Install FreeTDS, which on CentOS requires the EPEL repository. The unixODBC package should have already been in-
stalled by the package manager.

CentOS

$> yum install epel-release
$> yum install freetds unixODBC

Ubuntu

$> sudo apt-get install tdsodbc freetds-bin unixodbc

2. Use tsql to verify that FreeTDS is working.

$> tsql -H hostname -p 1433 -U username -P password
locale is "en_CA.UTF-8"
locale charset is "UTF-8"
using default charset "UTF-8"
1> quit

3. Add the FreeTDS driver to /etc/odbcinst.ini, adjusting paths if necessary:

CentOS

[FreeTDS]
Driver = /usr/lib64/libtdsodbc.so.0
Setup = /usr/lib64/libtdsS.so.2

Ubuntu

[FreeTDS]
Driver = /usr/lib/x86_64-linux-gnu/odbc/libtdsodbc.so
Setup = /usr/lib/x86_64-linux-gnu/odbc/libtdsS.so

4. Add the DSN to /etc/odbc.ini:

[datasourcename]
Driver = FreeTDS
Server = hostname
Database = databasename
Port = 1433

5. Use isql to verify that the DSN is working.

$> isql datasourcename username password
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL> quit

3.3. Datasource Setup 47



LassoGuide, Release 9.3

Adding an ODBC Data Source Host

For general information about navigating Lasso Server Admin and adding a host to a data source, see the section Configuring
Datasources in the Instance Administration and Configuration chapter.

To add a new ODBC host:

1. In the “Datasources” section of Lasso Server Admin, click the ODBC item.

2. Click the Add host item to reveal the host connection form.

3. Enter the System DSN name of the ODBC connection in the “Host” field.

4. Enter the TCP port of the ODBC connection in the “Port” field.

5. Select “Yes” from the Enabled drop-down to enable the host.

6. Enter a username for the host in the “Username” field and a password for the host in the “Password” field. Lasso will
connect to the data source and all databases therein using this username and password by default.

7. Click the Add host button.

8. Once the host is added, the new host appears in the “Hosts” listing below.

Databases in newly created hosts are enabled by default. The administrator can disable databases by expanding the database
listing and setting the Enabled drop-down to “No”. With the ODBC data source added here, inline methods can use the
-database parameter to specify the name of the database to perform an action on.

Specifying ODBC Hosts in Inlines

Setting up a data source host in Lasso Server Admin is the best way to ensure that access to the data source is centrally
controlled. However, it can sometimes be beneficial to access a data source host without a lot of configuration. This section
describes how to construct an inline method that accesses an ODBC data source host. See the section Inline Connection
Options for full details about specifying hosts in inlines.

To access an ODBC host directly in an inline method, the -host parameter can specify all of the connection parameters.
The -host parameter takes an array that should contain the following elements:

• -datasource should be specified as “odbc”.

• -name should be specified as the System DSN.

• -username set to the user to authenticate as, if required.

• -password set to the specified user’s password to authenticate the connection, if required.

The following code shows how a connection to an ODBC data source hosted on the same machine as Lasso might appear:

inline(
-host=(:

-datasource='odbc',
-name='System_DSN_Name',
-username='username',
-password='secret'

),
-findAll,
-database='database',
-table='table'

) => {^
found_count

^}

48 Chapter 3. Lasso Server Management



LassoGuide, Release 9.3

3.3.7 SQL Server Data Sources

Lasso Server can communicate with Microsoft SQL Server databases configured to accept TCP/IP client connections. For more
information on SQL Server, visit https://www.microsoft.com/en-us/cloud-platform/sql-server/.

Requirements

• Microsoft SQL Server 2005–2012

• The Lasso Server machine must have the SQL Server client libraries installed.

OS X and Linux
The FreeTDS libraries need to be compiled and installed, for which the source can be found at http://www.
freetds.org/. (Instead of compiling from source, you may first want to look into installing via a package manager
such as apt, yum, macports, or homebrew.) See ConfiguringODBCConnections for an example configuration.

Windows
The required client libraries are pre-installed with the operating system.

Configuring SQL Server

The SQL Server database server must be configured with a user that has access to all of the databases, tables, and other re-
sources that will be published through Lasso. Consult the SQL Server documentation31 for help configuring its built-in security.

Adding a SQL Server Data Source Host

For general information about navigating Lasso Server Admin and adding a host to a data source, see the section Configuring
Datasources in the Instance Administration and Configuration chapter.

To add a new SQL Server database host:

1. In the “Datasources” section of Lasso Server Admin, click the SQLServer item.

2. Click the Add host item to reveal the host connection form.

3. Enter the IP address or domain name where the SQL Server data source is being hosted followed by a backslash and
the name of a database in the “Host” field. (e.g. “www.example.com\MyDatabase”)

4. Enter the TCP port the SQL Server service is listening on in the “Port” field. This is commonly “1433” for SQL Server.

5. Select “Yes” from the Enabled drop-down to enable the host.

6. Enter a username for the host in the “Username” field and a password for the host in the “Password” field. Lasso will
connect to the data source and all databases therein using this username and password by default.

7. Click the Add host button.

8. Once the host is added, the new host appears in the “Hosts” listing below.

Databases in newly created hosts are enabled by default. The administrator can disable databases by expanding the database
listing and setting the Enabled drop-down to “No”. With the SQL Server data source added here, inline methods can use the
-database parameter to specify the name of the SQL Server database to perform an action on.

31 https://msdn.microsoft.com/library/mt590198(v=sql.1).aspx

3.3. Datasource Setup 49

https://www.microsoft.com/en-us/cloud-platform/sql-server/
http://www.freetds.org/
http://www.freetds.org/
https://msdn.microsoft.com/library/mt590198(v=sql.1).aspx


LassoGuide, Release 9.3

Specifying SQL Server Hosts in Inlines

Setting up a data source host in Lasso Server Admin is the best way to ensure that access to the data source is centrally
controlled. However, it can sometimes be beneficial to access a data source host without a lot of configuration. This section
describes how to construct an inline method that accesses a SQL Server data source host. See the section Inline Connection
Options for full details about specifying hosts in inlines.

To access a SQL Server host directly in an inline method, the -host parameter can specify all of the connection parameters.
The -host parameter takes an array that should contain the following elements:

• -datasource should be specified as “sqlserver”.

• -name should be specified as the IP address or domain name of the machine hosting SQL Server.

• -port is optional, defaulting to “1433” if no port is specified.

• -username set to the user to authenticate as.

• -password set to the specified user’s password to authenticate the connection.

The following code shows how a connection to a SQL Server data source hosted on the same machine as Lasso might appear:

inline(
-host=(:

-datasource='sqlserver',
-name='(local)\MYDB',
-username='username',
-password='secret'

),
-findAll,
-database='database',
-table='table'

) => {^
found_count

^}

3.3.8 SQLite Data Sources

Lasso Server comes with an embedded high-performance data source called SQLite. This data source is used to store Lasso’s
internal site preferences and security settings. SQLite is installed, enabled, and preconfigured within Lasso Server by default.
No further set up or installation of SQLite is required.

SQLite databases are stored in the “SQLiteDBs” folder within each instance’s home directory. By default this folder contains
databases that are required for Lasso Server to function. Custom databases may be created and added to this folder and Lasso
inline methods will automatically have access to them using the -database parameter.

50 Chapter 3. Lasso Server Management



Part II

Language Elements

51





Chapter 4

Calling Lasso

This chapter describes two different methods of calling Lasso: either using Lasso as a script processor on the command line
or using Lasso as a web application server through the web browser.

This information is presented at the start of this part as it is vital to understanding the rest of the topics and examples given in
this guide.

4.1 Calling Lasso Web Pages

Lasso is most often used to serve web applications. Lasso code can be embedded in HTML pages and executed before they
are served to web visitors. A page that includes Lasso code within it is referred to as a Lasso page.

Lasso code is embedded within a regular HTML file by inserting the code between a certain set of delimiters. These delimiters
consist of an opening and a closing element. Outside of these delimiting elements, all text is treated as if it were plain text
string literals. Such text is not interpreted by Lasso. Between the delimiters, all text is parsed and executed as Lasso code. In
this manner, an HTML file becomes a template, with the final resulting data being the combination of whatever plain text the
file contained, plus whatever text was generated via any contained Lasso code.

The available delimiting elements are described below. The “...” shown between the delimiters illustrates where Lasso code
would be inserted by the developer.

<?lasso ... ?>

<?= ... ?>

[ ... ]

All three delimiters will produce identical results. Multiple expressions can be contained between these delimiters. The result
from each contained expression is converted to a string and then concatenated together along with any plain text existing
outside of the delimiters.

Although square brackets ([ ... ]) are enabled by default, they can be disabled by placing [no_square_brackets], usu-
ally at the top of the page, outside the delimiters. Once the Lasso parser encounters [no_square_brackets], square brackets
are be turned “off” and any subsequently encountered square brackets will be treated as plain text. Turning square brackets
off works on a per-file basis, and cannot be turned back on once they are off. To illustrate how Lasso code is embedded within
a Lasso page, the following code may be stored in a file named “test.lasso” contained within the web server root.

<!DOCTYPE html>
<html>
<head>

<title>My Lasso Page</title>
</head>
<body>

<p><?= 'The current date is ' + date ?>.</p>
</body>
</html>

53



LassoGuide, Release 9.3

The above begins with plain HTML markup, then adds two Lasso code expressions into the document using a delimiter pair.
When this file is loaded through a browser, the code shown above is executed and the result is returned to the web browser.

If the embedded message is not visible in the web browser or an error occurs, make sure that Lasso Server has been properly
installed on your machine. (See the appropriate installation instructions for your operating system in the index_server.)

4.2 Calling Lasso from the CLI

Lasso code can be saved in a file and then executed on the command line. This style of execution happens directly and does
not require a web server or web browser. Additionally, since a web server or web request is not in effect during such execution,
none of the web serving–specific functionality is available in this context. (For more information on the command-line tools
that come as part of the Lasso platform, see the Command-Line Tools chapter.)

4.2.1 Using the lasso9 Tool

The lasso9 executable is a tool included with Lasso that handles the parsing and execution of Lasso code from the command
line. For example, the following text could be placed into a file “test.lasso”:

'The current date is ' + date

The file can be executed from the terminal using lasso9. If the reader has created such a test file and has done a cd to the
location of the file, it can be executed like so:

$> lasso9 ./test.lasso
The current date is 2012-08-08 15:07:25

If the terminal reports the command was not found, or you receive some other error, make sure that Lasso has been installed
properly on your machine. See the appropriate installation instructions for your operating system in the index_server.

When running Lasso code on the command line, delimiters are not required, though they can be used. By default, text is
assumed to consist of Lasso code only, unless the file’s text begins with an open angle bracket (<), in which case it is assumed
to start out as plain text. For example, the test file shown in “Calling LassoWeb Pages” could be run on the command line and
would generate the expected HTML result, including the embedded message.

4.2.2 Associating Files with the lasso9 Tool

Files containing Lasso code can be directly associated with the lasso9 tool by inserting a standard “hashbang” or “shebang”
line at the very top of the file and making the file executable (usually accomplished by running chmod +x test.lasso).

The hashbang line for a standard installation looks like this:

#!/usr/bin/env lasso9

Using the same “test.lasso” file as before, but placing the hashbang line at the top, the complete example would look as follows:

#!/usr/bin/env lasso9
'The current date is ' + date

Once it has been made executable, the file can be directly executed on the command line.

$> ./test.lasso
The current date is 2012-08-08 15:07:25

54 Chapter 4. Calling Lasso



LassoGuide, Release 9.3

The result, regardless of the execution method, is identical. Also, note that the file’s extension (“.lasso” in this case) is irrele-
vant when executing Lasso code on the command line. The example file could just have easily been named “test”, with no
extension, and the results would have been the same.

4.2.3 Executing Code Directly

The lasso9 tool includes the -s option for passing a string of Lasso code to execute. This method bypasses the need to first
place the code in a file. Instead, the source code can be given directly to lasso9 when it is invoked.

$> lasso9 -s "'The current date is ' + date"
The current date is 2012-08-08 15:07:25

Running the above example will produce the same output as the previous examples. Care must be exercised when using this
method because the shell will interpret some characters for itself, therefore distorting the source code given to the command.
Because of this, it is generally recommended that such source code be surrounded between double quotes and that single
quotes be used for any contained string literals, as illustrated in the example above.

4.2.4 Executing Code from STDIN

The lasso9 tool can also accept code to execute from STDIN. This is useful when piping results from one command to lasso9
in order for it to execute the given code. In order to have lasso9 receive its code from STDIN, the -- argument is used. The
following example uses the standard echo command to pipe code from STDIN for lasso9 to read and execute:

$> echo "'The current date is ' + date" | lasso9 --
The current date is 2012-08-08 15:07:25

4.2. Calling Lasso from the CLI 55





Chapter 5

Literals

A literal is an object with its own special syntax that allows it to be inserted directly into code. Lasso supports string, boolean,
integer, decimal, tag, staticarray, and generateSeries literals, the words null and void, and comments.

The method for expressing these literals is largely similar to other scripting languages. For example, an integer literal is ex-
pressed, as one would expect, by simply using the numeral in the source text. 23 is an example of an integer literal.

5.1 String Literals

Lasso supports two kinds of string literals: quoted and ticked. Quoted strings can contain escape sequences, while ticked
strings cannot. Both quoted and ticked string literals can contain line breaks, and produce the same type of string objects.
The differences between the two types of literals are handled entirely during parsing. All strings in Lasso are Unicode strings,
which means that a string can contain any of the characters available in Unicode.

5.1.1 Quoted Strings

The first kind of string literal is a quoted string, which is a series of zero or more characters surrounded by either single or
double quotes. If a string literal begins with a single quote, it must end with a single quote. The same holds for a string literal
that begins with a double quote; it must end with a double quote.

'This is a string literal'
"This is also a string literal"

Within this type of string literal, the backslash character (\x5C) is interpreted as an escape character. This means that when a
backslash is encountered in a string literal, it changes the meaning of the immediately following character(s). For example, a
backslash is required in order to create a string literal that contains the quote character that surrounds the string.

'This is a \'string literal\' with quotes'
"This is also a \"string literal\" with quotes"

Note that a backslash is not required in order to insert the alternate quote type into a string literal. For example, a
double-quoted string can contain a single quote without having to escape it.

"Escaping this single quote isn't required"

A backslash is also required in order to insert a literal backslash into a string. In order to embed a backslash into a string, two
backslashes must be used.

'This string literal has a backslash \\ in it'

A backslash followed by an end-of-line (a literal line feed or carriage return or carriage return/line feed pair) will cause that
end-of-line and all following literal whitespace to be removed from the resulting string. The string resumes starting with the
first encountered non-whitespace character. This sort of escape sequence can be useful for preserving the visual formatting
of a string literal while removing the characters used to achieve that formatting from the resulting string.

57



LassoGuide, Release 9.3

'This string \
had a break in it'

// => This string had a break in it

The backslash can also be used to insert Unicode characters represented either by hex code, or by character name. Where the
Unicode character name is used, the name must be the official Unicode name for that character, enclosed between a set of
colons. Additionally, it is an error to use an unrecognized character name.

Also supported are a series of commonly used escape sequences. The following table shows all of the permissible escape
sequences.

Table 5.1: Supported String Escape Sequences

Escape Sequence Value Description

\xdd Unicode character 1–2 hex digits

\udddd Unicode character 4 hex digits

\Udddddddd Unicode character 8 hex digits

\ddd Unicode character 1–3 octal digits

\:NAME: Unicode character Unicode character name

\a 0x07 bell

\b 0x08 backspace

\e 0x1B escape

\f 0x0C form feed

\n 0x0A line feed

\r 0x0D carriage return

\t 0x09 tab

\v 0x0B vertical tab

\" 0x22 double quote

\' 0x27 single quote

\? 0x3F question mark

\\ 0x5C backslash

\<end-of-line> none escaped whitespace

5.1.2 Ticked Strings

A ticked string is a series of zero or more characters surrounded by a pair of backticks (\x60). Within a ticked string, the back-
slash character holds no special meaning. Ticked strings do not recognize any escape sequences, and this can make them
particularly useful when using regular expressions which often require many backslashes. (Using regular quoted strings, the
backslashes would themselves have to be doubled.) The caveat for this is that a literal backtick character cannot appear within
a ticked string.

`This is a ticked string`
`A ticked string can contain 'single quotes', "double quotes",
\backslash characters\ and more - anything except backticks!`

58 Chapter 5. Literals



LassoGuide, Release 9.3

5.2 Boolean Literals

A boolean is an object that is either “true” or “false”. Lasso supports the creation of these objects by using the word true or
false directly in the source code.

true
false

type boolean

boolean()

boolean(obj::any)
Casts a value to a boolean value. Only the following objects and values evaluate to “false”; all others are “true”:

• integer zero: 0

• decimal zero: 0.0

• null and void

• calling boolean with no parameter

• empty string: '', "", ``

Note: Although the empty string evaluates to “false”, this functionality is deprecated. Instead, call string->size to
check for empty strings.

5.3 Integer Literals

An integer is a whole number. Integers can be positive or negative, and Lasso puts no limit on the size of an integer. Integers
consist of the digits 0 through 9 and can be written directly into the source code.

1
-4
+937
11801705635790

Integers can also be written using hexadecimal notation. Hexadecimal integers begin with a zero followed by an upper or
lowercase “x” followed by one or more hexadecimal digits (0–9 and A–F). Either upper or lowercase letters are permitted. A
hexadecimal integer literal is always interpreted as a positive integer.

0x1
0x04
0x3A9
0x11F018BE6

Both numeric and hexadecimal integer literals produce the same integer type with the same set of member methods.

See the Math chapter for more information on the integer type.

5.2. Boolean Literals 59



LassoGuide, Release 9.3

5.4 Decimal Literals

A decimal is a fractional number. Decimal numbers contain a decimal point and therefore are called “decimals”. Lasso sup-
ports 64-bit decimals. This gives Lasso’s decimal numbers a range from approximately negative to positive 2x10^300 and with
precision down to 2x10^-300. A decimal literal begins with an optional “-” or “+” character followed by zero or more digits,
a decimal point, one or more additional digits, and ending with an optional exponent. A decimal exponent begins with an
upper or lowercase “E”, followed by an optional “-” or “+” character followed by one or more digits. Lasso also supports decimal
literals for NaN (not a number) as well and positive and negative infinity. (Note that case is irrelevant when using the NaN and
infinity literals.)

.1
-.89
1.0
-93.42e-4
+93.42e4
NaN
infinity
-infinity

See the Math chapter for more information on the decimal type.

5.5 Tag Literals

A tag is an object that uniquely represents a particular string of characters. Unlike strings, tags cannot be modified. Tags are
used to represent type and method names as well as variable names. A tag should begin with a letter or underscore, followed
by zero or more letters, numbers, underscores, or period characters. Tags cannot contain spaces.

Tags are commonly used when applying type constraints to methods, data members, and variables; though they have other
purposes as well, such as type and object introspection.

A tag literal consists of two colons followed by the tag’s characters.

// Creates a tag object representing "name"
::name

In Lasso, the tag type is used in many different locations. For example, when asking an object what type it is with type, it will
reply with a tag object representing its name. Since there will be only one tag object for every individual name, comparing
tags for equality is very fast.

tag_exists(value::string)
Checks if a tag matching the given string value exists without attempting to create a tag. Returns the tag if it exists or
“void” if it does not.

5.6 Staticarray Literals

Lasso’s staticarray type is an efficient, non-resizable collection for holding any series of object types which is used in many
places in Lasso. Staticarrays are created in the same way as any object, but Lasso supports a shortcut syntax to produce stati-
carrays. This expression begins with an open parenthesis immediately followed by a colon, then zero or more comma-delimited
expressions, ending with the closing parenthesis.

// Creates a staticarray containing 1, 2, and "hello"
(: 1, 2, 'hello')

60 Chapter 5. Literals



LassoGuide, Release 9.3

See the Collections chapter for more information on the staticarray type.

5.7 Series Literals

Lasso’s generateSeries type is a quick and efficient way to create a series or range of integers for use with query expressions. The
shortcut syntax for creating a series consists of a starting integer and ending integer separated by the word “to”. An optional
integer specifying the step size, which defaults to 1, can be added after the word “by”.

0 to 10 by 2
// => 0, 2, 4, 6, 8, 10

See the Query Expressions chapter for more information on the generateSeries type.

5.8 Null and Void

type null
A null represents a blank or empty value, specified in code by the word null. All types inherit from null , so its member
methods (listed under Type/Object IntrospectionMethods in the Types chapter) can be used by any type.

type void
A type specified in code by voidwhich is similar to null in that it is only ever equal to itself, but indicates a non-existent
rather than an empty value.

5.9 Comments

Lasso supports three types of comments: single line comments, block comments, and doc comments. Single line and block
comments are ignored, having no effect on the execution of any nearby code. Doc comments are saved with the adjacent
method, type, or trait, as explained below.

5.9.1 Single Line Comments

A single line comment begins with two forward slashes (//). The comment runs until the end of the line, which is either a
carriage return, line feed, or a carriage return/line feed pair.

local(n) = 123 // This is the first comment
// This is another comment
#n += 456

Note that when embedding Lasso code between a set of delimiters, a closing delimiter on the same line as a single line
comment will be skipped by the Lasso parser.

5.9.2 Block Comments

A block comment permits a large section of code to be commented. Any characters, as well as multiple lines, are permitted
between the opening delimiter (/*) and closing delimiter (*/). Block comments cannot be nested.

5.7. Series Literals 61



LassoGuide, Release 9.3

local(n) = 123
/* this is a block comment
it has multiple lines */
#n += 456

5.9.3 Doc Comments

A doc comment permits a block of documentation to be associated with either a type, trait, or method. This comment is
not processed by Lasso in any way, but is saved as-is with the object. A doc comment begins with the opening doc comment
delimiter (/**!) and runs until a closing delimiter (*/). Any characters can appear within a doc comment, and a doc comment
can consist of multiple lines.

Doc comments can only appear in the following locations:

• Immediately before a type definition

• Immediately before a trait definition

• Immediately before a member or unbound method definition

• Immediately before a trait’s provide or require section

/**!
This doc comment is associated with this method

*/
define foo->xyz() => { ... }

/**!
This doc comment is associated with this type definition

*/
define foo => type {

/**!
Doc comment for the type's xyz() method

*/
public xyz() => { ... }

}

/**!
This doc comment is associated with this trait

*/
define tBar => trait {

/**!
Doc comment for the trait's doIt() method

*/
provide doIt() => { ... }

}

Doc comments for a type can be set and retrieved programatically using the tag->docComment method, as long as Lasso is
run with the LASSO9_RETAIN_COMMENTS variable enabled.

$> env LASSO9_RETAIN_COMMENTS=1 lasso9 -s "::array->docComment"
/**!
An array is an object that can hold multiple values…

$> env LASSO9_RETAIN_COMMENTS=1 lasso9 -s "
::boolean->docComment = 'Boolean objects are either true or false.'
::boolean->docComment

62 Chapter 5. Literals



LassoGuide, Release 9.3

"
Boolean objects are either true or false.

5.9. Comments 63





Chapter 6

Variables

A variable is a construct for saving and referencing the result of an expression. A variable points to an object and permits that
object to be saved and used repeatedly later.

There are two types of variables: local variables and thread variables. The type of the variable defines its scope and the rules
about using it. Each variable is given a name, and that name is used to access the variable’s value. An object that a variable
points to can be changed, or reassigned, as described in the Operators chapter.

6.1 Variable Names

Lasso variable names should begin with a letter or an underscore followed by a letter, then zero or more letters, numbers,
underscores, or period characters. Variable names are case-insensitive, so a variable named “rhino” can also be accessed with
“RhINo” as well.

6.2 Local Variables

Each capture runs with its own set of variables. These are called local variables or locals, and they are the most commonly used
type of variable. Locals begin and end within the capture in which they are defined, though the objects they point to may exist
beyond that point. Nested captures also have access to any locals defined in their parent capture before their own definition.

A local must be defined before it can be used. When a variable is defined, it is generally done so along with an initial value to
be assigned to that variable. If an initial value is omitted, the variable will have the default value of “null”. Multiple locals can
be defined at one time, either with or without default values, using the following syntax examples:

// Defines local "name" set to the value of the expression
local(name = expression)
local(name) = expression

// Defines locals "name" without a value and "b" set to 1
local(name, b = 1)

A local can be accessed using two different methods. In the first method, the local variable may or may not have previously
been defined. If the local has not been defined, it is defined and assigned a value of “null”. Regardless, the value of the variable
is produced as the result. This is only the case when one variable name is used and when it is not accompanied by an initial
value.

local(name)
// => // The value of "name", potentially creating "name"

Local variables can also be accessed using the “#” character before the name. This is the preferred method for accessing local
variables.

#name
// => // The value of "name"

65



LassoGuide, Release 9.3

When using this method, the local variable must have already been defined or it is considered an error. This error-checking is
done at the time the code is parsed, meaning that the local definition must physically precede the “#” access point within the
source code.

The set of local variables for each capture is determined as the code is compiled and cannot be modified at runtime, unlike
thread variables which can be given names dynamically.

6.2.1 Parameter Pseudo-locals

Lasso permits the parameter values given to a method to be accessed by position, using the local variable symbol “#” followed
by an integer value. The integer value corresponds to the position of the desired parameter value, beginning with “1”. For
example, in a method given two parameters, the first would be available using #1 and the second would be available using
#2.

See the Methods chapter for information on methods and method parameters.

6.3 Thread Variables

Thread variables, or vars, are variables that are shared and accessible outside of any particular capture, yet are restricted to the
currently executing thread. Each thread maintains its own set of vars. Vars are useful for maintaining program states that go
beyond the operation of any one method.

Vars are created in a manner similar to locals, but instead use the var declaration.

// Defines var "name" set to the value of the expression
var(name = expression)
var(name) = expression

// Defines vars "name" without a value and "b" set to 1
var(name, b = 1)

A var created without an initial value will be given the default value of “null”.

Vars can be created using an expression value for a name, unlike locals which require a fixed literal name. This expression must
result in a string or a tag object. That value is used as the variable’s name.

// Defines var with name of nameExpr
var(nameExpr = expression)

Because a literal variable name can resemble a method call with no parameters, if the variable name is intended to be the
result of a method call, that call must be given empty parentheses () to disambiguate.

// Defines var with the name of what nameCall() returns
var(nameCall() = expression)

A var can be accessed using two methods, similar to that of local variables. First, the var may simply be referenced using the
var syntax along with the var’s name. The var may or may not have previously been defined. If the var has not been defined,
it is defined and assigned a value of “null”. The value of the variable is produced as the result. This is only the case when one
variable name is used and when it is not accompanied by an initial value.

var(name)
// => // The value of "name", potentially creating "name"

Vars can also be accessed using the “$” character before the name. When using this method, an error is returned if the var has
not been previously defined.

66 Chapter 6. Variables



LassoGuide, Release 9.3

$name
// => // The value of "name"

6.4 Type Constraints

A type constraint can be applied to a local or thread variable in order to ensure that the value of the variable is always an object
of a particular type or trait. For example, a local variable could be constrained to always hold a string object. If an attempt was
made to assign to that variable a non-string object, such as an integer, the assignment would fail.

Lasso is a dynamically typed language, and, by default, variables can hold any type of object. Type constraints permit a devel-
oper to restrict variables to hold only particular object types or containing a particular trait in order to ensure that the code
operating on those variables is given valid inputs.

Type constraints are applied when a local or thread variable is first defined. This is done by supplying a tag literal, which consists
of two colons (::) and then the name of the type or trait to which the variable will be constrained, immediately following the
variable name. The following example applies constraints to a local and a var:

local(lname::integer) = 0
var(vname::trait_forEach) = array

In the above example, “lname” is constrained to hold only integers, and “vname” is constrained to hold only types supporting
trait_forEach. The next example shows valid and invalid usage of the two variables:

#lname = 400
// => // Valid: 400 is an integer

#lname = 'hello'
// => // FAILURE: #lname can only hold integers

$vname = (: 1, 2, 'hello')
// => // Valid: staticarrays support trait_forEach

$vname = 940
// => // FAILURE: $vname can only hold types that support trait_forEach

local(lname) = 'hello'
// => // FAILURE: #lname can still only hold integers

When applying a type constraint in a variable declaration, a provided default value is required.

local(lname::integer, x, y, z)
// => // FAILURE: #lname requires default value

6.5 Decompositional Assignment

Lasso will “decompose” the right-hand side value (RHS) of an assignment when the left-hand side value (LHS) is a local decla-
ration containing just a list of variable names. This supports wildcards (the _ character) as well as nested name lists. Any type
that supports trait_forEach can be used like this on the RHS.

The following examples should help clarify:

local(one, two, three, four) = (: 1, 2, 3, 4, 5, 6)

6.4. Type Constraints 67



LassoGuide, Release 9.3

#one
// => 1
#two
// => 2
#three
// => 3
#four
// => 4

local(_, two, _, four) = (: 1, 2, 3, 4, 5, 6)

#two
// => 2
#four
// => 4

local(_, two, _, four) = 1 to 100 by 3

#two
// => 4
#four
// => 10

local(one, _, three, (_, four)) = array('a', 'b', 'c', array('d', 'e'))

#one #three #four
// => ace

local(wanted, _, w2) = 'ABCDEFGH'

#wanted
// => A
#w2
// => C

Note that the local must include more than one element, and none of the elements can be assigned values.

local(x) = #foo
// => // Unchanged, works as expected

local(x, _) = #foo
// => // Fine, grabs first #foo

local(x = 1, _) = #foo
// => // FAILURE: x cannot have value

Also note that assign-produce (:=) cannot be used with decompositional assignment, and that quoted variable names are
not permitted.

68 Chapter 6. Variables



Chapter 7

Operators

An operator is a special symbol that, combined with one or more operands, performs an operation using those operands and,
generally, produces a value.

Lasso supports the standard arithmetical operators and logical operators as well as numerous other useful operations. Opera-
tors can be unary, taking only one operand, binary requiring two operands, or ternary, in the case of the conditional operator,
requiring up to three operands.

Lasso permits the behavior of some operators to be controlled by the operand objects themselves. This is accomplished in an
object by having it implement a method whose name matches the symbol for that operator. For example, a type that needed
to support addition would implement a method named + accepting one parameter and returning the result of combining it
with the type instance.

7.1 Assignment Operations

Assignment places the result of an expression into a destination. The destination must be a local or thread variable, or it must be
an appropriately named method call. Lasso supports two types of assignment operators: assign-produce (:=) which produces
the assigned value, and standard assignment (=) which does not.

// "dest" assigned value of expression
dest = expression

// "dest" assigned value of expression, "dest" produced
dest := expression
// => // Produces a reference to "dest"

An assign-produce operation, which produces the left-hand operand, is right-associative so that multiple assignments can be
lined up. The following assigns “1” to “dst1”, “dst2” and “dst3” and also produces “1”:

dst1 := dst2 := dst3 := 1
// => 1

Locals and vars can both be assigned using assignment syntax.

// local "l" assigned expression
#l = expression

// local "l" assigned expression
local(l) = expression

// var "v" assigned expression
$v = expression

// var "v" assigned expression
var(v) = expression

69



LassoGuide, Release 9.3

Variables and data members are the only elements to which values can truly be assigned, but Lasso permits methods to be
created that mimic the act of assignment. This is done by naming the method with a “=” character at the end. For example, a
method that wanted to accept assignment for foowould be named foo=. Such a method must accept at least one parameter
and must return the assigned value as if it were being called in the role of assign-produce (:=). Methods that permit such
assignment are useful as “setters” and let an object control how the assignment is ultimately made. See the Types chapter for
more detail on creating setter methods.

7.2 Arithmetical Operations

“Arithmetic” typically refers to mathematical operations using integer or decimal numbers, as explained in the Math chapter.
However, an arithmetical operator can be applied to any object that supports the operation.

7.2.1 Basic Operators

These operators are all binary, requiring two operands. All of these operators can be implemented by a type containing
the properly named method. Only the left-hand operand’s method is called. None of these operators should modify either
operand, but must return a new object. The examples that follow show the use of each operator:

op1 + op2
// => // Returns the value of adding op2 to op1

op1 - op2
// => // Returns the value of subtracting opt2 from op1

op1 * op2
// => // Returns the value of multiplying op1 by op2

op1 / op2
// => // Returns the value of dividing op1 by op2

op1 % op2
// => // Returns the remainder of dividing op1 by op2 (modulo operation)

(: 10 + 3, 10 - 3, 10 * 3, 10 / 3, 10 % 3)
// => staticarray(13, 7, 30, 3, 1)

7.2.2 Assignment Operators

While the basic arithmetical operators use their operands to produce a new value, Lasso supports syntax for applying the
operator to one of the operands. The following operators perform their operation and assign the result to the left-hand side
operand. Only the left-hand operand can be assigned to and not every expression is capable of being assigned to, as described
in the section on assignment operations. These assignment expressions do not produce a value.

// Equivalent to op1 = op1 + op2
op1 += op2

// Equivalent to op1 = op1 - op2
op1 -= op2

// Equivalent to op1 = op1 * op2
op1 *= op2

// Equivalent to op1 = op1 / op2

70 Chapter 7. Operators



LassoGuide, Release 9.3

op1 /= op2

// Equivalent to op1 = op1 % op2
op1 %= op2

During parsing, these operators are expanded to their regular arithmetical and assignment operations, so a type does not need
to do anything to support them aside from implementing the assignment operator method and the appropriate arithmetical
operator method.

7.2.3 Pre-/Post-Increment and Decrement Operators

There is a common need to “advance” an object in a bidirectional manner. Usually this is done using integers as counters,
though the concept can be applied elsewhere. Lasso supports the increment and decrement operators (++ and --) in both
pre and post modes.

Pre-incrementing and pre-decrementing an object will add or subtract 1 to or from the object and then produce that object
as a result. Post-incrementing and post-decrementing an object first copies that object, then adds or subtracts 1 to or from
the original operand, then produces the copied object as a result.

// Pre-increment "op"
++op
// => // Produces the newly incremented "op"

// Pre-decrement "op"
--op
// => // Produces the newly decremented "op"

// Post-increment "op"
op++
// => // Produces a copy of "op" before incrementing

// Post-decrement "op"
op--
// => // Produces a copy of "op" before decrementing

These increment/decrement operators are translated into regular arithmetical method calls with “1” as the method parameter.
This means that if a type is intended to be used with the increment (++) and decrement (--) operators, all that’s necessary is
to implement + and - which will be called with “1” as the parameter.

7.2.4 Positive and Negative Operators

Lasso supports the unary operators which are typically intended to change the sign of an integer or decimal number. These
operators can be applied to any object that supports them. When applied, these operators will produce a new object, leaving
the single operand unchanged.

+op1
// => // Produces a new object whose value is positive op1

-op1
// => // Produces a new object whose value is negative op1

Types can implement this operator by defining a method named + or - that accepts no parameters. When unary + or - is
applied to integer or decimal literals, no method call is generated. Instead, the positive or negative number is created from
the beginning.

7.2. Arithmetical Operations 71



LassoGuide, Release 9.3

7.3 Boolean Operations

Boolean describes the values “true” and “false”. Lasso supports several operators that either treat their operands as boolean val-
ues and/or produce boolean values. These operators are broken down into several categories. (See the definition of boolean
for how other other values are cast to boolean types.)

7.3.1 Logical Operators

There are three logical operators. The first is the unary operator “not”. This operator treats its single operand as a boolean value
and produces the opposite of that value. The “not” operator turns a “true” into a “false” and a “false” into a “true”. Although the
operand can be of any type, this operator always produces a “true” or “false” value. The “not” operator can take one of two
forms: an exclamation mark (!) or the not keyword.

!true
// => false

not false
// => true

The other two logical operators are logical “and” and logical “or”, and they also can take two forms: double ampersands (&&)
or the and keyword for logical “and”, and double pipes (||) or the or keyword for logical “or”.

These binary operators treat their first operand as a boolean value and perform their operation based on that value. Logical
“and” inspects its first operand, and if it is “true”, produces its second operand. If the first operand is “false”, logical “and” will
produce the value “false”. Logical “or” inspects its first operand, and if it is “true”, produces that first operand. If the first operand
is “false”, logical “or” will produce the second operand.

op1 && op2
// => // Returns "false" if either op1 or op2 evaluates to "false" else opt2

op1 || op2
// => // Returns op1 if it evaluates to "true" else op2

These operators perform shortcut evaluation, meaning that if the result of the operation is determined before the second
operand is evaluated, the second operand will not be evaluated. Also note that the behavior of the logical operators cannot
be defined by the operand objects.

7.3.2 Equality Operators

The equality operators are used to determine if one object is logically equivalent to another. These operators are split into
positive and negative equality tests as well as strict and non-strict equality tests. A positive equality test checks if one object is
equal to another object while a negative equality test checks if an object is not equal to another. Strict equality testing further
tests the types of the operand objects. If the right-hand operand is not an instance of the type of the left-hand operand, the
equality test fails. These operators all produce either a “true” or “false” value.

op1 == op2
// => // Produces "true" if op1 is equal to op2 else false

op1 != op2
// => // Produces "true" if op1 is not equal to op2 else false

op1 === op2
// => // Produces "true" if op1 is both equal to and the same type as op2 else false

72 Chapter 7. Operators



LassoGuide, Release 9.3

op1 !== op2
// => // Produces "true" if op1 is not equal to or not the same type as op2 else false

(: 3 == 3.0, 3 != 3.0, 3 === 3.0, 3 !== 3.0)
// => staticarray(true, false, false, true)

For allowing an object to be tested for equality against another, its type must implement a method named onCompare, which
is automatically called at runtime to perform equality checks. It must require one parameter for the right-hand operand, which
will be compared to the left-hand operand. When called, it indicates whether the left-hand operand is less than, equal to, or
greater than the right-hand operand by returning either an integer less than zero, zero, or greater than zero, respectively. The
act of checking the object types in the case of strict equality testing is automatically performed by the runtime, so a type need
not account for that scenario in its own implementation of onCompare.

7.3.3 Relative Equality Operators

The relative equality operators indicate whether an object is less than, greater than, or possibly equal to another object. These
operators all produce either a “true” or “false” value.

op1 < op2
// => // Produces "true" if op1 less than op2 else "false"

op1 > op2
// => // Produces "true" if op1 greater than op2 else "false"

op1 <= op2
// => // Produces "true" if op1 less than or equal to op2 else "false"

op1 >= op2
// => // Produces "true" if op1 greater than or equal to op2 else "false"

Types control how equality checks behave by implementing the onCompare method as described above in the section on
equality operators. Because onCompare is required to return an integer value (either zero, less than zero, or greater than zero),
it can handle all possible types of equality tests.

7.3.4 Containment Operators

There are two containment operators used to test if an object “contains” another object. One checks for positive containment
(>>) and the other for negative containment (!>>). Both are binary operators and both produce either a “true” or “false” value.

op1 >> op2
// => // Produces "true" if op2 is contained within op1 else false

op1 !>> op2
// => // Produces "true" if op2 is not contained within op1 else false

To support containment testing, a type must implement a method named contains which requires one parameter for the
right-hand operand and returns a boolean “true” or “false”. Only the left-hand operand will have its contains method called.

Containment testing only logically applies to certain types of objects. For example, it makes no sense to ask what an integer
object contains, because it is scalar, consisting of only one value. Containment testing is primarily done on collection types
such as array or map. Objects of those types can contain any number of other arbitrary objects, so it makes sense to query
them for their contents.

7.3. Boolean Operations 73



LassoGuide, Release 9.3

7.3.5 Conditional Operator

The conditional operator allows for concisely implementing if/then/else logic in which an expression is tested and depending
on its boolean value, either the “then” or the “else” expressions will be executed and their values produced as the result of the
operator. The “then” and “else” can consist of only one expression. The “else” portion of a conditional operator may be omitted.
In such a case, if the condition is “false”, a “void” object will be produced.

The conditional operator is a ternary operator consisting of the two “?” and “|” characters. The “?” follows the test condition
and the “|” delimits the “then” and “else” expressions. A conditional operator with no “else” condition will have no delimiting “|”
character.

test ? expression1 | expression2
// => // Produces expression1 if test is "true" else expression2

test ? expression
// => // Produces expression if test is "true" else void

7.4 Grouping

Sub-expressions can be grouped together by surrounding them with parentheses. This can alter the normal precedence of
some operations. All subexpressions in parentheses are evaluated before the expressions surrounding them. The first exam-
ple below shows how multiplication normally occurs before addition. The second example applies parentheses to have the
addition take precedence.

2 * 5 + 7
// => 17

2 * (5 + 7)
// => 24

7.5 Invocation

Parentheses can be applied to some expressions in order to invoke the value. Invoking can have different results for different
objects. By default, most objects return a copy of themselves when they are invoked. Methods, when invoked, execute the
method, returning its value.

Invoking an object by applying parentheses is always equivalent to directly calling the method named invoke. The following
examples invoke a local variable and a thread variable with no parameters:

#lv()
// => // Produces the value of invoking the object stored in the local "lv"

$tv->invoke
// => // Produces the value of invoking the object stored in the var "tv"

Parameters may be given to an invoke. The following invokes #lv with three parameters:

#lv(1, 'two', 3)
// => // Produces the value of invoking the object stored in the local "lv" with those parameters

See the Types chapter for more information on the invoke callback.

74 Chapter 7. Operators



LassoGuide, Release 9.3

It is also possible to dynamically generate parameters and programmatically pass them into an invocation. By first adding the
parameters to an array named “my_params” and including a colon after the opening parenthesis of the invocation statement,
the following example results in an equivalent invocation as the previous.

local(my_params) = array(1, 'two', 3)
#lv(: #my_params)
// => // Produces the value of invoking the object stored in the local "lv" with those parameters

This form is useful for passing a set of values from an object of any type supporting trait_forEach to a method that accepts
a rest parameter.

define printArgs(...) => with i in #rest do stdoutnl(#i)
printArgs(: #my_params)

// =>
// 1
// two
// 3

The concept behind invocation is somewhat abstract, but it permits objects and methods to operate as function objects. This
is an object that can be called upon to do an operation with zero or more parameters and produce a value. For example, a
sorting routine could employ such an object to handle the actual comparisons between two objects, invoking the object each
time it is required, while the routine handles only the shifting of the objects during the sort.

This technique would permit the sorting routine to be customized for a wide variety of object types as well as ascending and
descending directions by just switching out the objects designated to handle each permutation while keeping the internal
operations identical.

7.6 Target Operation

To target means to access a particular member method or data member from an object. The target operator (->) is a binary
operator accepting the target object as the left-hand operand and the method name as the right-hand operand. Targeting a
member method always executes that method, passing along any given parameters.

#lv->meth()
// => // Produces the value of calling meth() on the object stored in #lv with no parameters

#lv->meth
// => // Same as the first example, showing parentheses are optional

#lv->meth(40)
// => // Produces the value of calling meth() on the object stored in #lv with 1 parameter

#lv->meth(40, 'sample')
// => // Produces the value of calling meth() on the object stored in #lv with 2 parameters

Accessing a data member is accomplished through a similar syntax, but by surrounding the name in single quotes. A data
member can only be accessed from within the type in which the data member is defined. When accessing a data member, it
is an error to have any value except for self as the left-hand operand, and the right-hand operand must be single-quoted.

self->'dMem'
// => // Produces the value stored in the "dMem" data member

As it is very common to access data and methods using the current “self”, Lasso provides a shortcut syntax for accessing
members within “self” or inherited members. Using a period (.) before the member name will target the current “self”. Using
two periods (..) before the member name will target inherited members, skipping the current “self” and searching for the

7.6. Target Operation 75



LassoGuide, Release 9.3

member starting from the parent of the type that defined the currently executing member method. Two periods can only be
used for methods, as only “self” can access data members.

.'dMem'
// => // Produces the value stored in the "dMem" data member (same as self->'dMem')

.meth(1, 2)
// => // Produces the value of calling self->meth(1, 2)

..meth(3, 4)
// => // Produces the value of calling inherited->meth(3, 4)

7.6.1 Retarget Operation

The retarget operation allows the same target object to be used for multiple method calls. The retarget operator (&) is placed
between the individual method calls. Retarget is only ever used in the context of a member method call using the target
operator (->). The target object of the last target operator is used as the object for the retargeted member call. For each
method call, the & is placed following the method’s name, parameters, and capture block (if present).

The retarget operator can string two or more methods together. The return value of the final method will be produced by this
type of retarget.

object->meth & meth2
// => // Execute meth on the object then execute meth2 and produce its value

object->meth(1, 2) & meth2()
// => // Execute meth on the object then execute meth2 and produce its value

Retarget can also be used to change the produced value of a member method call to be that of the target object. This is done
by having a trailing & at the end of a method call.

targetObject->meth(1, 2) &;
// => // Execute meth, but produce targetObject

Formatting Retarget

When stringing several method calls together, formatting over multiple lines can help with readability. It is important, however,
to keep the & on the same line as the next method call, and to follow any trailing retarget operators with a semicolon to ensure
the expression is ended. This holds only for cases that have a next method and for method call expressions that are not
ultimately parenthesized.

The following example illustrates this formatting principle:

targetObject->meth(5, 7)
& meth2()
& meth3(90) &;
// => // Execute meth, meth2, meth3, and then produce targetObject

7.7 Method Escaping

To escape a method is to allow a method to be searched for by name and returned to the caller. The caller can later use that
method, executing it by applying parentheses as described in the section on invocation. This makes it easy for methods to be
treated as regular values and to be used as callbacks. It is an error if the method that is being escaped is not defined.

76 Chapter 7. Operators



LassoGuide, Release 9.3

Both member methods and unbound methods can be escaped. There are two escape method operators, one for member
methods and one for unbound methods. Escaping a member method uses the binary escape operator (->\), while escaping
an unbound method uses the unary escape operator (\).

#lv->\meth
// => // Produces a reference to the member method "meth" of the object in local "lv"

\meth
// => // Produces a reference to the unbound method "meth"

When a member method is escaped, the resulting value is bound to that target object. This ensures that when the resulting
value/method is invoked, that the current “self” will be the object from which the method was escaped. Additionally, if there
is more than one method defined under the given name, all of the methods are retrieved. This permits multiple dispatch to
be used with an escaped method.

The right-hand method name operand can come from the result of any expression. When using such a dynamic method
name, the expression must be surrounded in parentheses to disambiguate.

#lv->\(meth + 'name')
// => // Produces a reference to the member method whose name matches the
// result of appending "name" to the value returned by "meth"

Although the escape operators are used to find methods by name, the object produced by the operators is a memberstream.
This object manages the finding of the desired method, the potential bundling of the target object (in the case of ->\), and
the execution of the method when the memberstream is invoked.

7.7. Method Escaping 77





Chapter 8

Control Flow

Control Flow makes a program tick. With it, sections of code can be skipped or repeated multiple times. Code can be executed
in every repetition of a loop or every several repetitions. Complex decision trees can be created that execute code only under
very specific conditions. Lasso supports a variety of constructs for performing conditional logic.

8.1 Conditional Constructs

Lasso offers two types of conditional constructs, one for general conditionals and another which trades flexibility for speed
and readability.

8.1.1 If/Else Conditional

An if/else conditional is a construct that allows code to be executed only if a particular expression evaluates as “true”. The if/else
conditional differs from the conditional operator in that it permits multiple conditional tests as well as multiple expressions
within the conditional bodies (the conditional operator allows only a single expression). The if/else conditional supports one
default “else” which will execute if none of the conditional expressions are “true”.

The if/else conditional can take two forms. The following example shows the first form. The “// ...” in the example shows
where the body expressions for that particular condition would occur.

if(expression1)
// Code here executed if expression1 evaluates to "true"
// ...

else(expression2)
// Code here executed if expression2 evaluates to "true"
// ...

else
// Code here executed if neither expression1 or expression2 evaluates to "true"
// ...

/if

Each expression is evaluated in order, and the first value evaluating to “true” will have its corresponding conditional body
executed. Once completed, no further conditions will be tested and execution will resume at the end of the if/else conditional.

The second form operates like the first, but permits the if/else to be used with the association/code block syntax.

if(expression1) => {
// ...

else(expression2)
// ...

else
// ...

}

79



LassoGuide, Release 9.3

Either form is accepted. Although an if/else conditional produces no value, the first form does auto-collection, as will the
second if associated with an auto-collect block (=> {^ ... ^}). See the Captures chapter for more information about these
different types of code blocks.

There is also a shortcut syntax for the if/else conditional in the form test ? expression1 | expression2, where the first
expression is run if the test is “true” and the second if the test is “false”, described further in the section Conditional Operator
of the Operators chapter.

8.1.2 Match/Case Conditional

A match/case conditional allows code to be selectively executed based upon the logical equivalence of two or more objects.
The match/case conditional is given an initial test value and a series of case values and conditional bodies. The initial value
is tested against each case value using the initial value’s onCompare method. The first case value that matches the initial test
value will have its conditional body executed. Each case can have more than one value to test against. If no case values match,
then the default case, if present, has its conditional body executed. Using a match/case conditional when possible allows the
compiler to perform optimizations not available with an if/else conditional, potentially leading to better performance.

Like the if/else conditional, a match/case conditional has two forms. The following example shows the first form with several
case values and a default case:

match(expression)
case(c1, c2)

// Code here executed if c1 or c2 matches expression
// ...

case(c3)
// Code here executed if c3 matches expression
// ...

case
// Code here executed if neither c1, c2, or c3 matches expression
// ...

/match

The second form uses the association/code block syntax:

match(expression) => {
case(c1, c2)

// ...
case(c3)

// ...
case

// ...
}

Either form is accepted. Although a match/case conditional produces no value, the first form does auto-collection, as will the
second if associated with an auto-collect block (=> {^ ... ^}). See the Captures chapter for more information about these
different types of code blocks.

8.2 Loop Constructs

Lasso offers several constructs that execute a body of code repeatedly, or loop, based upon some criteria. This criteria can be a
boolean expression, a number counting to a predefined point, or the count of the number of elements in a composite object.
Each method of looping supports skipping to the top of the next iteration, aborting the loop process entirely, and retrieving
the current count of the number of loops that have occurred.

80 Chapter 8. Control Flow



LassoGuide, Release 9.3

Each of these loop constructs support the two forms shown for if/else and match/case. Most examples are shown in
both forms. Also, like if/else and match/case conditionals, loop constructs do not produce a value, but the first form does
auto-collection, as will the second if associated with an auto-collect block (=> {^ ... ^}). See the Captures chapter for
more information about these different types of code blocks.

8.2.1 While Loop

A while loop executes its body as long as its test expression is “true”. The test expression is evaluated before the beginning of
each loop.

// Form 1
while(expression)

// Code here executes for as long as "expression" is true
// ...

/while

// Form 2
while(expression) => {

// ...
}

8.2.2 Counting Loop

A counting loop steps from one integer number to another, either counting up or down each iteration, until the counter reaches
the end value. The most common usage of a counting loop is to give it a number specifying how many times it is to execute its
body. Other usages involve giving the counting loop a specific starting number, a specific ending number, and an increment
value by which the counter will be incremented for each iteration.

In the following example, the body will be executed 5 times:

// Form 1
loop(5)

// Code here executed 5 times in a row
// ...

/loop

// Form 2
loop(5) => {

// ...
}

To specify the starting number, ending number, and increment, use one of the following two forms of the counting loop:

// Loop to 5 starting from -10 incrementing by 10
loop(5, -10, 10)

// Code here executed each pass through the loop
// ...

/loop

// Loop to 5 starting from -10 incrementing by 10
loop(-to=5, -from= -10, -by=10)

// ...
/loop

In the case of using unnamed parameters, the order of the integers is significant. In the case of using keyword parameters,
either the -from or -by may be omitted, and all keyword parameters may be supplied in any order.

8.2. Loop Constructs 81



LassoGuide, Release 9.3

8.2.3 Iterate Loop

An iterate loop is applied to objects that contain other objects, such as arrays, maps, or any type that supports trait_forEach.
Iterate will execute the body once for each element contained in such an object. Iterate makes the individual elements avail-
able through the loop_value method. When iterating objects that store their elements associatively as keys and values, the
key is also made available through the loop_key method.

The following example creates a staticarray and iterates its contents:

local(lv) = staticarray(2, 4, 6, 8, 10)

// Form 1
iterate(#lv)

loop_value // The current value from #lv
/iterate

// => 246810

// Form 2
iterate(#lv) => {

// ...
}

8.2.4 Loop Methods

loop_abort()
Can be used within the body of any of the loop constructs mentioned in this chapter. When called, the current loop
construct will cease and execution will continue at the code following it.

loop_continue()
Can be used within the body of a loop construct to cause the current loop to cease executing. Looping begins again
at the top with the testing of the loop condition if present, and continues with the next iteration if applicable.

loop_count()
All of the loop constructs keep track of the current loop number. The loop_countmethod can be called to retrieve this
number. For while and iterate loops, the loop number always begins with “1” on the first loop and advances by “1” on
each additional iteration. In a counting loop, the loop number begins with the loop’s “from” value and advances either
forward or backward depending on how the loop was constructed.

Note: Query expressions do not support loop_abort, loop_continue, or loop_count.

loop_key()
When called within an iterate loop that’s iterating a map, returns the key of the current map element. It will return “void”
if the iterated object is any other type.

loop_value()
When called within an iterate loop, returns the current element from the object being iterated. It will return the element’s
value if the iterated object is a map.

82 Chapter 8. Control Flow



Chapter 9

Captures

Captures are the basic frame of execution in Lasso. All code that executes does so within a capture. When a method is invoked,
a capture is first automatically created for that method to execute in. When executing code in a source file, a capture is again
automatically created for that code to execute in.

Captures are everywhere in Lasso, and learning how to use them will give you a powerful tool to use for solving some complex
problems. This chapter provides in-depth information about captures and examples of their use.

9.1 Capture Structure

A capture is a representation of the control state of a section of code. While methods’ code blocks are stateless (once they
have had their code established), captures maintain state, some of which may change frequently during execution. This state
consists of:

• The current method’s code

• The current “self” and “inherited”

• The current “params” staticarray

• The current set of local variables, and their values

• The current program counter, or “PC”. This value is the offset within that capture’s code at which execution is currently
happening.

• The name of the current method call

• The current continuation, which is the element to be executed after the current capture completes

• The set of handlers that must be executed before the capture completes

• A home capture, which is the capture in which this capture was created

When a capture is invoked, it will in turn execute its associated code which will execute within the context of that capture’s
state. The currently executing capture is known as the current capture and is made available through the currentCapture
method. (See the Operators chapter for more information about invocation.)

9.2 Creating Captures

As previously mentioned, captures are automatically created when a method is executed. Captures can also be manually
created by using curly braces as an expression. When using the association operator (=>) to invoke an object by passing it a
capture, the capture is known as the object’s associated block or capture block.

#ary->forEach => {
// ... a capture of the surrounding code ...

}

83



LassoGuide, Release 9.3

In the code above, forEach is associated with a capture object. This results in forEach being invoked with the capture as its
capture block, which it may execute as needed.

Captures can also be assigned to variables like any other object. The following example creates a capture and assigns it to the
variable “cap”:

local(cap) = { /* ... the capture's code ... */ }

There are two types of captures supported in Lasso: regular captures, like the examples above, and auto-collect captures. An
auto-collect capture concatenates the result of calling the asString method on every value produced inside the capture
when the capture is executed, and produces that value. The following example creates an auto-collect capture and assigns it
to the variable “cap”:

local(cap) = {^ /* ... the capture's code ... */ ^}

Because all executing code occurs within a capture, every capture that is manually created (as in the two examples above)
is done so within the context of another capture. This surrounding capture is known as the new capture’s home capture. Not
all captures will have a home. Captures created automatically based on the invocation of a method will not have a home. A
capture that is created within a capture that does have a home will have its home set to its parent capture’s home. This means
that nested captures will all have the same home.

A capture with a home will always take the following environment values from its home: self, locals, params, and current call
name. A capture without a home will have state values based on the circumstances of the call. All other capture state is unique
to each capture. As described below, the home capture is important for determining the behavior of return and yield.

9.3 Executing Captures

Captures are executed by calling their invoke method:

local(cap) = { /* ... the capture's code ... */ }
#cap->invoke // Invoke the capture
#cap() // Shorthand invocation

You can pass parameters to the capture->invokemethod, and these are available with the special parameter local variables
(#1, #2, etc.):

local(dist) = {
local(x1) = #1
local(y1) = #2
local(x2) = #3
local(y2) = #4

}
#dist(8, 2, 10, 5) // Sets #x1, #y1, #x2, #y2 to 8, 2, 10, 5, respectively

When you invoke an auto-collect capture, the auto-collected value will be returned and can be accessed using cap-
ture->autoCollectBuffer:

local(distance) = {^
local(x1) = #1
local(y1) = #2
local(x2) = #3
local(y2) = #4

math_sqrt(math_pow(math_abs(#x2-#x1), 2) + math_pow(math_abs(#y2-#y1), 2))
^}

84 Chapter 9. Captures



LassoGuide, Release 9.3

#distance(8, 2, 10, 5)
// => 3.605551

#distance->autoCollectBuffer
// => 3.605551

Stored captures can be executed at any point and the code contained within will operate as if it had been executed in the
context in which it was created. This means that it will have access to the surrounding local variables where the capture was
created even when the capture is being executed in code that has a different scope. The example below illustrates this by
creating a capture in the method1 method whose code is set to update the local variable “my_local” in method1. We then
invoke that capture in “method2” which changes the value for “my_local” in method1. Returning “my_local” confirms that the
value has been updated by method2.

define method1 => {
local(my_local)
local(my_cap) = {

#my_local->append(#1)
}

#my_local = 'Hello'
method2(#my_cap)

return #my_local
}

define method2(cap::capture) => {
#cap(', world.')

}

method1

// => Hello, world.

9.4 Producing Values and Detaching

Captures can produce values by using yield or return. Both yield and return halt the execution of any of the capture’s
remaining code and produce the specified value. Yielding from a capture differs from returning in how it leaves the capture. A
return will reset the capture’s PC to the top while a yield will not modify the PC. This affects how the capture behaves if it is
executed a second time. A capture that has been returned from will begin executing from the start of the capture. A capture
that has been yielded from will begin executing immediately after the expression that caused it to yield in the first place. A
capture may yield many times.

local(cap) = {
yield 1
yield 2
yield 3
yield 4

}->detach

#cap()
// => 1
#cap()
// => 2
#cap()
// => 3

9.4. Producing Values and Detaching 85



LassoGuide, Release 9.3

#cap()
// => 4
#cap()
// => 1 // Capture reached the end and reset

Note that once a capture reaches its end, the PC will automatically be reset back to the top. (Read on for a discussion of why
we use capture->detach here.)

Even though a capture has yielded, it can still elect to return later in the code, thus resetting itself:

#cap = {
yield 1
yield 2
return 3 // Subsequent calls will start from beginning
yield 4 // This is unreachable

}

The current home capture is very important for determining the behavior of return and yield. Because captures are in-
tended to execute as if they had been invoked directly within their home, return and yield will both behave by exiting
from the current home as well as itself. This is known as a non-local return, and is illustrated in the following example which
implements a potential contains method:

define contains(a::array, val) => {
#a->forEach => {

#val == #1 ?
return true // This return is non-local

}
return false

}

Even though the return true occurs within a nested capture that is potentially several levels deep, it causes all intervening
captures to halt their execution (with all their handlers executing in the process) up to and including the capture’s home.

A capture can be detached from its home in order to escape from this behavior. The easiest way to accomplish this is to call
the capture’s capture->detach method. This method detaches the capture from its home and returns itself as the method’s
result. (This is what we did in the first yield example above.)

The following example creates a capture and detaches it from its home. Returning from within the capture no longer exits the
surrounding capture.

local(cap) = {
return self->type

}->detach

#cap()
// => // Produces result of self->type

Note that because the capture above is detached, it returns as normal and simply produces its value to the caller and allows
the caller to continue its execution. It is not a non-local return.

Captures provide two other forms of yield and return: yieldHome and returnHome. These are only valid when the capture
has a home and can be used to return from a capture to its home, instead of returning from its home. These special-purpose
forms are used to accomplish some implementation details such as certain looping constructs or other control flow structures.
(For example, loop_continue and loop_abort both rely on using these forms.)

86 Chapter 9. Captures



LassoGuide, Release 9.3

9.5 Capture Methods

currentCapture()
Returns a reference to the capture that is currently executing.

type capture
A capture is a block of Lasso code that can be passed to another method or invoked locally. Captures are context-aware
and retain state during execution.

capture->invoke(...)
Executes the capture object and the code that is associated with it.

capture->detach()
Detaches the capture so that it no longer has a home capture and then returns itself. After this, calling capture->home
will return “void”.

capture->restart()
Resets the program counter (PC) for the capture and begins executing the capture’s code again.

capture->continuation()
Returns the capture that will be executed after this capture completes.

capture->home()
Returns the home capture of the current capture object.

capture->callSite_file()
Returns the file name where the capture object was defined.

capture->callSite_line()
Returns the current line of code that is being executed in the capture object based on the file where the capture was
defined.

capture->callSite_col()
Returns the current column of code that is being executed in the capture object based on the file where the capture
was defined.

capture->callStack()
Returns the current call stack of the code that is being executed based on where the capture was called. Each line of
the call stack consists of a line number, column number, and file name for the capture invocations leading up to the
current one. The top of the stack has the most recent capture call and the list works its way back through each call.

capture->givenBlock()
Returns the capture block associated with the current capture object, if any.

capture->autoCollectBuffer()
If the capture is an auto-collect capture, this will store the current auto-collect value created by invoking the capture.

capture->autoCollectBuffer=(value)
If the capture is an auto-collect capture, this will set the auto-collect value.

capture->calledName()

capture->methodName()
If the capture was created to run a method, this will return that method’s name.

capture->invokeAutoCollect(...)
Invokes the capture. If it is an auto-collect capture, this will return the auto-collect value, but will not update cap-
ture->autoCollectBuffer.

9.5. Capture Methods 87





Chapter 10

Query Expressions

Query expressions allow the elements in arrays and other types of sequences to be easily iterated, filtered, and manipulated
using a natural language syntax which is reminiscent of SQL.

A query expression can take each element in a sequence, manipulate it, and produce a new sequence. Query expressions let
a developer drill down into nested sequences. For example, a query expression could iterate over each line in a block of text,
then each word, and then each character; all in one expression. Query expressions provide a variety of useful operations, such
as order by, sum, average and group by.

10.1 Query Expression Structure

Every query expression consists of three parts.

• The with clause specifies the variable name used to hold each element during evaluation, as well as the source of the
data for the expression. One or more with clauses are required for every query expression. Multiple with clauses are
used to dig down into nested sequences.

• A series of optional operations allow the elements to be filtered, sorted, skipped, etc. Operators include where, let,
skip, take, order by and group by.

• An action tells Lasso what to do with the elements selected by the expression. Actions include select, do, sum, aver-
age, min, and max.

Whitespace, including line breaks, is insignificant within the clauses of a query expression. Syntactically, a query expression
will begin with the word with and will end when terminated by an action.

Query expressions can be treated as objects. This means they can be assigned to variables and used repeatedly, and they can
be passed as parameters. Unless otherwise noted, query expressions are evaluated in a lazy manner. This means that creating
the query expression does not execute it. It is only when something else attempts to draw elements from the query expression
that it begins to generate results.

All local variables available at the location of a query expression’s creation are available within the query expression itself.
However, new variables introduced by a query expression clause will not be available outside of the query expression that
introduces them.

10.1.1 The With Clause

The with clause always begins with the word with followed by a variable name which is created as a local variable available
only within the current query expression. Next follows the word in and then the source data element, which is any object
whose type supports the trait_queriable trait, such as an array or a list. Note that when declaring the variable at the
beginning of the with clause, the variable name is given by itself, without the “#” character, just as if the local were being
defined using the standard local syntax.

with variable_name in source

Multiple subsequent with clauses can follow the first. When this occurs, the second with word can optionally be replaced by
a comma. Multiple with clauses define a nesting of iterations. The following two example snippets are equivalent:

89



LassoGuide, Release 9.3

with variable_name in source
with another_name in #variable_name

with variable_name in source,
another_name in #variable_name

10.2 Actions

An action defines the result of a query expression. Actions permit a sequence to be transformed into a new sequence, or
permit sequence elements to be used to compute an aggregate, or permit an arbitrary block of code to be executed for each
resulting element.

10.2.1 Select

A select clause permits a new sequence to be generated based upon the source sequence. A select clause consists of the
word select followed by a single expression. The expression is evaluated once for each element from the source sequence
that makes its way through the query expression. The result of the select’s expression will be an element going into the new
sequence.

The following example computes the square of each element in the source array. The expression in the select clause performs
the math to compute the square, the result of which becomes an element in the resulting sequence.

with n in array(1, 2, 3, 4, 5, 6, 7, 8, 9)
select #n * #n

// => 1, 4, 9, 16, 25, 36, 49, 64, 81

One query expression can be nested within another. In the next example, the query expression is assigned to a variable. That
variable is used in a subsequent query expression. The first query expression is not evaluated until the second query expression
is evaluated.

local(qe =
with n in array(1, 2, 3, 4, 5, 6, 7, 8, 9)
select #n * #n

)

with newN in #qe
select #newN * #newN

// => 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561

10.2.2 Do

A do clause permits a block of code to be executed for each element that makes its way through the query expression. A do
clause consists of the word do followed by either a single expression or a capture using either the regular curly brace form ({
... }) or the auto-collect curly brace form ({^ ... ^}). If the code associated with a do clause consists of more than one
expression, the code must be contained in a capture.

The following examples show how the query expression do clause can manipulate the elements in the source array. Both
query expressions operate identically.

90 Chapter 10. Query Expressions



LassoGuide, Release 9.3

local(ary) = array('the', 'quick', 'brown', 'fox', 'jumped', 'the', 'shark')

with n in #ary
do #n->upperCase

with n in #ary
do {

#n->upperCase
}

It is important to note that when using do the query is immediately evaluated and that the query expression produces no
result value. All other query expression actions are evaluated lazily, only as needed, and produce a result value dependent on
the action in question.

The block of code given to a do remains attached to the surrounding method context, such that one could return or yield
or access and create local variables.

10.2.3 Sum

A sum clause is useful when adding all of the resulting query expression elements together. A sum clause consists of the word
sum followed by a single expression. The result of the expression will be the value used in the summation. The summation is
performed using the + operator, so each element in the sequence must support the addition operator for the sum to succeed.
The result of a query expression using a sum clause will be a single value.

The following example uses a sum clause to add together each element from the initial sequence:

with n in array(1, 2, 3, 4, 5, 6, 7, 8, 9)
sum #n

// => 45

10.2.4 Average

An average clause produces the average of each element that makes its way through the query expression. As expected, using
average will take the sum of each element and then divide that value by the number of elements. As with sum, average
produces a single result value.

with n in array(1, 2, 3, 4, 5, 6, 7, 8, 9)
average #n

// => 5

10.2.5 Min and Max

The min and max clauses produce the smallest or largest value from the sequence, respectively. The standard less than (<) and
greater than (>) operators are used to find the result value.

with n in array(1, 2, 3, 4, 5, 6, 7, 8, 9)
min #n

// => 1

with n in array(1, 2, 3, 4, 5, 6, 7, 8, 9)

10.2. Actions 91



LassoGuide, Release 9.3

max #n

// => 9

10.3 Operations

In a query expression, an operation is an optional clause that affects how the query expression behaves by removing elements
from the sequence, ordering the elements in a certain manner, or introducing new variables.

10.3.1 Where

A where operation lets elements be included or excluded from further consideration based upon a boolean expression. A
where operation will generally run a test involving the current element. If the test expression results in “false”, the element is
discarded and the next element is selected and operated upon. If the test expression results in “true”, the query expression
proceeds with the next operation or action in the expression.

A where operation is composed of the word where followed by a single expression. The result of the expression should be
boolean “true” or “false”.

The following example performs a query expression using the numbers in an array. The where operation filters out all even
numbers, leaving only odd numbers for the rest of the query expression. The local variable “n” holds each number in turn as
the expression is evaluated.

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
where #n % 2 != 0 // Ignore even numbers

select #n

// => 1, 3, 5, 7, 9

Multiple where operations can be used in a query expression. Using multiple where operations is essentially the same as
combining the expressions using the logical “and” operator (&& or and). The following two snippets are equivalent, while the
third is not.

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
where #n % 2 != 0 // Ignore even numbers
where #n % 3 != 0 // Ignore numbers evenly divisible by 3

select #n

// => 1, 5, 7

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
where #n % 2 != 0 && #n % 3 != 0

select #n

// => 1, 5, 7

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
where #n % 2 != 0 || #n % 3 != 0

select #n

// => 1, 2, 3, 4, 5, 7, 8, 9

92 Chapter 10. Query Expressions



LassoGuide, Release 9.3

10.3.2 Let

A let operation introduces a new variable into the query expression. Usually, this is done when evaluating an expression whose
value will be used repeatedly further on throughout the query expression. For example, a let operation may evaluate an
expression based upon the current iteration variable, assigning the result to a new variable, and then using both further within
the query.

Variables introduced with a let operation have the same scope as those introduced in a with clause. That is, they only exist
within the query expression.

A let operation consists of the word let followed by a new variable name, the assignment operator (=), and then an expression,
the result of which will be assigned to the new variable.

The following example snippet assigns the square of the current iteration value to a new variable using a let operation:

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
let n2 = #n * #n

select #n2

// => 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

The next example snippet uses both where and let together:

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
let n2 = #n * #n // Square the current value
where #n2 % 2 != 0 // Discard even values using the new variable

select #n2

// => 1, 9, 25, 49, 81

10.3.3 Skip

A skip operation permits a specified number of values from the source sequence to be skipped. A skip operation consists of
the word skip followed by either a literal integer, or an expression that will evaluate to an integer.

The following example snippet skips the first 5 elements from the source array. Only the 6th element and beyond are sent to
the remaining portion of the query expression.

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
skip 5

select #n

// => 5, 6, 7, 8, 9

10.3.4 Take

A take operation permits only a certain number of elements to be iterated upon. Elements beyond the specified value are
ignored and not sent to the remainder of the query expression. A take operation consists of the word take followed by a
literal integer or an expression that will evaluate to an integer.

The following example snippet takes only the first 5 elements from the data source. The remaining elements are ignored.

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
take 5

select #n

10.3. Operations 93



LassoGuide, Release 9.3

// => 0, 1, 2, 3, 4

Theskip andtake can be combined to limit which elements a query expression will operate over to a specific range. The order
in which skip and take are specified is significant. (Generally, skip is specified before take, though this is not a requirement.)

The following example snippet skips the first 3 elements, takes only the next 4 and leaves the rest ignored. This results in only
the numbers 3, 4, 5, and 6 for the rest of the query expression.

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
skip 3
take 4

select #n

// => 3, 4, 5, 6

The next example snippets show how the ordering of skip and take is important. This first query expression takes only the
first 4 elements of the series, though the first 3 of them are skipped. The second query produces the same result, but uses
skip and take in the reverse order.

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
take 4
skip 3

select #n

// => 3

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
skip 3
take 1

select #n

// => 3

10.3.5 Order By

Query expressions permit the elements of a series to be ordered in an arbitrary manner by using an order by operation. This is
done by using the words order by and then an expression, the result of which is used as the value by which the particular
element will be ordered. This can be followed optionally by a direction indicator, which is the worddescendingorascending.
When a direction is not specified, ascending order is assumed. Further ordering criteria can be specified by following the initial
order by expression with a comma, and then the next ordering expression and optional direction indicator.

The following example orders the elements in the array using the default ascending order, and the next, in descending order:

with n in array(9, 2, 1, 3, 5, 4, 6, 7, 0, 8)
order by #n

select #n

// => 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

with n in array(9, 2, 1, 3, 5, 4, 6, 7, 0, 8)
order by #n descending

select #n

// => 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

94 Chapter 10. Query Expressions



LassoGuide, Release 9.3

The expression provided to an order by can be any arbitrary expression. This permits elements to be ordered in any manner
as desired by the developer. For example, a series of string objects could be ordered based upon their lengths, or elements
could be randomly ordered based upon a random number generated for this purpose.

with n in array('the', 'quick', 'brown', 'fox', 'jumped', 'the', 'shark')
order by #n->size

select #n

// => the, fox, the, quick, brown, shark, jumped

with n in array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
order by integer_random(0, 99)

select #n

// => 9, 8, 6, 5, 2, 1, 7, 0, 4, 3

In the next example snippet, a series of user objects, represented by their first and last names, could be ordered in an alpha-
betical manner:

with n in array('Krinn'='Jones', 'Ármarinn'='Hammershaimb',
'Kjarni'='Jones', 'Halbjörg'='Skywalker',
'Björg'='Riley', 'Hjörtur'='Hammershaimb')

order by #n->second, #n->first
select #n

// => (Hjörtur = Hammershaimb), (Ármarinn = Hammershaimb), (Kjarni = Jones), \
// (Krinn = Jones), (Björg = Riley), (Halbjörg = Skywalker)

10.3.6 Group By

A group by operation permits similar elements to be grouped together by a particular key expression and represented as
a single object called a queriable_grouping. This new object can be further used throughout the query expression. A que-
riable_grouping object maintains a reference to each of the original elements within the group. It also possesses a key
method which produces the value by which the particular elements were mutually grouped.

A group by consists of three elements: the object going into the group, the key by which the objects are grouped, and a
new local variable name. This new variable name will be introduced into the query expression for further use and will be a
queriable_grouping object. It has the following form:

group new_object_expression by key_expression into new_local_name

A group by operation makes the most sense when used with other operations and actions. The following example takes a
series of users, represented by a pair with their last and first name, and performs a query expression over them.

with n in array('Jones'='Krinn', 'Hammershaimb'='Ármarinn',
'Jones'='Kjarni', 'Skywalker'='Halbjörg',
'Riley'='Björg', 'Hammershaimb'='Hjörtur')

let swapped = pair(#n->second, #n->first)
group #swapped by #n->first into g
let key = #g->key
order by #key

select pair(#key, #g)

// => // Line breaks added for readability
// (Hammershaimb = (Ármarinn = Hammershaimb), (Hjörtur = Hammershaimb)),
// (Jones = (Krinn = Jones), (Kjarni = Jones)),

10.3. Operations 95



LassoGuide, Release 9.3

// (Riley = (Björg = Riley)),
// (Skywalker = (Halbjörg = Skywalker))

The example above example breaks down into six steps:

1. Begin the query expression using “n” as the variable to hold each initial element from the source array. There are six
elements in the source array, so “n” will start off pointing to the first element. Once the query expression completes its
first iteration, “n” will point to the second element and the query will perform another iteration, and so on, until the end
of the array is reached.

with n in array('Jones'='Krinn', 'Hammershaimb'='Ármarinn',
'Jones'='Kjarni', 'Skywalker'='Halbjörg', 'Riley'='Björg',
'Hammershaimb'='Hjörtur')

2. Create a new pair containing the swapped last and first names. Name this “swapped”.

let swapped = pair(#n->second, #n->first)

3. Group each of the new user pairs by last name: #n->first is used as the key as it still contains the original last name.
From this point forward, no previously introduced variables are available. Only “g” exists now. It will contain each que-
riable_grouping object generated by the group by operation at this step.

group #swapped by #n->first into g

4. Access the grouping key for the current value of “g”. Save it into “key”.

let key = #g->key

5. Sort the resulting grouping objects by “key”, which contains the last name, using order by. Therefore, all of the result-
ing group objects will come out of the query expression ordered alphabetically by last name.

order by #key

6. Finally, create a new pair containing “key” and the grouping object and select that, making the new pair one of the new
elements in the result of the query expression.

select pair(#key, #g)

The result of the example query expression looks as follows. Notice how the results for 'Hammershaimb' and 'Jones' each
contain both of the users in those groups.

// => // Line breaks added for readability
// (Hammershaimb = (Ármarinn = Hammershaimb), (Hjörtur = Hammershaimb)),
// (Jones = (Krinn = Jones), (Kjarni = Jones)),
// (Riley = (Björg = Riley)),
// (Skywalker = (Halbjörg = Skywalker))

10.4 GenerateSeries Type

The generateSeries method generates a series of integer values, and is great for use in query expression with clauses.

type generateSeries

generateSeries(from, to, by=1)
Creates an integer series. The first parameter specifies the first number in the series. The second parameter specifies the
maximum value of the last number in the series, and an optional third parameter can specify the step to use for going

96 Chapter 10. Query Expressions



LassoGuide, Release 9.3

through the series, defaulting to 1. Note that the second parameter will not be included in the series if the step value
causes it to be skipped.

The following example uses a query expression to sum the even numbers starting with 2 and ending with 10:

// Note that 11 is not part of the generated series
with num in generateSeries(2, 11, 2)
sum #num

// => 30

There is also a generateSeries literal syntax that can be used. The following is equivalent to the preceding example:

with num in 2 to 11 by 2
sum #num

// => 30

A generateSeries object can also be converted to a staticarray for later use.

generateSeries(2, 11, 2)->asStaticArray
// => staticarray(2, 4, 6, 8, 10)

10.5 Making an Object Queriable

An object can be used as the source of a with clause in a query expression if its type has implemented and imported the
trait_queriable trait. For this, a type must implement the forEach member method. This method is always called with
a capture block. Within the forEach member method, the object being queried should invoke the capture block, passing it
each available element in turn.

The following example implements a user list type. Objects of this type can be used in query expressions. For the sake of this
example, it permits iteration over a fixed list of users, which it provides to the query one by one.

// Define the user_list type
define user_list => type {

trait { import trait_queriable }

public forEach() => {
local(gb) = givenBlock

// Provide the 6 users one at a time
#gb->invoke('Krinn'='Jones')
#gb->invoke('Ármarinn'='Hammershaimb')
#gb->invoke('Kjarni'='Jones')
#gb->invoke('Halbjörg'='Skywalker')
#gb->invoke('Björg'='Riley')
#gb->invoke('Hjörtur'='Hammershaimb')

}
}

// Create a user_list object
local(ul) = user_list

// Use it in a query
with user in #ul
select #user->first

10.5. Making an Object Queriable 97



LassoGuide, Release 9.3

// => Krinn, Ármarinn, Kjarni, Halbjörg, Björg, Hjörtur

Types with one or more iterator methods can be used in a query expression by exposing each iterator with an eacher, which
is a method that takes an escaped iterator method and an optional set of initial parameters, and uses the eacher method to
return a generator for the iterator.

For example, while a string cannot be iterated upon directly, it has an iterator string->forEachCharacter, which is imple-
mented as an eacher below:

define string->eachCharacter()::trait_forEach => eacher(self->\forEachCharacter)

A string can then run a query expression on each character by using string->eachCharacter:

with i in 'Hammershaimb'->eachCharacter
select #i

// => H, a, m, m, e, r, s, h, a, i, m, b

98 Chapter 10. Query Expressions



Chapter 11

Methods

Methods are the fundamental process abstraction in many languages, including Lasso. Methods provide a means for encapsu-
lating a series of expressions so that they can be called repeatedly as a group. Complex, multi-step tasks are best expressed as
a group of related methods. A method is defined under a specific name and is associated with a signature and a code block.

11.1 Signatures

Before method definitions can be understood, it is important to understand signatures. A signature is a description of a method
and includes its name, parameter names, and types, and the method’s return value type. Signatures are used when defining
methods, and simplified signatures are used when defining types and traits. This chapter will concentrate on signatures for
defining methods only.

Method names in Lasso consist of letters, numbers, and underscores. A method name must start with a letter, or one or two
leading underscores followed by a letter. Letter case is not considered when comparing method names.

Method names beginning with an underscore are generally intended to only be used internally, as they represent methods
that could change in the future and are therefore considered unstable.

Some valid examples of method names are shown below:

field
_date_msec
Encode_Base64
String_ReplaceRegexp

There are several other characters that are valid in specific circumstances. The mathematical operators +, -, *, /, and % are used
in method names when supplying implementations for these operations for types. See the section Operator Overloading in
the Types chapter for more information.

Most signatures consist of a method name followed by parentheses which surround a list of parameters for the method, and
an optional return type.

A signature for the loop method is shown below. The parameter list includes three parameters: a to integer parameter, and
two more integer parameters each of which default to “1”.

loop(to::integer, from::integer=1, by::integer=1)

When a method is called, the parameter names given in the method’s signature become the variable names for those param-
eters within the method’s body. The loop method above would have access to the local variables “to”, “from”, and “by”.

A signature’s parameter list allows the specification of required and optional parameters, type constraints, keyword parameters,
and rest parameters.

11.1.1 Empty Signature

A signature specified with an empty set of parentheses indicates that the method will not require or accept any parameters.
Giving parameters to a method defined with an empty signature will result in a failure. The following is an example of a

99



LassoGuide, Release 9.3

signature without any parameters:

method_name()

11.1.2 Rest-Only Signature

A signature whose parameter list is just three periods (...) indicates that the method will accept any number and type of
parameters. A method defined with a rest-only signature can be called with no parameters or any combination of values and
keyword parameters.

method_name(...)

Note that these are three periods rather than a Unicode ellipsis character.

Within the method, the parameters that were passed in can be accessed through a local variable named “rest”. If any param-
eters were given, the rest variable will be a staticarray. If no parameters are given, it will remain “void”. This signature can be
useful for methods that have highly variable parameters needing special processing, such as inline.

11.1.3 Required Parameters

Required parameters can be specified within a signature by naming them in order. All required parameters must be listed
before any other parameter types. When calling a method with required parameters, all parameter values must be provided
in the proper order according to the method’s signature.

The name of each required parameter must be a valid variable name. Each name should begin with a letter or an underscore
followed by a letter, then zero or more letters, numbers, underscores, or period characters.

The following signature defines two required parameters named firstname and lastname. Within the method these param-
eters can be accessed through the local variables “firstname” and “lastname”.

method_name(firstname, lastname)

When calling this method, both parameters must be given in order.

method_name('Henry', 'Gibbons')

The parameter names are only used within the method so the choice of parameter names need only make sense to the
implementer of the method. However, the parameter names may be used in documentation or reported in error messages so
they should be made descriptive when possible. Knowing a method requires the parameter firstname is more descriptive
than a method that requires the parameter fn.

11.1.4 Optional Parameters

Optional parameters are those which are listed in a method’s signature but are not required to be given values when the
method is called. Optional parameters are specified within a signature by providing default values along with the parameter
names. A default value is specified after a parameter name by using an equal sign (=) followed by an expression. The expression’s
value will be used to assign the default value to the parameter’s local variable if that value is omitted by the caller.

The default value expression will be evaluated independently with each call as required from within the associated method’s
body, so any state valid at the beginning of the associated method is valid during the evaluation of all optional parameter
default values.

Although optional parameters may be omitted when calling a method, when optional parameter values are provided, they
must be provided in order. That is, when the method is called, once an optional parameter is omitted, all subsequent optional
parameters must also be omitted.

100 Chapter 11. Methods



LassoGuide, Release 9.3

The parameters in the following signature are both optional. If the host parameter is not specified the local variable “host”
within the method will have the default value 'localhost'. If the port parameter is not specified, it will have the default
value of “80”.

connect(host='localhost', port=80)

When the method is called the parameters that are passed to it will be assigned to each of the optional parameters in turn. The
method called as connect('www.lassosoft.com')will have a default port value of “80”. The method called as connect()
will have both default values. And, the method called as connect('www.lassosoft.com', 443) will use the specified
values, overriding both defaults. In this example, there is no way to only specify a value for port.

Mixing Required and Optional Parameters

When calling a method that accepts both required and optional parameters, all required parameter values must be specified
before any optional parameter values. The values that are passed will be assigned to the required parameters first. While there
are sufficient remaining values, the optional parameters will be assigned in order.

For example, the following signature has one required parameter host and two optional parameters port and timeout:

connect(host, port=80, timeout=15)

The host parameter must be provided before port can be provided with a value, and both host and port must be provided
before timeout can be provided with a value.

11.1.5 Keyword Parameters

Keyword parameters are named parameters that can be specified in any order. When keyword parameter values are passed to
a method, they are given with the associated parameter name, using the following syntax:

-parameterName = expression

If a method has any required or optional parameters, they must be specified before the keyword parameters in both the
method signature and when calling the method.

Keyword parameters are specified by preceding the parameter name with a hyphen (-). Within the method body, the keyword
parameter’s associated local variable will not have the hyphen.

Keyword parameters can be either required or optional. Optional keyword parameters are specified in the same manner as
regular optional parameters, by following the parameter name with an equals (=) and a default value expression.

For example, a hypothetical find_in_string method could have the following signature. The required input is followed by
two keyword parameters: the required -find and the optional -ignoreCase.

find_in_string(input, -find::string, -ignoreCase::boolean=false)

When this method is called the input must always be given first. However, the two keyword parameters can be given in either
order, provided they follow all non-keyword parameters. It is valid to call the method in any of the following ways:

find_in_string('the fox', -find='x', -ignoreCase=true)
find_in_string('the fox', -ignoreCase=true, -find='x')
find_in_string('the fox', -find='x')

Within the method’s body, three predefined local variables will be created for these parameters including input, find, and
-ignoreCase.

Note that calling the method as find_in_string('the fox') will generate a failure because the -find keyword param-
eter is required (since it has no default value). Calling the method as find_in_string(-find='x', 'the fox') will also

11.1. Signatures 101



LassoGuide, Release 9.3

generate a failure because the input is being specified after a keyword parameter. All required parameters and any optional
parameters being passed must be specified before the first keyword parameter.

Boolean Keyword Parameters

Often, keyword parameters specify simple boolean values. For example, as a set of options or flags given to a method to control
the details of its behavior. When calling a method, a keyword parameter can be passed without an associated value. Doing so
is implicitly the same as passing a boolean “true” value for that parameter. Boolean keyword parameters are normally specified
with a default value of “false” so if the keyword parameter is not specified the predefined variable will have a value of “false”.

The following signature defines the methodserver_date as accepting either a-short keyword parameter, a-long keyword
parameter, or neither:

server_date(-short=false, -long=false)

If the method is called as server_date(-short) then the predefined local variable “short” will have a value of “true” and the
predefined local variable “long” will have a value of “false”. If the method is called as server_date() then both variables will
have a value of “false”.

11.1.6 Rest Parameters

The list of parameters may end with three periods (...) in order to specify that the method should accept a variable number
of additional parameters after any specified required and optional parameters. The additional parameters are known as rest
parameters. When the method is called, any additional parameters are placed into a predefined local variable named “rest”. If
there are no rest parameters, the “rest” local will be “void”; otherwise, it will be a staticarray holding the remaining parameter
values passed to the method.

The signature below specifies that the string_concatenate method requires one parameter named value, but will accept
any number of additional parameters. Within the method, the first parameter will be placed into the predefined local variable
“value”, and the remaining parameters, if any, will be placed into the predefined local variable “rest”:

string_concatenate(value, ...)

Note that these are three periods rather than a Unicode ellipsis character.

By default, the rest parameter local variable is always named “rest”, but an alternate variable name can be specified in the
signature by placing the desired name immediately after the three periods. The following signature would rename the rest
variable to “other”:

string_concatenate(value, ...other)

11.1.7 Parameter Type Constraints

In a signature, all parameter types, with the exception of the rest parameter, can be specified with an optional type constraint.
While parameter count and ordering ensure that the caller is passing the right number of parameters in the right order, type
constraints ensure that the parameter values are of the right type. For example, if a method that expects to receive two string
parameters is given two integers, it is being used incorrectly. If a caller passes a parameter value that does not fit the type
constraint set for that parameter, a failure will be generated. Any type or trait name can be used as a constraint, and all pa-
rameter values must pass the “isA” test for their constraint before the method body begins to execute. (The “isA” test involves
calling the object’s isA method with the constraint, which passes if a non-zero value is returned. See isA for details about this
member method.) Additionally, all parameter default values must produce results of a type matching the type constraint set
for their respective parameters.

102 Chapter 11. Methods



LassoGuide, Release 9.3

A type constraint is specified by following the parameter name with two colons (::) and a type name. Whitespace is permitted
on either side of the double colon (examples herein will not include whitespace). The signature below has both of its required
parameters constrained to only accept values that are of type string.

method_name(firstname::string, lastname::string)

If the parameter has a default value, it should be placed after the type constraint.

method_name(firstname::string, lastname::string = '')

A parameter with no type constraint will accept any type of value. Constrained and unconstrained parameters can be mixed.

method_name(firstname::string, lastname)
method_name(firstname, lastname::string)
method_name(firstname::string, lastname::string, -age::decimal=0.0, -dept='')

Within a method body, parameters with type constraints translate into local variables with type constraints. A parameter that is
constrained to accept a particular object type becomes a local variable that can hold only that type of object. See the Variables
chapter for more information on type-constrained variables.

11.1.8 Return Type

Specifying a return type for a signature enforces that the value returned by its code block is of a specific type. If a method
returns a value having a type that does not pass the “isA” test for the specified return type, a failure is generated. (The “isA” test
involves calling the object’s isA method with the constraint, which passes if a non-zero value is returned. See isA for details
about this member method.) Specifying a return type provides knowledge to the caller of the method about the method’s
resulting value. It also ensures the method’s developer that their programming is correct, at least with respect to the method
returning the proper value type. Specifying a return type is optional, and a method without a specified return type may return
values of any type, or may return no value at all (in which case the value returned to the caller is “void”).

The return type for a signature is specified at the end of the signature, following the parameter list parentheses, by including
two colons (::) and a type or trait name.

The following signature specifies that the method will always return a value of type string.

string_concatenate(value, ...other)::string

11.1.9 Type Binding

Signatures are also used to denote that the method belongs to a particular type. This is referred to as the type binding for the
signature. A signature with no bound type is referred to as being unbound. All example signatures given up to this point were
unbound signatures. A type binding occurs at the beginning of the signature, before the signature’s name. It consists of a type
name followed by the target operator (->) followed by the rest of the signature.

type_name->method_name(...)
method_name(...)

In the above example, the first signature is bound to the type type_name while the second signature is unbound. A method
using the first signature cannot be called except with a target instance of type_name. The second signature can be called at
any point without a target type instance.

11.1.10 Signature Syntax

These are the syntax diagrams for signatures and their related elements.

11.1. Signatures 103



LassoGuide, Release 9.3

signature name

param-specmember-op

self-op

name alpha

self-op +

-

*

/

%

=

+=

-=

*=

/=

%=member-op

param-desc name

:: name

optional-param-desc param-desc = expression

keyword-desc param-desc-

= expression

param-spec (

param-desc

,

optional-param-desc

,

keyword-desc

,

)

...

name

:: name

alpha-numeric
_

_

keyword-param name- expression=

name ->

11.2 Defining Methods

Before a method can be used, it must first be defined. Defining a method combines a signature with a method body, and
allows it to be called by name from within other methods.

The define keyword is used to define new methods, types, and traits. When defining a method, the word define is followed
by a signature, the association operator (=>), and then an expression that provides the body for the new method.

define signature => expression

If a method is defined that has a signature equivalent to an already-defined method, the new definition will replace the old and
the old definition will no longer be available. Keyword parameters cannot be used to uniquely identify a method. A method
taking, for example, two required parameters and a certain set of keyword parameters will be overwritten by a new method
that requires the same two parameters and an entirely different set of keyword parameters.

104 Chapter 11. Methods



LassoGuide, Release 9.3

11.2.1 Methods Returning Simple Expressions

A simple method definition is shown below. The signature hello() describes what and how the method will be called, in
this case hello with no parameters. After the association operator, the expression 'Hello, world!' provides the method’s
return value. The method below simply returns a string:

define hello() => 'Hello, world!'

Any single expression, including the ternary conditional operator or mathematical expressions, can be used as the method’s
return value. Assignments, local or thread variable declarations, or any other expression known at compilation time not to
produce a value may not be used as a method’s return value expression.

define pi() => math_acos(-1)
define times_twenty(n) => #n * 20
define is_blank(s::string) => #s->size ? false | true

11.2.2 Code Blocks

Many methods do more than return a single easily calculated value. A method body can be composed of multiple expressions
enclosed by a pair of curly braces ({ ... }). This type of method body is referred to as a code block.

Code blocks provide the most flexibility when defining methods. They allow encapsulating a series of expressions as the
implementation of the method. One or more return statements may end execution of the method body and to optionally
return a value to the caller.

The methods used as examples above may be written using code blocks as follows:

define pi() => {
return math_acos(-1)

}
define times_twenty(n) => {

return #n * 20
}
define is_blank(s::string) => {

return #s->size ? false | true
}

The expressions within a code block method body are generally formatted so that they each appear on a separate line. Some
expressions are terminated by an end-of-line, and expressions may be explicitly terminated by using a semicolon at the end
of the expression.

The following definition for the hypothetical strings_combinemethod uses a series of instructions within the method body
to generate the return value for the method:

define strings_combine(value::string, with, alsoWith='') => {
local(result) = string(#value)
#result->append(#with->asString)
#result->append(#alsoWith->asString)
return #result

}

11.2.3 frozen Methods

To prevent a method’s definition from being modified, the frozen keyword can be used. When inserted after the association
operator, it prevents the method from being added to with multiple dispatch or overridden.

11.2. Defining Methods 105



LassoGuide, Release 9.3

define phi => frozen (1 + math_sqrt(5)) / 2
define phi => 500
phi
// => 1.618034

11.2.4 define Syntax

This is the syntax diagram for define.

definition define signature => expression

code-block

type-expression

trait-expression

frozen

11.3 Multiple Dispatch

Multiple dispatch is a technique that permits more than one method body and signature to be defined under a given method
name. The various signatures will differ in the number or types of parameters they are stated to receive. When the method
name is called, the parameters given by the caller (or the lack thereof ) will determine which method body will actually be
executed. The process of determining which method body to call is referred to as “dispatch”.

11.3.1 The Dispatch Process

The process of method dispatch first involves taking the name the caller has used and matching it to one or more methods
defined under that name. These methods are the set of methods potentially valid for that call. Methods are removed from
this set as each parameter value is checked against each valid method’s type constraint for that parameter. If the parameter
value is acceptable according to this constraint (a lack of a type constraint on a parameter means that any type is valid for that
position), the method remains in the set of valid methods; otherwise it is removed. For each parameter position, methods that
accept, at most, fewer than that number of parameters are also removed from the valid set.

In many cases, when the final parameter value is checked there will remain only one valid method. In cases where there are
multiple remaining valid methods, the methods are sorted and the top-most method is selected as the method to be executed
for that call. The methods are sorted according to how closely related each given parameter value is to each method’s stated
type constraint for that parameter position, with each subsequent parameter having a lower priority than the previous.

• Methods with a type constraint for a parameter position will sort higher than methods that do not have a type constraint.

• Methods having a required parameter for a position will sort higher than methods with an optional parameter.

• Methods that are valid only because they accept rest parameters will sort lower than methods that accept an actual
declared parameter.

In the case where the result of the sorting leads to two or more equally valid methods, the call is ambiguous and a failure will
be generated. In practice, ambiguous methods are usually handled when the conflicting method is first defined, leading to
the second definition overwriting the first, which removes the first from future consideration during dispatch.

106 Chapter 11. Methods



LassoGuide, Release 9.3

Keyword parameters are never considered during the method selection process until the end where the single remaining
method’s keyword parameters (if any) are validated. Two methods cannot differentiate themselves based on accepting a dif-
ferent set of keyword parameters. Methods must be distinguished based solely on their required or optional parameters.

11.3.2 Using Multiple Dispatch

Constraints Example

Multiple dispatch comes into play any time more than one method is defined under a single name. As example, consider
the scenario where special diagnostic information needs to be created for a variety of possible types: array, string, bytes
and a default any type. In the example below, the log_object method is defined multiple times, each accepting a different
possible type. Each of the four methods is written to handle only their input value types.

define log_object(a::array) => {
return '[log] array with ' + #a->size + ' elements\n'

}
define log_object(s::string) => {

return '[log] string with value "' + #s + '"\n'
}
define log_object(b::bytes) => {

return '[log] bytes with hex value 0x' + #b->encodeHex + '\n'
}
define log_object(any) => {

return '[log] unhandled object type: ' + #any->type + '\n'
}
log_object('Hello!')
log_object(bytes('ABCD'))
log_object(array(1, 2, 3, 4, 5))
log_object(pair(1, 2))

// =>
// [log] string with value "Hello!"
// [log] bytes with hex value 0x41424344
// [log] array with 5 elements
// [log] unhandled object type: pair

Multiple dispatch allows several related methods to be grouped under a single name. This permits method bodies to be more
succinct and tailored directly to the input types. This promotes maintainability in a code base, as shorter methods are easier
to understand and maintain.

If the above example was instead written to have a single log_object method that accepted any value type (we’ll call it
a mega-method), and within that mega-method, inspected the parameter value type to decide which action to take, the
method would need to be modified each time a new log object type was added. If a log implementation needed to be added
for objects of type pair, a new case would need to be placed within that mega-method.

Problems arise if a user wishes to add logging implementations for their own object types. If log_object were only this
single mega-method, the user would likely have to resort to writing their own set of log methods, falling back to using
log_object only for object types that it is known to handle. However, with multiple dispatch, the user may directly add their
own log_object method with its own unique signature. The new method is incorporated automatically into the system and
none of the other methods need to be modified.

define log_object(p::pair) => {
return '[log] pair with: ' + #p->first + ', ' + #p->second + '\n'

}
log_object('Hello!')
log_object(bytes('ABCD'))
log_object(array(1, 2, 3, 4, 5))

11.3. Multiple Dispatch 107



LassoGuide, Release 9.3

log_object(pair(1, 2))

// =>
// [log] string with value "Hello!"
// [log] bytes with hex value 0x41424344
// [log] array with 5 elements
// [log] pair with: 1, 2

Number of Parameters Example

The number of parameters that a set of methods accepts can be used to determine method dispatch. For example, one
method may require a single parameter while a second method requires two parameters, such as in the example that follows:

define log_object(a::array) => {
return '[log] array with ' + #a->size + ' elements'

}
define log_object(a::array, extra::boolean) => {

local(result) = log_object(#a)
#extra ?

return #result + '. Elements: ' + #a->join(', ')
return #result

}

log_object(array(1, 2, 3, 4, 5))
// => [log] array with 5 elements

log_object(array(1, 2, 3, 4, 5), true)
// => [log] array with 5 elements. Elements: 1, 2, 3, 4, 5

Note how the body of the second method calls the first method to get the initial result string before augmenting it and
returning that value.

108 Chapter 11. Methods



Chapter 12

Types

Types are the fundamental data abstraction concept in Lasso. Since Lasso is an object-oriented language, every piece of data is
an object and every object is of a particular type. A type is a predefined layout of data combined with a particular set of methods.
Types provide a means for encapsulating data with the collection of methods designed to modify objects representing that
data in predetermined ways.

12.1 Defining Types

Before a type can be used, it must first be defined. Defining a type is done in the same manner as other entities (traits, methods).
The word define is used, followed by the name for the type, the association operator (=>), and a type expression that provides
the description of the type’s methods and data members.

define typeName => type expression

12.1.1 Type Expressions

A type expression consists of the word type followed by a set of curly braces ({ ... }). Between those curly braces reside a
series of sections; each describing a different aspect of the type. These sections include: “parent”; “data”; “trait”; and “public”,
“protected”, and “private” member methods. Each section begins with one of those words and ends at the beginning of the
next section or the end of the type expression (which would be a close curly brace). Each section is optional. Sections can
occur in any order. The sections “trait” and “parent” can occur only once.

The most simple type definition is shown below. It defines a type named “person” and contains no sections. Therefore, the
person type contains no methods or data members of its own. It is a completely valid, if somewhat useless, type.

define person => type { }

12.1.2 Data Members

Each data section defines one or more data members for the type, which are other objects contained by the type. In a data
member section, the word data is followed by one or more data member names. Data member names follow the same rules
as variable and method names. They can begin with an underscore or the characters A–Z and then can be followed by zero
or more underscores, letters, numbers, or period characters. Character case is irrelevant for data member names.

Like variables, data members store values. Three values are unique to each instance of the type. If a person type was created
then it could contain data members for the first and last name of the person, his/her birthdate, social security number, address,
etc. Just as every individual has his own values for these items, so would every instantiated object.

The following example type implementation shows several different methods for defining data members. These methods can
be mixed and matched in a single type to provide the best readability. Data sections can also be interspersed with the other
sections in the type expression if necessary.

109



LassoGuide, Release 9.3

define person => type {
data firstName, lastName
data age
data

birthdate
data ssn
data address1, address2, city,

state, zip, country
}

Type Constraints

Data member values can be constrained to hold only particular types of objects. To do this, follow the data member name
with two colons (::) and then a type or trait name. When a data member is constrained, it cannot be assigned any value that
does not fit the constraint. The following type constrains “firstName” and “lastName” to be string objects and “age” to be an
integer value:

define person => type {
data firstName::string, lastName::string
data age::integer

}

Default Values

Data members can be given default values. When a type instance is first created, before it can be otherwise used, its data
members are assigned their default values. A default value can be any single expression. The following type definition uses
both type constraints and default values for “firstName” and “lastName”, but just a default value for “age”:

define person => type {
data firstName::string = '', lastName::string = ''
data age = 0

}

Accessing Data Members

Data members can be accessed from within the methods of a type by targeting the current type instance using the keyword
self and the target operator (->) followed by the name of the data member between single quotes. The following expression
would set the value of the data member “age” to “36”:

self->'age' = 36

The following expression produces the value of the “age” data member:

self->'age'
// => 36

Equivalently, Lasso supports a shortcut syntax for targeting “self” by using a single period. The examples above could be
rewritten using a period in place of self->.

.'age' = 36

.'age'
// => 36

110 Chapter 12. Types



LassoGuide, Release 9.3

All of the data members in a type are private. This means that a data member can only be directly accessed using either of
the above syntaxes; only when “self” is the target object. Optionally, data members can be exposed to the outside world. The
following section describes how getters and setters can access data member values from outside of the owning type.

12.1.3 Getters and Setters

A getter is a member method that produces the value of a data member, while a setter is a member method that permits the
value of a data member to be assigned. If the value of a data member should be accessible from outside of the owning type,
it is necessary to create a getter and/or a setter method for that data member.

If the word public, protected, or private is given in front of a data member name, Lasso will automatically create a getter
method and a setter method with the appropriate access level as described in the section on membermethods. The following
code defines three publicly accessible data members:

define person => type {
data public firstName, public lastName
data public age::integer=0

}

The automatically created getter method has the same name as the data member. Parentheses are optional after the getter
(as they are with all methods accepting no parameters). The current value for the data member can be returned as follows:

#person->firstName
// => // Produces the value stored in the "firstName" data member

#person->lastName()
// => // Produces the value stored in the "lastName" data member

The automatically created setter permits the assignment (=) or the assign-produce (:=) operators to assign a new value to the
data member. As with the getter, parentheses are optional.

// Sets "firstName" to a new value
#person->firstName = 'John'

// Sets "lastName" to a new value
#person->lastName() := 'Doe'
// => Doe

Exposing a data member in this manner always creates both the getter and setter. However, getters and setters can also be
added manually without automatically exposing both get and set behaviors. One hypothetical use for this is a type that wants
to provide to the outside world read-only access to one of its data members. Additionally, a getter or a setter can be added
manually in order to override or replace the automatically provided behavior; perhaps to validate the values in a particular
manner.

The following example defines a person type that manually exposes its “firstName” data member by defining two member
methods, one for the getter and another for the setter. (See the section on membermethods for more information on creating
member methods.)

define person => type {

// The firstName data member
data firstName

// The firstName getter
public firstName() => {

return .'firstName'
}

12.1. Defining Types 111



LassoGuide, Release 9.3

// The firstName setter
public firstName=(value) => {

.'firstName' = #value
}

}

The type definition above would operate identically if it instead omitted the manual getter and setter methods and made its
“firstName” data member public.

Implementing getter and setter methods for a data member allows assignment operators to be used with it. For example,
since the +, -, and * operators are implemented for the string type (see the section on OperatorOverloading below), they can
be used to modify the “firstName” data member:

local(someone = person)
#someone->firstName = "Bob"
#someone->firstName += "by" // Bobby
#someone->firstName -= "y" // Bobb
#someone->firstName *= 2 // BobbBobb

Setters can be defined to accept more than one parameter. When called, the additional parameters are given in the method
call’s parentheses, just as with a regular method. When defining such a setter method, the first parameter is always the new
value for the assignent. All additional parameters follow. For example, with a “firstName” setter that includes an optional nick-
name:

public firstName=(value, nick) => {
.'firstName' = `"` + #nick + `" ` + #value

}

it would be called like this:

#someone->firstName("Big Wheels") = "Bob" // "Big Wheels" Bob

For another multi-parameter setter example, see security_registry->userComment=.

Within a manual getter or setter, it is vital to refer to the data member using the single-quoted name syntax. Otherwise, an
infinite recursion situation may arise as the getter/setter continually re-calls itself.

12.1.4 Member Methods

A member method is a method that belongs to a particular type, as opposed to an unbound method which does not, thus
acting as a standalone function. A member method can operate on the data members of its owning type in addition to any
parameters the method may receive.

Member methods are created in sections of a type expression beginning with the word public, private, or protected,
followed by a method signature, the association operator (=>), and the implementation of the method. Each section can
define one or more methods separated by commas. The choice of word used to begin a member methods section influences
how the methods are permitted to be accessed. There are three such access levels.

public
Public member methods can be called without any restrictions. They represent the public interface of the type. When the
type is documented for others to use, only the public methods are described.

private
Private member methods can only be called from methods defined within the owning type. Private methods are to be
used for low-level implementation details that shouldn’t be exposed to the end user or to inheriting types.

112 Chapter 12. Types



LassoGuide, Release 9.3

protected
Protected member methods can be called from within the owning type implementation or any type that inherits from
that type. Protected methods represent functionality that is not intended to be exposed to the public, but which may be
overridden, modified, or used from within types inheriting from the owning type.

The following type expression defines three data members and three member methods. The method describe returns a
description of the person and is intended to be called by users of the type. The methods describeName and describeAge
are private and protected methods, not intended to be used by the outside world.

define person => type {
data

public firstName,
public lastName,
public age

public describe() => {
return .describeName + ', ' + .describeAge

}
private describeName() => .firstName + ' ' + .lastName
protected describeAge() => 'age ' + .age

}

Given the definition above, the following example illustrates valid and invalid use of a person object:

local(p) = person

#p->describe
// => , age

#p->describeAge
// => // FAILURE: access not permitted

The second usage fails because the describeAge method is protected. A type that inherits from person can access de-
scribeAge, but it cannot access describeName because that method is marked as private.

12.1.5 Inheritance

Every type inherits from one or more parent types. To inherit from another type means that every instance of the type will
automatically possess all of the data members and methods of the parent type, plus those defined in the type expression
itself. The concept of inheritance is used to build more complex types out of more generalized types.

A more general type may have several different more specific types inheriting from it as it provides a basic set of functionality
that each inheriting type will also possess. Lasso only supports single-inheritance, that is, each type has only one immediate
parent and that parent has only one immediate parent. All types can eventually trace down to a null parent. If a parent is not
explicitly specified when a type is defined then the parent of the type is null.

All of the public or protected member methods belonging to a parent type will be made available to the types that inherit from
it. Any method defined in a parent type that conflicts with those of an inheriting type will be replaced by the inheriting type’s
method, unless the parent’s method was declared as frozen. This permits inheriting types to override or replace functionality
provided by a parent.

Parent Section

The parent section names the parent that the type being defined is to inherit from. For example, the person type can inherit
from the entity type by naming it in its parent section. Each person object that gets created will then possess all of the data
members and methods found in the entity type, whatever those might be.

12.1. Defining Types 113



LassoGuide, Release 9.3

define person => type {
parent entity

}

Only one parent type can be listed. The parent section can appear only once in a type expression. While it can be placed
anywhere in the type expression, it is recommended that you place it at the top.

The following code defines two simple types: one and two. Type two inherits from type one. Notice that the second method
is overridden by the second type, but the first method is not.

define one => type {
public first() => 'alpha'
public second() => 'beta'
public last() => frozen 'omega'

}

define two => type {
parent one
public second() => 'gamma'
public last() => 'zeta'

}

When the firstmethod of a two object is called, the value “alpha” will be returned since it is automatically calling the method
from the parent type. The secondmethod returns “gamma” since it is calling the overridden method from type two. The last
method always returns “omega” because the parent type defined it with the frozen keyword.

two->first
// => alpha
two->second
// => gamma
two->last
// => omega

Accessing Inherited Methods

Sometimes it is necessary to call “down” to an inherited method. A method inherited from an ancestor (any of the parents
down the chain to null) can be accessed by using the inherited keyword followed by the target operator (->) followed by
the method call (name and any parameters).

In the following example, the method third is defined to call the inherited method second. The method from type two will
be bypassed in favor of the corresponding method from type one.

define one => type {
public first() => 'alpha'
public second() => 'beta'

}

define two => type {
parent one
public second() => 'gamma'
public third() => inherited->second

}

two->third
// => beta

114 Chapter 12. Types



LassoGuide, Release 9.3

Equivalently, Lasso supports a shortcut syntax for targeting “inherited” by using two periods, which can be used to access the
methods of a parent type. The example above can be rewritten using .. in place of inherited->.

define two => type {
parent one
public second() => 'gamma'
public third() => ..second

}

Trait Section

Every type has a single trait which may be composed of other subtraits. A type inherits all of the methods that its trait defines,
provided that the type implements the requirements for the trait. For example, a type must be serializable for it to be stored in
a session, which means importing the trait_serializable trait. (See the Traits chapter for a complete description of how
traits are created.)

The trait section of a type expression can import one or more other traits. These traits are combined to form the trait for the
type. The following code shows a type definition that imports the trait_array and trait_map traits:

define mytype => type {
trait {

import trait_array, trait_map
}

}

A trait section can appear anywhere within a type expression, but can appear only once.

12.1.6 Type Creators

A type creator is a method that returns a new instance of a type. For example, calling the method named string produces
a new string object. By default each type has a creator method that corresponds to the name of the type and requires no
parameters.

The example type person would automatically have a creator method person that returns a new instance of the type.

// Assigns a new person object to #myperson
local(myperson) = person()

If a type does not define its own creator method(s), it is provided with a default zero-parameter type creator. Attempting to
provide parameters to a type creator that does not accept any parameters will fail.

local(myperson) = person(264)
// => // FAILURE: person() accepts no parameters

onCreate

Many types allow one or more parameters to be provided when a new object is created in order to customize the object
before it is used. A type can specify its own type creators by defining one or more methods named onCreate. When a new
object is created, the onCreate method corresponding to the given parameters is immediately called before the new object
is returned to the user. Each onCreate must be a public member method.

To illustrate, the following type definition defines an onCreate method that requires three parameters: firstName, last-
Name, and birthdate. These parameters correspond to the data members of the type and allow setting their values when
the object is first created. The creator simply assigns the parameter values to the data members.

12.1. Defining Types 115



LassoGuide, Release 9.3

define person => type {
data firstName::string, lastName::string
data birthdate::date

public onCreate(firstName::string, lastName::string, birthdate::date) => {
.'firstName' = #firstName
.'lastName' = #lastName
.'birthdate' = #birthdate

}
}

To create an instance of this type, the creator must be called with the required parameters. The following code will create a
new instance of the person type:

local(myperson) = person('Cathy', 'Cunningham', date('1/1/1974'))

Note that when a creator has been specified, the default creator, which requires no parameters, is not automatically provided.
Lasso will not supply a default type creator when the author has included their own. Also note that if a type overrides its
parent’s creator, it needs to include a call to the parent’s creator method, passing on any arguments as required.

public onCreate(...) => ..onCreate(: #rest)

Many type creators can be defined by specifying multiple onCreate methods. The following type defines three type creators.
The first permits person objects to be created with no parameters; the second, with first and last names; and the third, with
first and last names and a birthdate.

define person => type {
data firstName::string, lastName::string
data birthdate::date

public onCreate() => {}
public onCreate(firstName, lastName) => {

.'firstName' = string(#firstName)

.'lastName' = string(#lastName)
}
public onCreate(

firstName::string,
lastName::string,
birthdate::date) => {

.'firstName' = #firstName

.'lastName' = #lastName

.'birthdate' = #birthdate
}

}

12.1.7 Callback Methods

In addition to the onCreate method, Lasso reserves a number of other method names as callbacks which are automatically
used in different situations. Lasso provides default behavior so all callbacks are optional, but by defining a callback a type can
customize its behavior.

asString

The asStringmethod is called when an object is expressed as a string. By default, a type instance will simply output the name
of the object’s type. Overriding this method allows a type to control how it is output. The following code defines a simple type

116 Chapter 12. Types



LassoGuide, Release 9.3

that outputs a greeting when its asString method is called:

define mytype => type {
public asString() => 'Hello World!'

}

mytype
// => Hello World!

onCompare

The onCompare method is called whenever an object is compared against another object. This includes when using the
equality (==), and inequality (!=) operators, and when objects are compared for ordinality using any of the relative equality
operators (<, <=, >, >=). It’s also called via null->onCompareStrict, which first verifies that the two objects are the same
type, when using the strict equality (===) and inequality (!==) operators.

An onCompare method must accept one parameter and must return an integer value.

public onCompare(rhs)::integer

If the parameter is equal to the current type instance then a value of “0” should be returned. If the current type instance is less
than the parameter then an integer less than zero should be returned, e.g. “-1”. If the current type instance is greater than the
parameter then an integer greater than zero should be returned, e.g. “1”.

For example, the following person type has an onCompare method that gives person objects the ability to compare them-
selves with each other:

define person => type {
data public firstName::string,

public lastName::string

public onCompare(other::person) => {
.firstName != #other->firstName ?

return .firstName < #other->firstName ? -1 | 1
.lastName != #other->lastName ?

return .lastName < #other->lastName ? -1 | 1
return 0

}

public onCreate(firstName::string, lastName::string) => {
.firstName = string(#firstName)
.lastName = string(#lastName)

}
}

Given the above type definition, the following examples use the onCompare method behind the scenes to provide the ability
to compare persons:

person('Bob', 'Barker') == person('Bob', 'Barker')
// => true

person('Bob', 'Barker') == person('Bob', 'Parker')
// => false

Multiple onCompare methods can be provided, each specialized to compare against particular object types. For example,
an integer type would want to permit itself to be compared against other integer objects, but it should also want to be
comparable to decimal objects. Such an integer type would have one onCompare method for integer objects and another

12.1. Defining Types 117



LassoGuide, Release 9.3

for decimal objects. This example also shows how the onCompare method can be manually called on objects. In this case,
the “value” data member is responsible for doing the actual comparisons, so its onCompare method is called and the value
returned.

define myint => type {
data private value

public onCompare(i::integer) => .value->onCompare(#i)
public onCompare(d::decimal) => .value->onCompare(integer(#d))

}

contains

The contains method is called whenever an object is compared using the contains (>>) or not contains (!>>) operators. A
contains method definition should accept one parameter and must return a boolean value, either “true” or “false”.

public contains(rhs)::boolean

If the parameter is contained within the current type instance (using whatever logic makes sense for the type) then a value of
“true” should be returned; otherwise, a value of “false” should be returned.

For example, the type odds below overrides the contains operators so that odds >> 3 returns “true” and odds >> 4 returns
“false”.

define odds => type {
public contains(rhs::integer)::boolean => {

return #rhs % 2 == 1
}

}

Other types that implement their own contains methods include array and map, which search their contained objects for
a match before returning “true” or “false”.

invoke

The invoke method is called whenever an object is invoked by applying parentheses to it. By default, invoking an object
produces a copy of the invoked object. However, objects can add their own invoke methods to alter this behavior. The
following code shows how an instance of the person type might be invoked:

define person => type {
data

public firstName::string,
public lastName::string

public invoke() => .firstName + ' ' + .lastName + ' was invoked!'
public onCreate(firstName::string, lastName::string) => {

.firstName = string(#firstName)

.lastName = string(#lastName)
}

}

The following shows how a person object would be invoked, by either directly calling the invoke method or by applying
parentheses:

118 Chapter 12. Types



LassoGuide, Release 9.3

local(per) = person('Bob', 'Parker')

#per()
// => Bob Parker was invoked!

#per->invoke
// => Bob Parker was invoked!

_unknowntag

Implementing the _unknowntag method allows a type to handle requests for methods that it does not have. When a search
for a member method fails, the system will call the _unknowntag method if it is defined. The originally sought method name
is available by calling method_name.

The following example creates a type whose only member method is _unknowntag, which returns the name of the called
method:

define echo_method => type {
public _unknowntag => method_name->asString

}

echo_method->rhino
// => rhino

12.1.8 Operator Overloading

Types can provide their own routines to be called when the standard arithmetical operators (+ - * / %) are used with an
instance of the type on the left-hand side of the expression.

If the standard operators are overloaded they should be mapped as closely as possible to the standard arithmetical meanings
of the operators. For example, the addition operator (+) is also used for string concatenation.

Overloading Arithmetical Operators

An arithmetical operator is overloaded by defining a member method whose name is the same as the operator symbol. The
method must accept one parameter and return an appropriate value. The type instance should not be modified by these
operations.

public +(rhs)
public -(rhs)
public *(rhs)
public /(rhs)
public %(rhs)

The following example provides a full set of arithmetical operators for the myint type:

define myint => type {
data private value

public onCreate(value = 0) => { .value = #value }
public asString() => string(.value)
public +(rhs::integer) => myint(.value + #rhs)
public -(rhs::integer) => myint(.value - #rhs)
public *(rhs::integer) => myint(.value * #rhs)

12.1. Defining Types 119



LassoGuide, Release 9.3

public /(rhs::integer) => myint(.value / #rhs)
public %(rhs::integer) => myint(.value % #rhs)

}

myint(9) + 5 * 40
// => 209

Overloading Equality Operators

See the section on the onComparemethod for information about how to overload the equality operators (==, !=, <, <=, >, >=,
===, !==).

Overloading Containment Operators

See the section on the containsmethod for information about how to overload the containment operators (>>, !>>).

12.2 Modifying Types

Lasso permits types to have methods added to them outside of the original defining type expression. This is done by defining
the method using the word define followed by the name of the type, the target operator (->), and then the rest of the
method signature and body. The following example adds the method speak to the person type:

define person->speak() => 'Hello, world!'

12.3 Type/Object Introspection Methods

Lasso provides a number of methods that can gain information about a type or object. These methods are summarized below,
and can be called by any type.

null->type()
Returns the type name for any type instance. The value is the name that was used when the type was defined.

null->isA(name::tag)
Checks whether an instance of an object is of the given type, returning an integer indicating the result.

0
The given type has no relation to the object.

1
The name parameter matches the type of the instance. (The method call null->isA(::null)will only return
“1” for the null type instance itself.

2
The name parameter matches a trait implemented by the type of the instance, or one of its parents.

3
The name parameter matches the parent type of the instance.

null->isNotA(name::tag)
The opposite of null->isA.

null->listMethods()
Returns a staticarray of signature objects for all of the methods that are available for the type.

120 Chapter 12. Types



LassoGuide, Release 9.3

null->hasMethod(name::tag)
Returns “true” if the type implements a method with the given name.

null->parent()
Returns the name of the parent of the target object. If the method returns “null” then the final parent has been reached.

null->trait()
Returns the trait for the target object. Returns “null” if the object does not have a trait.

See also:

setTrait and addTrait methods in the Traits chapter

type tag
An immutable object that represents a unique string of characters. Since Lasso uses tags internally to keep track of
names, this type has member methods that can query them.

tag->istype()→ boolean
Check if a type with the same name as the given tag exists.

::string->istype
// => true

tag->gettype()
Create an instance of a type matching the given tag. This is useful for calling listMethods on a type that has no literal
syntax or simple type creator.

::regexp->gettype->listmethods
// => ...	regexp->input(), regexp->replacepattern(), regexp->findpattern(), ...

tag->doccomment()

tag->doccomment=(value::string)
Retrieve and set doc comments for a type matching the given tag. Requires that Lasso be run with the
LASSO9_RETAIN_COMMENTS variable enabled.

See also:

Tag Literals and Doc Comments in the Literals chapter

12.3. Type/Object Introspection Methods 121





Chapter 13

Traits

Traits provide a way to define type functionality in a modular fashion. Each trait includes a set of reusable method implemen-
tations along with a set of requirements that must be satisfied in order for the included methods to function properly.

13.1 Trait Logic

Traits allow creating a hierarchy of types that share common functionality without relying on single or multiple inheritance.
Traits are similar to mixins and abstract classes found in other languages.

Each trait encapsulates a set of requirements and provides a set of member methods. When a trait is applied to a type, the
requirements are checked. If they are satisfied, the provided member methods are added to the type as if they had been
implemented directly in the type. Traits can only define public member methods.

Lasso includes many types that have common member methods. For example, the pair, array, string, and other types
implement first, second, and last methods which return the named element.

array(1, 2, 3, 4)->last
// => 4

'Quick brown fox'->second
// => u

pair('name'='John')->first
// => name

The first method can be implemented by calling the get(x) member method of each type with a parameter of “1”. The
second method calls it with a parameter of “2”. The last method calls the get(x) method with a parameter defined by the
size of the type (usually found by calling the size member method).

The requirements for implementing the first, second, and last methods are that the type has to have get(x) and size
member methods. In a trait this requirement would be specified as follows:

require get(x::integer)
require size()::integer

The requirements take the form of a list of member method signatures. If the type that the trait is applied to defines all of the
trait’s required member method signatures, the methods provided by the trait will work.

The methods provided by the trait are specified similar to how methods are defined in custom types. (However, instead of
using the public keyword, the method definition starts with the provide keyword.) The implementation for the first,
second, and last methods would appear as follows:

provide first() => .get(1)
provide second() => .get(2)
provide last() => .get(.size)

123



LassoGuide, Release 9.3

Note that the period notation is used to call the member methods of the current object; the same as it would be used within
a custom type implementation. The implementation of the provided methods can make use of the get and size member
methods because the requirements ensure that they will be available.

The full trait definition for trait_firstLast would be as follows:

define trait_firstLast => trait {
require get(x::integer)
require size()::integer
provide first() => .get(1)
provide second() => .get(2)
provide last() => .get(.size)

}

If we define a new type (e.g. month) that supports get and size, we can import this trait to automatically get an implemen-
tation of first, second, and last.

define month => type {
trait {

import trait_firstlast
}
data y, m

public onCreate(year::integer, month::integer) => {
.'y' = #year
.'m' = #month

}

public get(x::integer) => {
return date(-year=.'y', -month=.'m', -day=#x)

}

public size()::integer => {
local(temp) = date(-year=.'y', -month=.'m'+1, -day=1)
#temp->subtract(-day=1)
return #temp->dayofmonth

}
}

13.2 Defining Traits

A trait is defined using a trait expression consisting of the define keyword followed by the trait name, the association operator
(=>), the keyword trait, and a code block containing the definition of the trait.

define myTrait => trait {
// ...

}

The code block contains one or more sections which are each identified by a label. Method implementations that are provided
by the trait are specified in a provide section. Requirements for the trait are specified in a require section. Other traits can be
imported in an import section.

124 Chapter 13. Traits



LassoGuide, Release 9.3

13.2.1 provide

The member methods that a trait provides are specified similarly to the public section of a type definition. The provide section
begins with the keyword provide, which is followed by a comma-separated list of member method definitions. The member
list has the same form as custom method definitions. Each method is defined using a signature, the association operator (=>),
and an expression or code block that defines the implementation of the method.

The following trait would provide two member methods for getting and setting a data member:

define myTrait => trait {
provide getFirstName() => {

return .firstName
}
provide setFirstName(value::string) => {

.firstName = #value
}

}

13.2.2 require

The require section allows specifying a list of method signatures that are required for the trait to operate properly. The signatures
may be simple method names, or they may be complete signatures with parameter specifications. As many require sections
as are necessary can be specified.

The section begins with the keyword require followed by a comma-separated list of method signatures. The following trait
requires a getter and setter for the “firstName” data member:

define myTrait => trait {
require firstName, firstName=
provide getFirstName() => {

return .firstName
}
provide setFirstName(value::string) => {

.firstName = #value
}

}

13.2.3 import

The import section allows the characteristics of other traits to be imported into this trait definition, thus allowing a hierarchy
of traits to be defined. As many import sections as are necessary can be specified.

The section begins with the keyword import followed by a comma-separated list of trait names. The following trait simply
imports the characteristics of the built-in trait_array trait:

define myTrait => trait {
import trait_array

}

All of the requirements and provided member methods of the imported trait will be added to the trait being defined. The
requirements of one of the traits may be satisfied by the methods provided by another trait.

However, if two traits provide the same member method, there will be a conflict. The conflict is resolved by eliminating both
implementations of that member method and adding a requirement for it to the trait. The type that the trait is ultimately
applied to must implement that member method in order for the trait to be applied.

13.2. Defining Traits 125



LassoGuide, Release 9.3

13.3 Trait Composition

Traits can be combined together into new traits using the + operator. This is called “composing” a new trait. The result of this
expression will be a trait that has all the requirements and provides all the member methods of the traits that have been
combined.

The same rules that are used for importing traits apply to composed traits, such as traits satisfying each others’ requirements
and resolving conflicting method names.

An alternate method of defining the trait example from the start of this chapter would be to define three subtraits and then
use the composition operator (+) to compose them into a single trait.

define trait_first => trait {
require get
provide first() => .get(1)

}
define trait_second => trait {

require get
provide second() => .get(2)

}
define trait_last => trait {

require get, size
provide last() => .get(.size)

}
define trait_firstLast => trait_first + trait_second + trait_last

Replacing the last line with the trait definition below would produce exactly the same result. In general, the latter method is
preferred for trait definitions, while the trait composition is preferred for runtime changes.

define trait_firstlast => trait {
import trait_first
import trait_second
import trait_last

}

13.4 Checking Traits

Since traits provide member methods for a type it is often useful to check whether a given type instance has a trait applied.
The isA method can be used for this check. This member method can be used on any type instance, and will return a positive
integer if the instance is the provided type or has the provided trait name applied to it.

In this code the isA method returns “2” since the month type has the trait_firstLast trait applied to it:

local(mymonth) = month(2008, 12)

#mymonth->isA(::trait_firstlast)
// => 2

13.5 Applying Traits

Traits can be applied to types as part of the type definition. This makes the trait an integral part of the type definition. The
provided member methods are indistinguishable to the user of the type from member methods that are implemented directly
in the type.

126 Chapter 13. Traits



LassoGuide, Release 9.3

Each type definition can include a single trait section. The trait can import as many traits as are needed.

define myType => type {
trait {

import ...
}
data ...
public ...

}

When an instance of the type is created, the instance has the specified trait applied to it automatically.

The trait of any object in Lasso can be programmatically manipulated using the trait, setTrait, and addTrait methods
described in the next section.

13.6 Trait Manipulation Methods

null->trait(t::trait)
Returns the trait for the target object. Returns “null” if the object does not have a trait.

null->setTrait(t::trait)
Sets the trait of the target object to the parameter, replacing the existing trait.

null->addTrait(t::trait)
Combines the target object’s trait with the parameter.

In general, traits will be added to a type instance to provide additional functionality rather than resetting the entire trait for a
given object. The two examples below are equivalent:

#myinstance->addtrait(trait_firstlast)
#myinstance->settrait(#myinstance->trait + trait_firstlast)

Caution: The setTrait method should be used with care since resetting the trait of a type instance may result in many
of its member methods becoming unavailable or ceasing to function.

13.6. Trait Manipulation Methods 127





Chapter 14

Error Handling

Responding to errors gracefully is a hallmark of good programming. Errors in Lasso run the gamut from expected errors, such
as a database search that returns no records, to syntax errors that require fixing before a page will even process. Lasso provides
tools to manage errors at several different levels, which can act redundantly to ensure that no errors will be missed.

14.1 Error Types

The following lists the types of errors that can occur in Lasso:

Web Server Errors
These include “file not found” errors and access violations in realms. These will be reported with standard HTTP response
codes, e.g. 404 for “File Not Found”.

Syntax Errors
These include misspellings of type or method names, missing delimiters, and mismatched types. Lasso will return an error
message rather than the processed Lasso page if it encounters a syntax error.

Action Errors
These include missing or misspelled database names, table names, or field names, and other problems specifying database
actions. The database action cannot be performed until the error is corrected.

Database Errors
These are generated by the data source application and include type mismatches, missing required field values, and others.
Lasso will report the returned error from the data source application without modification.

Logical Errors
These are problems that cause a page to process unexpectedly even though the syntax of the code is correct. These include
infinite loops, missing cases, and assumptions about the size or composition of a found set.

Security Violations
These are not strictly errors, but are attempts to perform database actions or file accesses that are not allowed by the
permissions set for the current user.

Operating System Errors
These are errors reported by the operating system Lasso is running on. One example of these errors is trying to perform
file operations on a directory.

Some errors are more serious than others. Pages will not be processed at all if they contain syntax errors or if there are oper-
ational problems that prevent Lasso Server from being accessed. Other errors are commonly encountered in the normal use
of a website. Most database errors and security violations are handled by simply showing a “No Records Found” message or
displaying a security dialog box to prompt the user for a username and password.

The following mechanisms for handling errors can be used individually or in concert to provide comprehensive error handling:

• Automatic error reporting is performed by Lasso in response to unhandled errors.

• A custom error page allows the automatic error report to be replaced by a custom page. Custom error pages are usually
created for each site on a server.

• Error handling methods can handle action and logic errors and security violations within a Lasso page.

129



LassoGuide, Release 9.3

• Error handling methods allow building advanced error handling into Lasso pages. These techniques allow error handling
routines to be built into pages without disrupting the normal processing of a page if no errors occur.

14.2 Error Reporting

Lasso Server delivers an error report in response to an error that prevents processing of the page. This error report contains an
error code, message, and stack trace which can identify the cause and location of an error. The various parts of the stack can
be accessed using the error_… methods.

While the standard error report is great for developers, it is meaningless for visitors to your website. A custom error page can
be defined to be displayed to a site visitor rather than Lasso’s built-in error report. The error message displayed on a custom
error page will depend on the Lasso code used on the custom page.

To define a custom error page, create a file named error.lasso and place it in the root of the web serving folder. Each distinct
web serving folder on a host can have a custom error page.

Custom error pages can be further fine-tuned by placing the error.lasso file in the web serving folder’s subdirectories. Lasso
Server will process the first error.lasso it encounters on the file path, starting with the current directory and continuing
upward until it reaches the root of the web serving folder. If none are found, Lasso Server will use the default error report.

14.2.1 Error Reporting Methods

The error_… methods in Lasso allow reporting custom errors and provide access to the most recently reported error by the
code executing in the current Lasso page. This allows a developer to check for specific errors and respond, if necessary, with
an error message or with code to correct the error.

Lasso maintains a single error code and error message, which is set by any method that reports an error. The error code
and error message should be checked immediately after a method that may report an error. If any intervening methods or
expressions report errors, the original error code and error message will be lost.

Custom errors can be created using the error_setErrorMessage and error_setErrorCode methods. Once set, the er-
ror_currentError method or error_code and error_msg methods return the custom error code and message. A devel-
oper can use these methods to incorporate both built-in and custom error codes into the error recovery mechanisms for a
site.

error_currentError(-errorCode=?)
Returns the current error message. An optional -errorCode parameter will return the current error code instead.

error_code()
Returns the current error code.

error_msg()
Returns the current error message.

error_obj()
Returns the current error name from the Lasso variable $_err_obj, or “null” if no error object is present.

error_push()
Pushes the current error condition onto a stack and resets the current error code and error message.

error_pop()
Restores the most recent error condition stored using error_push.

error_reset()
Resets the current error code and error message.

error_setErrorCode(code)
Sets the current error code to a custom value.

130 Chapter 14. Error Handling



LassoGuide, Release 9.3

error_setErrorMessage(msg)
Sets the current error message to a custom value.

error_stack()
Returns the stack trace for the current error.

Display the Current Error

The following code will display a short error message using the error_msgmethod and the error_codemethod. If the code
on the page is executing normally and there is no current error to report, the code will return the result shown below:

'The current error is ' + error_code + ': ' + error_msg
// => The current error is 0: No Error

Alternatively, the error_currentError method could be used to create the same message with the following code:

'The current error is ' + error_currentError(-errorCode) + ': ' + error_currentError
// => The current error is 0: No Error

Set the Current Error

The current error code and message can be set using the error_setErrorCode and error_setErrorMessage methods.
These methods will not affect the execution of the current Lasso page, but will simply set the current error so it will be returned
by the error_currentError method or error_code and error_msg methods.

In the following example, the error message is set to “A custom error occurred” and the error code is set to “-1”:

error_setErrorMessage('A custom error occurred')
error_setErrorCode(-1)

The error_currentError method now reports this custom error when it is called later in the page, unless any intervening
code changed the error message again:

'The current error is ' + error_code + ': ' + error_msg
// => The current error is -1: A custom error occurred

The current error code and message can also be set using the error_code and error_msg methods:

error_msg = 'A custom error occurred'
error_code = -1

Store and Restore the Current Error

The following code uses the error_push and error_pop methods to store the current error code and message before the
protect block is executed. This allows the protect block to execute without any previous error on the page bleeding into it
and mistakenly triggering the handle_failure block. Then the error code and message are restored at the end of the block.

error_push // Push error onto stack

protect => { // Protect from failure
handle_failure => {

// Handle any errors generated within the protect block
}
// ...

}

14.2. Error Reporting 131



LassoGuide, Release 9.3

error_pop // Retrieve error from stack

The error_push and error_pop methods can also be used to prevent custom methods from modifying the current error
condition, while still using error-handling code within the method. The following code stores the current error code and
message at the beginning of the custom method definition. The error code and message are restored just before the custom
method returns a value.

define myMethod() => {
// Push current error onto stack
error_push

// ... code that may generate an error ...

// Retrieve error from stack
error_pop

return 'myValue'
}

Reset the Current Error

The following code demonstrates how to use the error_resetmethod to reset the error message to “No error” and the error
code to “0”:

error_code = -1
error_msg = 'Too slow'
error_code + ': ' + error_msg

// => -1: Too slow

error_reset
error_code + ': ' + error_msg

// => 0: No error

14.2.2 Lasso Errors

The table below lists Lasso’s standard error codes and values.

132 Chapter 14. Error Handling



LassoGuide, Release 9.3

Table 14.1: Lasso Error Codes and Messages

Error Method Value

error_code_noerror 0

error_msg_noerror No error

error_code_fileNotFound 404

error_msg_fileNotFound File not found

error_code_runtimeAssertion -9945

error_msg_runtimeAssertion Runtime assertion

error_code_aborted -9946

error_msg_aborted General Abort

error_code_methodNotFound -9948

error_msg_methodNotFound Method not found

error_code_divideByZero -9950

error_msg_divideByZero Divide by Zero

error_code_invalidParameter -9956

error_msg_invalidParameter Invalid parameter

error_code_networkError -9965

error_msg_networkError Network error

error_code_resNotFound -9967

error_msg_resNotFound Resource not found

14.3 Error Handling

Lasso includes powerful error handling methods that allow protecting areas of a page and handling errors that occur.
Error-specific handlers are called if any errors occur in a protected area of a page. These methods allow comprehensive er-
ror handling to be built into pages without disturbing the code of a page with many conditionals and special cases.

14.3.1 Error Handling Methods

fail(msg::string)

fail(code::integer, msg::string, stack::string=?)
Halts execution and generates the specified error. Can be called with just an error message, an error code and an error
message, or an error code, message, and stack trace.

fail_if(cond, msg::string)

fail_if(cond, code::integer, msg::string)
Conditionally halts execution and generates the specified error if the specified condition evaluates to “true”. Takes two
or three parameters: a conditional expression, an optional integer error code, and a string error message.

handle(cond=?)
Conditionally executes a given capture block after the code in the current capture block or Lasso page has completed
or a fail method is called. May take a conditional expression as a parameter that limits executing the capture block
to when the conditional statement evaluates to “true”. If an error occurs in the Lasso code before the handle block is
defined, the handle’s capture block will not be executed.

14.3. Error Handling 133



LassoGuide, Release 9.3

handle_failure(cond=?)
Functions the same as handle except that the contents are executed only if an error was reported in the surrounding
capture block or Lasso page.

protect()
Protects a portion of a page. If code inside the given capture block throws an error or a fail method is executed inside
the capture block, the error is not allowed to propagate outside the protected capture block. This means that a fail
will only halt the execution of the rest of the code in the protect capture, and execution will resume starting with the
code following that capture.

abort()
Sets the current error code to error_code_aborted and stops Lasso from continuing execution. This cannot be
stopped with protect.

14.3.2 handle and handle_failure

The handle method is used to specify a block of code that will be executed after the current code segment is completed. The
handle method can take a single parameter that is a conditional expression, defaulting to “true”. If the conditional expression
evaluates as “true”, the code in the given capture block is executed.

All handle and handle_failuremethods are processed sequentially, giving each a chance to be executed in the order they
were specified and allowing for execution of multiple handle blocks. Therefore, it is necessary to define them before logic
that could halt execution. Any handle methods that are defined after a script failure will not be executed. It is generally good
practice to place handle and handle_failure methods at the start of the parent capture block, most commonly a pro-
tect capture block. (This is a change from previous versions of Lasso and increases the reliability of executing fault-condition
fallbacks.)

The handle methods will not be executed if a syntax error occurs while Lasso is parsing a page. When Lasso encounters a
syntax error it will return an error page instead of processing the code on the page.

The handle methods will be executed if a logical error occurs while Lasso is processing a page. However, the returned result
will be an error message rather than the output of the page. Code within the handle capture block can redirect the user to
another page using redirect_url or can replace the contents of the page being served.

There are two ways to use handle methods within a Lasso page:

1. When used on their own in a Lasso page, the code inside the handle methods will be conditionally executed after all
the rest of the code in the Lasso page has completed. The handle methods can provide post-processing code for a
Lasso page.

2. When used within any Lasso capture block, the code inside the handle methods will be conditionally executed after
the capture block is executed. The handle methods will most commonly be used within a protect block to provide
error handling.

14.3.3 fail and fail_if

The failmethod allows an error to be triggered from within Lasso code. Use of the failmethod immediately halts execution
of the current page and starts execution of any registered handle method contained within.

The fail method can be used in the following ways:

• To report an unrecoverable error. Just as Lasso automatically halts execution of a Lasso page when a syntax error or
internal error is encountered, Lasso code can use the fail method to report an error that cannot be recovered from:

fail(-1, 'An unrecoverable error occurred')

134 Chapter 14. Error Handling



LassoGuide, Release 9.3

• To trigger immediate execution of the page’s handle methods. If an error is handled by one of the handle methods
specified in the Lasso page (outside of any other capture blocks), the code within the handle capture block will be
executed. The handle block can recover from the error and allow execution to continue by using the error_reset
method.

• To trigger immediate execution of a protect capture block’s handle block, which is described in the next section.

The fail_if method allows conditional execution of a fail without using a full if/else conditional. The first parameter to
fail_if is a conditional expression. The last two parameters are the same integer error code and string error message as in
the fail method. In the following example the fail_if method is only executed if the variable “x” does not equal “0”:

fail_if(#x != 0, 100, "Value does not equal 0.")

14.3.4 protect

The protect method is used to catch any errors that occur within the code surrounded by the capture block. They create a
protected environment from which errors cannot propagate to the page itself. Even if Lasso reports an internal error it will be
caught by the protect method, allowing the rest of the page to execute successfully.

Any fail or fail_if methods called within protect capture blocks will halt execution only of the code contained within
the protect capture block. Any handle capture blocks contained within the protect capture blocks will be conditionally
executed. However, Lasso requires these handle capture blocks to be present before the error occurs, so put them at the
top of the protect capture block. The Lasso page will continue executing normally after the closing of the protect capture
block.

The protect capture blocks can be used for the following purposes:

• To protect a portion of a page so that any errors that would normally result in an error message being displayed to the
user are instead handled in the internal handle capture blocks.

• To provide advanced flow control in a page. Code within the protect capture blocks is executed normally until a fail
signal is encountered. The code then jumps immediately to the internal handle block.

Protect a Portion of a Page from Errors

Wrap the portion of the page that needs to be protected in a protect capture block. Any internal errors that Lasso reports
will be caught by the protect capture block and not reported to the end user. A handle capture block should be included
to handle the error if necessary.

In the following Lasso code an attempt is made to set a variable “myVar” to “null”. However, if the variable has not been
previously declared, an error would be reported, and the page would not continue processing. Since the code is executed
within a protect capture block, no error is reported, and the protect capture block exits silently while the Lasso page
resumes execution after the protect block.

protect => {
$myVar = null

}

Use protect with Custom Errors

The following example shows a protect capture block that surrounds code containing two fail_if statements with custom
error codes “-1” and “-2”. A handle block at the start of the protect is set to intercept either of these custom error codes. This
handle block will only execute if one of the fail_if methods executes successfully.

14.3. Error Handling 135



LassoGuide, Release 9.3

protect => {^
handle => {^

if(error_code == -1)
'... Handle custom error -1 ...'

else(error_code == -2)
'... Handle custom error -2 ...'

else
'... Another error has occurred ...'

/if
^}

'Before the fail_if\n'

local(
condition_one = false,
condition_two = true

)
fail_if(#condition_one, -1, 'Custom error -1')
fail_if(#condition_two, -2, 'Custom error -2')

'\nAfter the fail_if'
^}

// =>
// Before the fail_if
// ... Handle custom error -2 ...

136 Chapter 14. Error Handling



Chapter 15

Threading

In computing, a thread is a sequence of instructions being managed by an operating system. Lasso has integrated support for
running multiple threads, allowing it to handle many application requests at the same time. Threading in Lasso is designed
to be easy to use and safe. Lasso does not feature global variables, so all data is local to individual threads. Threads can com-
municate with one another by sending object messages back and forth. These objects are copied as they are transmitted to
ensure that data structures remain consistent.

Lasso supports creating or splitting a new thread given a block of code. It also supports creating thread objects which run in
their own thread.

15.1 Splitting Threads

A new thread can be created by calling the split_thread method, which requires a capture block. The capture given to
split_threadwill be run in a new thread. This new thread will contain copies of the local variables that are active at the time
the new thread is created. Changing the value of a variable in the new thread will not affect the variables that were active at
the creation point. Additionally, the current self is cleared for the new thread.

split_thread()→ pair
Takes a capture assigned as a capture block and runs that capture in a separate thread. Any local variables that would
normally be available to that capture are copied and available in the new thread. It also returns a pair object with file
descriptors for writing and reading messages to and from the newly created thread.

15.1.1 Thread with Capture

The following example shows a new thread being created. The new thread simply prints a message to the console. This
illustrates how split_thread is used and how a new capture (between curly braces { ... }) is given to split_thread
which will be run in a new thread.

split_thread => {
stdoutnl("I'm alive in a new thread!")

}

15.1.2 Thread Communication

When a new thread is created by calling split_thread, the return value of that method call is a pair of filedesc objects.
Similarly, the parameter given to the new thread is a pair of filedesc objects. (This can be accessed in the new thread by
the pseudo-local variable #1.) The filedesc type represents a file descriptor or pipe over which data can be sent or received.
These objects provide the means for the new thread and the creator thread to communicate. Two filedesc objects are required
for thread communication, one representing the write end of the pipe and the other representing the read end. Objects are
written to the write filedesc and read from the read filedesc.

Within this context of the given pair of filedescs, the write filedesc is always the first member of the pair while the read filedesc
is always the second member. The creator thread writes objects to the new thread using the write filedesc, and reads objects

137



LassoGuide, Release 9.3

from the new thread using the read. The newly created thread operates in the same manner, writing and reading objects to
and from its creator thread.

Send and Receive Objects Between Threads

The next example creates a new thread and illustrates how objects can be sent and received:

// Create the new thread, saving the filedesc pair in #creatorPipes
local(creatorPipes) = split_thread => {

// Save the filedescs sent to this new thread
local(

writePipe = #1->first,
readPipe = #1->second

)

// Loop indefinitely, reading messages and sending replies
while(true) => {

// Read an object
local(o) = #readPipe->readObject

// Print a message
stdoutnl("I read an object: " + #o)

// Write a reply object
#writePipe->writeObject("Reply from the new thread")

}
}

// Write an object to our new thread
#creatorPipes->first->writeObject("Sent from the creator!")

// Read the reply from the new thread
stdoutnl(#creatorPipes->second->readObject)

// Do it again
#creatorPipes->first->writeObject("Sent from the creator 2!")
stdoutnl(#creatorPipes->second->readObject)

// =>
// I read an object: Sent from the creator!
// Reply from the new thread
// I read an object: Sent from the creator 2!
// Reply from the new thread

Threads created with split_thread exit when they reach the end of their code body. If the example thread above did not
loop reading/writing messages, it would read one message, write one reply, reach the end of its code, and then exit.

15.2 Thread Objects

Thread objects represent a second way to create new threads in Lasso. A thread object is an object that exists in its own thread.
This means that any method calls to a thread object run serially in the object’s thread. Thread objects exist as singletons,
which means that only one instance of a particular thread type can exist. Thread objects permit data to be globally available,
yet forces access to that data to be synchronized.

138 Chapter 15. Threading



LassoGuide, Release 9.3

Thread objects are created and begin running at the point where they are defined. Thread types are defined similarly to how
normal types are defined, except that in such a definition, the word type is replaced with the word thread.

15.2.1 Simple Counter Thread

The following example creates a simple thread object. This object maintains a counter that can be advanced and retrieve its
current value. Because this is a thread object, it is globally available and other threads can safely advance the counter.

define counter_thread => thread {
data private val = 0

public advanceBy(value::integer) => {
.val += #value
return .val

}
}

The above example defines a counter_thread object. This object exists and begins running as soon as it is defined. Clients
can access the thread object by calling it by name; in this case by calling the counter_thread method:

counter_thread->advanceBy(40)
// => 40

counter_thread->advanceBy(10)
// => 50

Note that each time counter_thread is called, the same thread object is retrieved. Hence, after the second call to
counter_thread->advanceBy, the “val” data member has a value of “50”.

Thread objects can be composed of the same elements as a regular type, including public and private data members, and can
have any other (non-thread) object type as a parent.

15.2.2 Simple Map Thread

This next example creates a thread type that inherits from type map. This results in creating a global map of values that can be
safely accessed by other threads.

define map_thread => thread {
parent map
public onCreate() => ..onCreate

}

map_thread->insert('one'=1) & insert('two'=2)

map_thread->get('two')
// => 2

Thread objects cannot be copied. Additionally, thread objects will continue to run indefinitely, though they can terminate
themselves by calling abort. Also, all parameter values given to a thread object method are copied, as well as any return value
of a thread object method. This ensures that no two threads are ever operating on the same data at the same time, a situation
that can have catastrophic results.

15.2. Thread Objects 139



LassoGuide, Release 9.3

15.2.3 Thread Objects and onCreate

Because thread objects are created as soon as they are defined, a thread object must have a zero parameteronCreatemethod,
or no onCreate methods at all. If a thread object requires further configuration, as would normally be done at the point of
object creation, it should be done immediately following the thread object’s definition. For example, the counter_thread
could be defined to permit its “val” data member to have an initial value set, as shown in the following code:

define counter_thread => thread {
data private val = 0

// Default zero-parameter onCreate
public onCreate() => {}

// Additional onCreate, letting val be initialized
public onCreate(initValue::integer) => {

.val = #initValue
}

public advanceBy(value::integer) => {
.val += #value
return .val

}
}

// Initialize the counter
counter_thread->onCreate(900)

// Now it can be used
counter_thread->advanceBy(20)
// => 920

15.2.4 active_tick

Thread objects can define a method named active_tick. If defined, this method will be called periodically by the system.
This lets a thread object carry out periodic activity regardless of any methods called by clients. The active_tick method
should accept no parameters and return an integer value. The integer value tells the system how many seconds at the latest
the active_tick method should be called again. The active_tick method may be called sooner than the specified time
as it provides the timeout value for reading messages for that thread. Threads requiring precise timing for events should not
rely on the active_tick calls only being called after the timeout value.

The next example defines a thread object that prints a message to the console every 2 seconds:

define lazy_ticker => thread {
public active_tick() => {

stdoutnl("Hello, from lazy ticker")
return 2

}
}

The active_tick method can be one of several member methods, can reference and call other member methods, and the
tick timer (return value) can be programmatically manipulated so that it does not have to be a hard-coded value. In this way,
a single active_tick-enabled thread can manage multiple tasks and conditionally perform additional tasks based on the
results of its basic task, can put itself to sleep or adjust the sleep timer, and have methods that are called completely separately
from the active_tick method. In short, any thread type can also contain an active_tick method to perform periodic
maintenance or time-sensitive tasks.

140 Chapter 15. Threading



Part III

Data Handling

141





Chapter 16

Strings

Text in Lasso is stored and manipulated using the string type or the string_… methods. This chapter details the operators
and methods that can manipulate string values.

Tip: The string type is often used in conjunction with the bytes type to convert binary data between different character
encodings, such as UTF-8 and ISO-8859-1. See the Byte Streams chapter for more information about the bytes type.

16.1 String Objects

Text processing is a central function of Lasso. Many Lasso methods are dedicated to outputting and manipulating text. Lasso is
used to format text-based HTML pages or XML data for output. Lasso is also used to process and manipulate text-based HTML
form inputs and URLs.

Because of this focus on text processing, the string type is the primary type of data in Lasso. The result of all expressions are
converted to strings before they are output into the HTML page or XML data being served.

The following are operations that can be performed directly on strings:

1. Operators can be used to perform string calculations:

'The' + ' ' + 'String'
// => The String

2. String member methods can manipulate the current string value:

'the string'->titlecase&;
// => The String

3. String member methods can return new strings based on the value of the current string:

'The String'->sub(5, 6)
// => String

4. String member methods can test the attributes of strings:

'The String'->contains('the')
// => true

Each of these methods is described in detail in the sections that follow. This chapter contains a description and examples of
using operators and methods to manipulate strings.

16.1.1 Unicode Characters

Lasso supports the processing of Unicode characters in all string methods. The escape sequence \u… can be used with 4
hexadecimal digits (or \U… with 8 or \x… with 2) to specify a Unicode character in a string by its code point, e.g. \u002F

143



LassoGuide, Release 9.3

represents a “/” character, \U00000020 represents a space, and \x42 represents a capital letter “B”. These types of escape
sequences can be used for any code point, e.g. \u4E26 represents the Traditional Chinese character 並.

Lasso also supports common escape sequences including "\r" for a return character, "\n" for a newline character, "\r\n" for
a Windows return/newline, "\f" for a form-feed character, "\t" for a tab, and "\v" for a vertical-tab. See the table Supported
String Escape Sequences for the full list.

16.2 Converting Values to Strings

Expressions that produce a value will convert that value to the string type automatically, or they can be explicitly converted
using the string creator method as well as the asString member method every object has.

string(obj::any)

string(obj::bytes, enc::string=?)
Converts a value to type string. Requires one value which is the data to be converted. An optional second parameter
can be used when converting byte streams in order to specify which character set should be used to translate the byte
stream to a string, defaulting to “UTF-8”.

16.2.1 Automatic String Conversion

Integer and decimal values are converted to strings automatically if they are used as a parameter to a string operator. If either
of the parameters to the operator is a string then the other parameter is converted to a string automatically. The following
example shows how the integer 123 is automatically converted to a string because the other parameter of the + operator is
the string 'String':

'String ' + 123
// => String 123

The following example shows how a variable that contains the integer 123 is automatically converted to a string for the
expression:

local(number) = 123
'String ' + #number + '\n' + #number->type

// =>
// String 123
// integer

Array, map, and pair values are converted to strings automatically when they are output to a web page or included as part of
an auto-collect block. The value they return is intended for the developer to be able to see the contents of the complex type
and is not intended to be displayed to site visitors.

array('One', 'Two', 'Three')
// => array(One, Two, Three)

map('Key1'="Value1", 'Key2'="Value2")
// => map(Key1 = Value1, Key2 = Value2)

pair('name'='value')
// => (name = value)

The parameters sent to the string_… methods are automatically converted to strings. The following example shows the
result of calling string_length on an integer:

144 Chapter 16. Strings



LassoGuide, Release 9.3

string_length(21)
// => 2

16.2.2 Explicitly Convert a Value to a String Object

Integer and decimal values can be converted to string objects using the string creator method. The value of the new string
is the same as the value of the integer or decimal value when it is output using the toString method.

The following example shows a math calculation where the integer result 579. The next line shows the same calculation with
string parameters and the result of 123456.

123 + 456
// => 579

string(123) + string(456)
// => 123456

Boolean values can also be converted to a string object using the string creator method. The value will always be either the
string “true” or the string “false”. The following example shows a conditional result converted to type string:

string('dog' == 'cat')
// => false

String member methods can be used on any value by first converting that value to a string using either the string creator
method or the asString member method every object has. The following example shows how to use the string->size
member method on an integer by first converting it to a string object:

21->asString->size
// => 2

string(21)->size
// => 2

Byte streams being converted to strings can include the character set to be used to export the data in the byte stream. By
default byte streams are assumed to contain UTF-8 character data. The following example code would translate a byte stream
contained in a variable named “myByteStream” using the ISO-8859-1 encoding to interpret the character data. This is analogous
to using the bytes->exportString method which is described in more detail in the Byte Streams chapter:

string(#myByteStream, 'ISO-8859-1')

16.3 String Inspection Methods

The string type has many member methods that return information about the value of the string object, which are doc-
umented below. (Information about regular expressions and the regexp type is found in the Regular Expressions chapter.)

type string

string->size()
Returns the number of characters in the string.

string->length()
Deprecated since version 9.0: Use string->size instead.

string->sub(position::integer, size::integer=?)

16.3. String Inspection Methods 145



LassoGuide, Release 9.3

string->substring(start::integer, size::integer=?)
Returns a portion of the string. The starting point is specified by the first parameter and the number of characters to
return is specified by the second. If the second parameter is not specified, all characters from the specified starting
position to the end of the string are returned.

string->charName(position::integer)

string->charType(position::integer)
Returns the Unicode name or type for a character in the string. Requires a parameter specifying the position of the
character to inspect.

string->integer(position::integer=?)
Returns the Unicode integer value for a character in the string. Requires a parameter specifying the position of the
character to inspect, defaulting to the first character.

string->digit(position::integer, base::integer)
Returns the integer value of a character in the string. Requires a parameter specifying the position of the character to
inspect and a parameter specifying the base or radix. If the specified character is a digit for the specified radix, it will
return the integer value for that digit, otherwise it returns “-1”. (Remember that when integers are converted to strings,
they default to displaying in base 10.) The radix or base can be any value from “2” to “36”.

string->charDigitValue(position::integer)→ integer
Returns the integer value of a character in the string. Requires a parameter specifying the position of the character to
inspect. If the specified character is not a digit, it will return “-1”.

string->getNumericValue(position::integer)→ decimal
Returns the decimal value of a character in the string. Requires a parameter specifying the position of the character to
inspect. If the specified character is not a digit, it will return the decimal “-123456789.0”.

string->isAlnum(position::integer=?)
Returns “true” if the character at the specified position is alphanumeric, defaulting to the first character. Otherwise it
will return “false”.

string->isAlpha(position::integer=?)
Returns “true” if the character at the specified position is alphabetic, defaulting to the first character. Otherwise it will
return “false”.

string->isUAlphabetic(position::integer=?)
Returns “true” if the character at the specified position has the Unicode alphabetic property, defaulting to the first
character. Otherwise it will return “false”.

string->isBase(position::integer=?)
Returns “true” if the character at the specified position is a base Unicode character, defaulting to the first character.
Otherwise it will return “false”.

string->isBlank(position::integer=?)
Returns “true” if the character at the specified position is a space or tab, defaulting to the first character. Otherwise it
will return “false”.

string->isCntrl(position::integer=?)
Returns “true” if the character at the specified position is a control character, defaulting to the first character. Otherwise
it will return “false”.

string->isDigit(position::integer=?)
Returns “true” if the character at the specified position is a base 10 digit, defaulting to the first character. Otherwise it
will return “false”.

string->isXDigit(position::integer=?)
Returns “true” if the character at the specified position is a hexadecimal digit, defaulting to the first character. Otherwise
it will return “false”.

146 Chapter 16. Strings



LassoGuide, Release 9.3

string->isGraph(position::integer=?)
Returns “true” if the character at the specified position is printable and not whitespace, defaulting to the first character.
Otherwise it will return “false”.

string->isLower(position::integer=?)
Returns “true” if the character at the specified position is lowercase, defaulting to the first character. Otherwise it will
return “false”.

string->isULowercase(position::integer=?)
Returns “true” if the character at the specified position has the Unicode lowercase property, defaulting to the first char-
acter. Otherwise it will return “false”.

string->isPrint(position::integer=?)
Returns “true” if the character at the specified position is printable, defaulting to the first character. Otherwise it will
return “false”.

string->isPunct(position::integer=?)
Returns “true” if the character at the specified position is punctuation, defaulting to the first character. Otherwise it will
return “false”.

string->isSpace(position::integer=?)
Returns “true” if the character at the specified position is whitespace, defaulting to the first character. Otherwise it will
return “false”.

string->isTitle(position::integer=?)
Returns “true” if the character at the specified position is in the Unicode category “Letter, Titlecase”, defaulting to the
first character. Otherwise it will return “false”.

string->isUpper(position::integer=?)
Returns “true” if the character at the specified position is uppercase, defaulting to the first character. Otherwise it will
return “false”.

string->isUUppercase(position::integer=?)
Returns “true” if the character at the specified position has the Unicode uppercase property, defaulting to the first
character. Otherwise it will return “false”.

string->isWhitespace(position::integer=?)
Returns “true” if the character at the specified position is whitespace, defaulting to the first character. Otherwise it will
return “false”.

string->isUWhitespace(position::integer=?)
Returns “true” if the character at the specified position has the Unicode whitespace property, defaulting to the first
character. Otherwise it will return “false”.

string->find(find::string, offset::integer, -case::boolean=?)

string->find(find::string, offset::integer, length::integer)

string->find(find::string, offset::integer, length::integer, patOffset::integer, patLength::integer, case::boolean)

string->find(find::string, -offset::integer=?, -length::integer=?, -patOffset::integer=?, -patLength::integer=?,
-case::boolean=?)

Searches the base string for the specified string pattern, returning the position where the pattern first begins in the
base string or “0” if the pattern cannot be found. The comparison is not case-sensitive unless the -case parameter is
passed.

The -offset and -length parameters can specify a portion of the base string within which to look for the match, with
the former specifying the position to begin the search and the latter specifying the number of characters to search.
(If -length is not specified, the method will search to the end of the base string.) The -patOffset and -patLength
parameters can specify that only a portion of the pattern should be used for matching; they behave similarly for the
string pattern as the -offset and -length parameters do for the base string.

16.3. String Inspection Methods 147



LassoGuide, Release 9.3

string->findLast(find::string, offset::integer=?, -length::integer=?, -patOffset::integer=?, -patLength::integer=?,
-case::boolean=?)

Similar to string->find except that it returns the starting position of the last match found in the base string.

string->contains(find::string, -case::boolean=?)

string->contains(find::regexp, -ignoreCase::boolean=?)
Returns “true” if the specified string pattern or regular expression matches within the base string. Otherwise it will return
“false”.

By default, string matching is not case-sensitive unless an optional -case parameter is passed to the method, but
regular expression matching is case-sensitive unless an optional -ignoreCase parameter is passed to the method.

string->get(position::integer)
Returns the character at the specified position in the base string.

string->equals(find::string, case::boolean)

string->equals(find::string, -case::boolean=?)
Similar to the == equality operator. Returns “true” if the specified string pattern is equivalent to the base string. The
comparison is not case-sensitive unless the -case parameter is passed.

string->compare(find::string, -case::boolean=?)

string->compare(find::string, offset::integer, length::integer=?, patOffset::integer=?, patLength::integer=?,
-case::boolean=?)

Compares the specified string pattern to the base string and returns “0” if they are equal, “1” if the characters in the
base string are bitwise greater than the parameter, and “-1” if the characters in the base string are bitwise less than the
parameter. The comparison is not case-sensitive unless the -case parameter is passed.

Optionally, the comparison can be made on smaller portions of the base string by passing the offset and length
parameters, and smaller portions of the string pattern by passing the patOffset and patLength parameters.

string->beginsWith(find::string, case::boolean)

string->beginsWith(find::string, -case::boolean=?)
Returns “true” if the specified string pattern matches the beginning of the base string, otherwise it will return “false”.
The comparison is not case-sensitive unless the -case parameter is passed.

string->endsWith(find::string, case::boolean)

string->endsWith(find::string, -case::boolean=?)
Returns “true” if the specified string pattern matches the end of the base string, otherwise it will return “false”. The
comparison is not case-sensitive unless the -case parameter is passed.

string->getPropertyValue(position::integer, property::integer)→ integer
Returns the Unicode property value for the character at the position specified in the first parameter and the Unicode
property specified in the second parameter. Unicode properties are defined in the Unicode Character Database32 (UCD)
and Unicode Technical Reports33 (UTR).

Lasso defines many methods that return values for these Unicode property names, corresponding to this list of proper-
ties34 in the ICU sources. All of these methods have the UCHAR_ prefix, e.g. UCHAR_UPPERCASE.

string->hasBinaryProperty(position::integer, property::integer)→ boolean
Returns “true” if the character at the position specified in the first parameter has the Unicode property specified in the
second parameter, otherwise it returns “false”.

32 http://www.unicode.org/ucd/
33 http://www.unicode.org/reports/
34 http://icu-project.org/apiref/icu4c-latest/uchar_8h.html#enum-members

148 Chapter 16. Strings

http://www.unicode.org/ucd/
http://www.unicode.org/reports/
http://icu-project.org/apiref/icu4c-latest/uchar_8h.html#enum-members
http://icu-project.org/apiref/icu4c-latest/uchar_8h.html#enum-members


LassoGuide, Release 9.3

16.3.1 Find the Size of a String

The following example returns the number of characters in a string:

'Ralph is a red rhinoceros'->size
// => 25

16.3.2 Check for Lowercase Characters

The following example inspects each character in a string and counts the number of lowercase letters it contains:

local(num_lcase) = 0
local(my_string) = 'Ralph is a red rhinoceros'

loop(#my_string->size) => {
#my_string->isLower(loop_count) ? #num_lcase++

}
#num_lcase

// => 20

16.3.3 Check the Beginning of a String

The following example checks to see if a string begins with “https:”. If so, it displays “secure”, otherwise it displays “insecure”:

local(url) = 'https://secure.example.com'
#url->beginsWith('https:') ? 'secure' | 'insecure'

// => secure

16.3.4 Find a Substring

This example uses the string->find method to find and output each position in a string where there is an apostrophe:

local(my_string) = "Don't, it's not worth it!"
local(position) = 0

while(#position < #my_string->size) => {^
#position = #my_string->find(`'`, #position + 1)
if(0 == #position) => {

loop_abort
}
#position + '\n'

^}

// =>
// 4
// 10

16.3.5 Extract a Substring

The following example pulls the substring “red” out of the base string:

16.3. String Inspection Methods 149



LassoGuide, Release 9.3

local(my_string) = 'Ralph is a red rhinoceros'
#my_string->sub(12, 3)

// => red

16.3.6 Extract a Specified Character Position

The following example uses string->get to return the last character in a string:

local(my_string) = 'Ralph is a red rhinoceros'
#my_string->get(#my_string->size)

// => s

16.4 String Manipulation Methods

The string type includes many member methods that can modify or manipulate a string object in-place, which are docu-
mented below. These methods do not return a value, and instead modify the value of the string object.

string->append(s::string)

string->append(obj::any)
Concatenates a single parameter to the end of the base string, after converting it to a string if necessary. It modifies the
string object in-place, not returning any value.

string->appendChar(i::integer)
Concatenates a single character to the end of the base string, specified by its Unicode integer value in base 10. It
modifies the string object in-place, not returning any value.

string->remove(position::integer=?, num::integer=?)
Removes one or more characters from the base string starting at the specified position, defaulting to the first character.
A second parameter can specify the number of characters to remove, defaulting to removing all the characters from
the starting position. It modifies the string object in-place, not returning any value.

string->normalize()

string->decompose()
Transforms the string into either its normalized or decomposed form. It modifies the string object in-place, not returning
any value. For more information on normalizing Unicode strings, see the Unicode Normalization FAQ35 and Unicode
Standard Annex #1536 .

string->foldCase()
Converts the characters in the string to allow for case-insensitive comparisons. It modifies the string object in-place,
not returning any value.

string->trim()
Removes any whitespace from the beginning and end of the string. It modifies the string object in-place, not returning
any value.

string->reverse()
Changes the string object to the value of the base string in reverse order. It modifies the string object in-place, not
returning any value.

35 http://www.unicode.org/faq/normalization.html
36 http://www.unicode.org/reports/tr15/

150 Chapter 16. Strings

http://www.unicode.org/faq/normalization.html
http://www.unicode.org/reports/tr15/
http://www.unicode.org/reports/tr15/


LassoGuide, Release 9.3

string->toLower(position::integer)
Changes the character at the specified position to lowercase if possible. It modifies the string object in-place, not re-
turning any value.

string->toUpper(position::integer)
Changes the character at the specified position to uppercase if possible. It modifies the string object in-place, not
returning any value.

string->toTitle(position::integer)
Changes the character at the specified position to title case if possible. It modifies the string object in-place, not return-
ing any value.

string->lowercase()
Changes every possible character in the string to lowercase. It modifies the string object in-place, not returning any
value.

string->uppercase()
Changes every possible character in the string to uppercase. It modifies the string object in-place, not returning any
value.

string->titlecase()

string->titlecase(language::string, country::string)
Changes every possible word in the string to title case. It can be called with a language code for the first parameter
and a country code for the second to specify a locale to be used when performing this operation. It modifies the string
object in-place, not returning any value.

string->padLeading(tosize::integer, with::string=?)
If the base string is smaller in size than the first parameter specifying the target size of the string, it changes the base
string by prepending a character to its beginning until it reaches the specified size. The character used for prepending
defaults to a space, but can be set with an optional second parameter. It modifies the string object in-place, not returning
any value.

string->padTrailing(tosize::integer, with::string=?)
If the base string is smaller in size than the first parameter specifying the target size of the string, it changes the base
string by appending a character to its end until it reaches the specified size. The character used for appending defaults
to a space, but can be set with an optional second parameter. It modifies the string object in-place, not returning any
value.

string->removeLeading(find::string)

string->removeLeading(find::regexp)
Removes all substrings that match the string pattern or regular expression specified in the parameter from the begin-
ning of the base string. It keeps removing until the beginning of the base string no longer matches the specified pattern.
It modifies the string object in-place, not returning any value.

string->removeTrailing(find::string)
Removes all substrings that match the string pattern specified in the parameter from the end of the base string. It keeps
removing until the end of the string no longer matches the specified pattern. It modifies the string object in-place, not
returning any value.

string->merge(where::integer, what::string, offset::integer=?, length::integer=?)
Merges a specified string into the base string. It requires the first parameter to specify the position in the base string
for the merge to take place and a second parameter specifying the string to merge into the base string. It modifies the
string object in-place, not returning any value.

Optionally, a third parameter can specify the starting position of the passed string to be used in the merge and a fourth
can specify the number of characters after the offset to be merged from the passed string.

string->replace(find::string, replace::string, -case::boolean=?)

16.4. String Manipulation Methods 151



LassoGuide, Release 9.3

string->replace(find::regexp, replace=?, ignoreCase=?)
Replaces all substrings found in the base string that match the string pattern or regular expression specified in the
first parameter with the replacement string specified in the second parameter. For regular expression matches, the
replacement string can optionally be specified as a separate parameter, or it will use the replacement string of the
regexp object. It modifies the string object in-place, not returning any value.

When using a string pattern for matching, the method defaults to case-insensitive matching unless otherwise specified
by the third parameter. When using a regular expression, the default is the reverse: it uses case-sensitive matching unless
otherwise specified by the third parameter.

16.4.1 Append Data to a String

This example uses the string->append method to add a trailing slash to a directory path if one does not already exist:

local(dir_path) = '/var/lasso/home'

if(not #dir_path->endsWith('/')) => {
#dir_path->append('/')

}
#dir_path

// => /var/lasso/home/

16.4.2 Remove Whitespace Around a String

This example uses the string->trim method to remove whitespace from the beginning and end of a string:

local(my_string) = '\n Ralph the Ringed Rhino \n\n'
#my_string->trim
#my_string

// => Ralph the Ringed Rhino

16.4.3 Ensure All Characters are Lowercase

This example converts all the characters in a string to lowercase:

local(my_string) = 'Ralph the Ringed Rhino races red radishes in THE RINK.'
#my_string->lowercase
#my_string

// => ralph the ringed rhino races red radishes in the rink.

16.4.4 Remove a Pattern from the End of a String

This example removes all the trailing commas from a string:

local(my_string) = 'First, Second, Fifth,,,'
#my_string->removeTrailing(',')
#my_string

// => First, Second, Fifth

152 Chapter 16. Strings



LassoGuide, Release 9.3

16.5 String Encoding Methods

string->hash()
Returns a simple hash of the string object.

string->unescape()
Returns the value of the string object with any escape sequences (a sequence beginning with a backslash) replaced
with their literal Unicode equivalents. This is the same escape process used by Lasso for non-ticked string literals.

string->encodeHtml()

string->encodeHtml(linebreaks::boolean, ignorechars::boolean)
Returns the value of the string object with any reserved, illegal, or extended ASCII characters converted to their equiv-
alent HTML entity.

This replacement can be modified by passing two boolean parameters. If the first parameter is set to “true”, line breaks
are encoded. If the second parameter is set to “true”, the following characters are not encoded: " & ' < > (double
quotation mark, ampersand, single quotation mark, less than or left angle bracket, and greater than or right angle
bracket, respectively).

string->decodeHtml()
Returns the value of the string object with any HTML entities converted to their Unicode equivalent. This is the opposite
of the string->encodeHtml method.

string->encodeXml()
Returns the value of the string object with any reserved or illegal XML characters encoded into their equivalent XML
entity.

string->decodeXml()
Returns the value of the string object with any XML entities converted to their Unicode equivalent. This is the opposite
of the string->encodeXml method.

string->encodeHtmlToXml()
Returns the value of the string object with any HTML character entity references converted to their equivalent numeric
character reference.

string->asBytes(encoding::string=?)
Returns the value of the string object as a bytes object. By default, UTF-8 encoding is used for this conversion, but any
encoding can be specified as a string parameter to this method.

string->encodeSql()
Returns the value of the string object with any illegal characters for MySQL data sources properly escaped.

string->encodeSql92()
Returns the value of the string object with any illegal characters for SQL-92–compliant data sources properly escaped.
Not for use with MySQL.

string->encodeUrl()→ bytes
Returns a byte stream of the string object with any illegal characters for URLs properly escaped. See
bytes->encodeUrl.

16.5.1 Convert Escape Sequences

The following example creates a string with escape sequences using a ticked string literal so that Lasso won’t automati-
cally unescape them. It then outputs the string before calling string->unescape and then shows the result of calling
string->unescape:

16.5. String Encoding Methods 153



LassoGuide, Release 9.3

local(my_string) = `Chinese Character: \u4E26`
#my_string + '\n'
#my_string->unescape

// =>
// Chinese Character: \u4E26
// Chinese Character: 並

16.5.2 Encode HTML Entities

The following example uses string->encodeHtml to return a string with the HTML reserved characters encoded as entities:

local(my_string) = '<>&'
#my_string->encodeHtml

// => &lt;&gt;&amp;

16.5.3 Encode for Use in MySQL

The following example returns a string whose quotes have been encoded for use in a MySQL SQL statement:

local(my_string) = "Don't forget to encode"
#my_string->encodeSql

// => Don\'t forget to encode

16.6 String Iteration Methods

string->forEachCharacter()
Executes a given capture block once for every character in the base string. The character can be accessed in the capture
block through the special local variable #1.

string->forEachWordBreak()
Executes a given capture block once for every word in the base string. The word can be accessed in the capture block
through the special local variable #1.

string->forEachLineBreak()
Executes a given capture block once for every substring that would be generated by splitting the base string on a line
break. Every line break character is recognized: "\r", "\n", and "\r\n". Each of the substrings can be accessed in the
capture block through the special local variable #1.

string->forEachMatch(exp::string)

string->forEachMatch(exp::regexp)
Executes a given capture block once for every match in the base string. Matches can be specified as either string or
regexp objects. The match can be accessed in the capture block through the special local variable #1.

string->eachCharacter()
Returns an eacher that can be used in conjunction with query expressions to inspect and perform complex operations
on every character in the base string.

string->eachWordBreak()
Returns an eacher that can be used in conjunction with query expressions to inspect and perform complex operations
on every word in the base string.

154 Chapter 16. Strings



LassoGuide, Release 9.3

string->eachLineBreak()
Returns an eacher that can be used in conjunction with query expressions to inspect and perform complex operations
on every line in the base string.

string->eachMatch(exp::string)

string->eachMatch(exp::regexp)
Returns an eacher that can be used in conjunction with query expressions to inspect and perform complex operations
on every specified match in the base string. Matches can be specified as either string or regexp objects.

16.6.1 Iterate Over Lines

The following example takes a string with multiple lines and runs the lines of the string together with slashes, storing the
result in the variable “quoted_poem”. It removes the trailing slash at the end and then displays the variable “quoted_poem” in
quotes.

local(poem) = '\
An old silent pond...
A frog jumps into the pond,
Splash! Silence again.'

local(quoted_poem) = ''
#poem->forEachLineBreak => {

#quoted_poem->append(#1 + '/')
}
#quoted_poem->removeTrailing('/')
'"' + #quoted_poem + '"'

// => "An old silent pond.../A frog jumps into the pond,/Splash! Silence again."

16.6.2 Iterate Over Words

The following example takes a string and inspects each word using a query expression. If the word starts with the letter “r”
then it will transform it to uppercase. The query expression selects each word, allowing us to create a staticarray of words.

local(my_string) = 'Ralph is a red rhinoceros.'
(

with word in #my_string->eachWordBreak
select (#word->beginsWith('r') ? #word->uppercase& | #word)

)->asStaticArray

// => staticarray(RALPH, is, a, RED, RHINOCEROS.)

16.6.3 Iterate Over a Specified Regular Expression Match

The following example usesstring->eachMatchwith aregexpobject to find every vowel in a string, where the local variable
“vowels” is used to count the number of each vowel in the string.

local(my_string) = 'ralph is a red rhinoceros.'
local(vowels) = map('a'=0, 'e'=0, 'i'=0, 'o'=0, 'u'=0)

with letter in #my_string->eachMatch(regexp(`[aeiouAEIOU]`))
do #vowels->find(#letter)++
#vowels

16.6. String Iteration Methods 155



LassoGuide, Release 9.3

// => map(a = 2, e = 2, i = 2, o = 2, u = 0)

16.7 String Export Methods

string->split(find::string)
Returns an array with elements created by breaking up the base string on the specified string. If an empty string is
specified, each element of the array will be a single character from the base string.

string->values()
Returns an array where each element is one character from the base string.

string->keys()
Returns a generateSeries from 1 to the number of characters in the base string, or an empty generateSeries if
the base string is empty.

16.7.1 Split a String Into an Array

The following example creates an array by splitting a string on a comma:

local(my_string) = '1,3,9,f,g'
#my_string->split(',')

// => array(1, 3, 9, f, g)

156 Chapter 16. Strings



Chapter 17

Byte Streams

Binary data in Lasso is stored and manipulated using the bytes type. This chapter details the operators and methods that can
manipulate binary data.

Tip: The bytes type is often used in conjunction with the string type to convert binary data between different character
encodings, such as UTF-8 and ISO-8859-1. See the Strings chapter for more information about the string type.

17.1 Creating Bytes Objects

While string data in Lasso is processed as one- to four-byte Unicode characters, the bytes type can represent raw strings of
single bytes, which is often referred to as a byte stream or binary data.

Lasso’s methods return a bytes object in the following situations:

• The bytes creator method allocates a new bytes object.

• The web_request->param methods return a bytes object.

• The field method returns a bytes object from MySQL “BLOB” fields.

• Other methods that return or require binary data as outlined in their documentation.

type bytes

bytes()

bytes(initial::integer)

bytes(copy::bytes)

bytes(import::string, encoding::string=?)

bytes(doc::pdf_doc)
Allocates a bytes object. Can convert a string or pdf_doc type to a bytes type, or instantiate a new bytes object.
Accepts one optional parameter that can specify the initial size in bytes for the stream; or specify the string, pdf_doc,
or bytes object to convert to a new bytes object. If converting a string object, it can accept an optional second
parameter to specify the encoding of the string.

bytes->reserve(size::integer)
Attempts to preallocate enough memory for the specified number of bytes. Useful for optimization by avoiding memory
reallocation if the expected byte stream size is known in advance.

17.1.1 Instantiate a New Bytes Object

Use the bytes creator method. The example below creates an empty bytes object with a size of 1024 bytes:

local(obj) = bytes(1024)

157



LassoGuide, Release 9.3

17.1.2 Convert String Data to a Bytes Object

Use the bytes creator method. The following example converts a string to a bytes object:

local(obj) = bytes('This is some text')

17.2 Bytes Inspection Methods

Byte streams are similar to strings and support many of the same member methods. Additionally, byte streams support a
number of member methods that make it easier to deal with binary data. The most common methods are outlined below.

bytes->size()
Returns the number of bytes contained in the bytes object.

bytes->length()
Deprecated since version 9.0: Use bytes->size instead.

bytes->get(position::integer)→ integer
Returns a single byte from the stream. Requires a parameter specifying which byte to fetch.

bytes->getRange(position::integer, num::integer)→ bytes
Returns a range of bytes from the byte stream. Requires two parameters: the first specifies the byte position to start
from, and the second specifies how many bytes to return.

bytes->find(find::bytes, position::integer=?, length::integer=?, patPosition::integer=?, patLength::integer=?)

bytes->find(find::string, position::integer=?, length::integer=?, patPosition::integer=?, patLength::integer=?)
Searches the bytes object for the byte sequence or string pattern specified in the first parameter, returning the position
where the sequence first begins in the bytes object or “0” if the pattern cannot be found.

The second and third parameters can specify a portion of the bytes object within which to look for the match, with the
former specifying the position to begin the search and the latter specifying the number of bytes to search. Similarly, the
fourth and fifth parameters can specify a portion of the sequence that should be used for matching.

bytes->contains(find::string)

bytes->contains(find::bytes)
Returns “true” if the byte stream contains the specified sequence.

bytes->beginsWith(find::string)

bytes->beginsWith(find::bytes)
Returns “true” if the byte stream begins with the specified sequence.

bytes->endsWith(find::string)

bytes->endsWith(find::bytes)
Returns “true” if the byte stream ends with the specified sequence.

bytes->bestCharset(charset::string)
Checks if the byte stream can be encoded using the specified character set. Returns the either the specified character
set name if it can, or an appropriate character set name if not.

bytes->detectCharset()
Checks which character sets could be used to decode the byte stream and returns a staticarray of guesses where each
is a staticarray of the character set name, the language covered by the character set (if any), and a confidence value.

158 Chapter 17. Byte Streams



LassoGuide, Release 9.3

17.2.1 Find a Character Set for a Byte Stream

Use the bytes->bestCharsetmethod. The examples below show the result of passing a byte stream containing a character
that can’t be encoded with the suggested character set:

bytes('This is a plain ASCII string')->bestCharset('ISO-8859-1')
// => ISO-8859-1

bytes('This isn’t a plain ASCII string')->bestCharset('ISO-8859-1')
// => UTF-8

17.3 Bytes Export Methods

Bytes objects keep track of a “marker”, indicating where in the stream export operations will begin from. Newly created bytes
objects have their marker set to “0”, and are incremented by the number of exported bytes when any of the export member
methods that return bytes objects are called. The marker can also be set manually.

bytes->asString(encoding::string=?)
Returns the entire byte stream as a string using the specified encoding, defaulting to “UTF-8”.

bytes->marker()
Returns the current position at which exports will occur in the byte stream.

bytes->marker=(value::integer)
Sets the byte stream’s marker to the passed value.

bytes->position()

bytes->position=(value::integer)

bytes->setPosition(i::integer)
Deprecated since version 9.0: Use bytes->marker and bytes->marker= instead.

bytes->exportString(encoding::string)
Returns a string representing the byte stream. Requires a single parameter specifying the character encoding (e.g.
“ISO-8859-1” or “UTF-8”) for the export. If the byte stream has a marker set, only the bytes following the marker will
be returned. The marker is not modified.

bytes->exportBytes(num::integer=?)
Returns the byte stream as a bytes object. Accepts one optional parameter that can specify the number of bytes to
return. If the byte stream has a marker set, only the bytes following the marker will be returned. Sets the marker to the
end of the stream.

bytes->export8bits()

bytes->export16bits()

bytes->export32bits()

bytes->export64bits()
Returns 1, 2, 4, or 8 bytes of the byte stream starting from the marker as an integer and increments the marker by the
same amount.

bytes->exportSigned8bits()

bytes->exportSigned16bits()

bytes->exportSigned32bits()

17.3. Bytes Export Methods 159



LassoGuide, Release 9.3

bytes->exportSigned64bits()
Returns 1, 2, 4, or 8 bytes of the byte stream starting from the marker as a signed (two’s-complement) integer and
increments the marker by the same amount.

bytes->split(find::string)

bytes->split(find::bytes)
Returns an array of bytes objects using the specified sequence as the delimiter to split the byte stream. If the delimiter
provided is an empty byte stream or string, the byte stream is split on each byte, so the returned array will have each
byte as one of its elements.

bytes->sub(position::integer, num::integer=?)
Returns a specified slice of the byte stream. Requires an integer parameter specifying the index into the byte stream to
start taking the slice from. An optional second integer parameter can specify the number of bytes to slice out of the
bytes object. If the second parameter is not specified, all of the bytes following the index are returned.

17.3.1 Return the Size of a Byte Stream

Use the bytes->size method. The example below returns the size of a bytes object:

local(obj) = bytes('abc…')
#obj->size

// => 6

17.3.2 Return a Single Byte from a Byte Stream

Use the bytes->get method. An integer parameter specifies the index of the byte to return. Note that this method returns
an integer, not a fragment of the original data (such as a string character):

local(obj) = bytes('hello world')
#obj->get(2)

// => 101

17.3.3 Find a Value Within a Byte Stream

Use thebytes->findmethod. The example below returns the starting byte number of the value'rhino', which is contained
within the byte stream:

bytes('running rhinos risk rampage')->find('rhino')
// => 9

17.3.4 Determine If a Byte Stream Contains a Value

Use the bytes->contains method. The example below will return “true” if the value 'Rhino' is contained within the byte
stream. Note that in this example it will return “false” because the bytes of 'rhino' are a different sequence than the bytes of
'Rhino'.

bytes('running rhinos risk rampage')->find('Rhino')
// => false

160 Chapter 17. Byte Streams



LassoGuide, Release 9.3

17.3.5 Export a String from a Byte Stream

Use the bytes->exportString method. The following example exports a string using UTF-8 encoding:

local(obj) = bytes('This is a string')
#obj->exportString('UTF-8')

// => This is a string

17.4 Bytes Decoding/Encoding Methods

bytes->crc()
Returns the cyclic redundancy check integer value for the byte stream.

bytes->encodeBase64()
Returns a base64-encoded representation of the byte stream as a bytes object.

bytes->decodeBase64()
Returns the binary data of a base64-encoded byte stream as a bytes object. This is the opposite of the
bytes->encodeBase64 method.

bytes->encodeHex()
Returns the byte stream in hexadecimal format.

bytes->decodeHex()
Returns the binary data of a byte stream containing hexadecimal ASCII characters by converting each pair of characters
to a single byte. This is the opposite of the bytes->encodeHex method.

bytes->encodeMd5()
Returns the MD5 hash value for the byte stream as a bytes object.

bytes->encodeQP()
Returns the byte stream in quoted-printable format.

bytes->decodeQP()
Returns the binary data of a quoted-printable–encoded byte stream as a bytes object. This is the opposite of the
bytes->encodeQP method.

bytes->encodeSql()
Returns the byte stream with any illegal characters for MySQL data sources properly escaped.

bytes->encodeSql92()
Returns the byte stream with any illegal characters for SQL-92–compliant data sources properly escaped. Not for use
with MySQL.

bytes->encodeUrl()
Returns the byte stream with any illegal characters for URLs properly escaped.

bytes->decodeUrl()
Returns the binary data of a URL-encoded byte stream as a bytes object, with any escaped characters replaced with
their ASCII equivalents. This is the opposite of the bytes->encodeUrl method.

17.4.1 Encode a File as Base64

Use the bytes->encodeBase64 method. The example below reads a file into a byte stream and prints its Base64-encoded
value:

17.4. Bytes Decoding/Encoding Methods 161



LassoGuide, Release 9.3

file('red-dot.png')->readBytes->encodeBase64
// => iVBORw0KGgoAAAANSUhEUgAAAAUAAAAFCAYAAACNbyblAAAAHElEQVQI12P4//8/
↪→w38GIAXDIBKE0DHxgljNBAAO9TXL0Y4OHwAAAABJRU5ErkJggg==

17.5 Bytes Iteration Methods

bytes->forEachByte()
Executes a given capture block once for every bytes in the byte stream. The byte can be accessed in the capture block
through the special local variable #1.

bytes->eachByte()
Returns an eacher that can be used in conjunction with query expressions to inspect and perform complex operations
on every byte in the byte stream.

17.6 Bytes Manipulation Methods

Calling the following methods will modify the bytes object without returning a value.

bytes->setSize(num::integer)
Sets the byte stream size to the specified number of bytes.

bytes->setRange(what::bytes, where::integer=?, whatStart::integer=?, whatLen::integer=?)
Sets a range of characters within a byte stream. Requires one parameter for the binary data to be inserted. The optional
second, third, and fourth parameters specify the integer offset into the byte stream to insert the new data, and the offset
and length of the new data to be inserted, respectively.

bytes->padLeading(tosize::integer, with::bytes=?)

bytes->padLeading(tosize::integer, with::string=?)
If the byte stream is smaller in size than the first parameter specifying the target number of bytes, it changes the byte
stream by prepending a character to its beginning until it reaches the specified size. The character used for prepending
defaults to a space, but can be set with an optional second parameter.

bytes->padTrailing(tosize::integer, with::bytes=?)

bytes->padTrailing(tosize::integer, with::string=?)
If the byte stream is smaller in size than the first parameter specifying the target number of bytes, it changes the byte
stream by appending a character to its end until it reaches the specified size. The character used for appending defaults
to a space, but can be set with an optional second parameter.

bytes->replace(find::bytes, replace::bytes)
Replaces all instances of a value within a byte stream with a new value. Requires two parameters: the first parameter is
the value to find, and the second parameter is the value with which to replace the first parameter.

bytes->remove()

bytes->remove(position::integer, num::integer)
Removes bytes from a byte stream. When passed without a parameter, it removes all bytes, setting the object to an
empty bytes object. In its second form, it requires an offset into the byte stream and the number of bytes to remove
starting from there.

bytes->removeLeading(find::bytes)
Removes all occurrences of the specified sequence from the beginning of the byte stream. Requires one parameter
specifying the data to be removed.

162 Chapter 17. Byte Streams



LassoGuide, Release 9.3

bytes->removeTrailing(find::bytes)
Removes all occurrences of the parameter sequence from the end of the byte stream. Requires one parameter specifying
the data to be removed.

bytes->append(rhs::bytes)

bytes->append(rhs::string)
Appends the specified data to the end of the byte stream. Requires one parameter specifying the data to append.

bytes->trim()
Removes all whitespace ASCII characters from the beginning and the end of the byte stream.

bytes->importString(s::string, enc::string=?)
Imports a string parameter into the byte stream. A second parameter can specify the character encoding (e.g.
“ISO-8859-1” or “UTF-8”) to use for the import.

bytes->importBytes(b::bytes)
Imports a bytes object parameter into the byte stream.

bytes->import8bits(i::integer)

bytes->import16bits(i::integer)

bytes->import32bits(i::integer)

bytes->import64bits(i::integer)
Imports the first 1, 2, 4, or 8 bytes of an integer parameter.

bytes->swapBytes()
Swaps the position of every pair of bytes, e.g. a byte stream of 'father' becomes 'afhtre'.

17.6.1 Add a String to a Byte Stream

Use the bytes->append method. The following example adds the string 'I am' to the end of a byte stream:

local(obj) = bytes
#obj->append('I am')

17.6.2 Find and Replace Values in a Byte Stream

Use the bytes->replace method. The following example finds the string 'Blue' and replaces it with the string 'Green'
within the byte stream:

local(colors) = bytes('Blue Red Yellow')
#colors->replace('Blue', 'Green')

17.6.3 Import a String Into a Byte Stream

Use the bytes->importString method. The following example imports a string using ISO-8859-1 encoding:

local(obj) = bytes('This is a string')
#obj->importString('This is another string', 'ISO-8859-1')

17.6. Bytes Manipulation Methods 163





Chapter 18

Math

Numbers in Lasso are stored and manipulated using the decimal and integer types. This chapter details the operators and
methods that can manipulate decimal and integer values and to perform mathematical operations. Each of these methods
is described in detail in the sections that follow; however, the Lasso Reference is the primary documentation source for Lasso
operators and methods.

18.1 Creating Integer Objects

Theinteger type represents whole number values. Basically, zero and any positive or negative number that does not contain a
decimal point is an integer value in Lasso. Examples include -123or 456. Integer objects may also be expressed in hexadecimal
notation such as 0x1A or 0xff.

type integer

integer()

integer(obj::any)
The creator method for integer converts any object to an integer. If the type for the object being converted does not
easily represent an integer, “0” will be returned.

18.1.1 Explicit Integer Conversion

Strings that contain numeric data can be converted to integer objects using the integer creator method. The string must
start with a numeric value. In the following examples the integer 123 is the result of each explicit conversion. Only the first
integer found in the string '123 and then 456' is recognized:

integer('123')
// => 123

integer('123 and then 456')
// => 123

Decimals that are converted to an integer are rounded to the nearest integer:

integer(123.0)
// => 123

integer(123.999)
// => 124

18.2 Formatting Integer Objects

Integer objects can be formatted for display using the integer->asString method detailed below.

165



LassoGuide, Release 9.3

Note: Integers and decimals have no state, so they cannot carry around formatting information. The integer->asString
method replaces the functionality of the integer->setFormat method from previous versions of Lasso.

integer->asString(-hexadecimal::boolean=?, -padding::integer=?, -padChar::string=?, -padRight::boolean=?,
-groupChar::string=?)

Returns a string representation of the integer value formatted as specified by the parameters passed to the method. If
no parameters are passed to the method, the string will be the integer value output in base 10.

Parameters

• -hexadecimal (boolean) – If set to “true”, the integer will output in hexadecimal notation.

• -padding (integer) – Specifies the desired length for the output. If the formatted number is less than
this length then the number is padded.

• -padChar (string) – Specifies the character to insert if padding is required. Defaults to a space.

• -padRight (boolean) – Set to “true” to pad the right side of the output. By default, padding is appended
to the left side of the output.

• -groupChar (string) – Specifies the character to use for thousands grouping. Defaults to empty.

18.2.1 Format an Integer as a Hexadecimal Value

The following example creates a variable with an integer value and then outputs that value in base 16:

local(my_int) = 255
#my_int->asString(-hexadecimal)

// => ff

18.3 Integer Bitwise Methods

Bitwise operations can be performed with Lasso’s integer objects. These operations can examine and manipulate binary data.
They can also be used for general purpose binary set operations.

Integer literals in Lasso can be specified using hexadecimal notation. This can greatly aid in constructing literals for use with
the bitwise operation. For example, 0xff is the integer literal 255.

integer->bitAnd(i::integer)
Performs a bitwise “and” operation between each bit in the base integer and the integer parameter, returning the result.

integer->bitOr(i::integer)
Performs a bitwise “or” operation between each bit in the base integer and the integer parameter, returning the result.

integer->bitXOr(i::integer)
Performs a bitwise “exclusive or” operation between each bit in the base integer and the integer parameter, returning
the result.

integer->bitNot()
Returns the result of flipping every bit in the base integer.

integer->bitShiftLeft(i::integer)
Returns the result of shifting the bits in the base integer left by the number specified in the integer parameter.

integer->bitShiftRight(i::integer)
Returns the result of shifting the bits in the base integer right by the number specified in the integer parameter.

166 Chapter 18. Math



LassoGuide, Release 9.3

integer->bitClear(i::integer)
Returns the result of clearing the bit specified in the integer parameter.

integer->bitFlip(i::integer)
Returns the result of flipping the bit specified in the integer parameter.

integer->bitSet(i::integer)
Returns the result of setting the bit specified in the integer parameter.

integer->bitTest(i::integer)
Returns “true” if the bit specified in the integer parameter is 1, otherwise returns “false”.

Note: Integers are by-value objects and are immutable, so it is not possible to change their value. This is in contrast to previous
versions of Lasso, where these bit methods modified the integer in-place.

18.3.1 Perform a Bitwise OR

In the following example the boolean “or” of 0x02 and 0x04 is calculated and returned in hexadecimal notation:

local(bit_set) = 0x02
#bit_set->bitOr(0x04)->asString(-hexadecimal)

// => 6

18.3.2 Shift Bits to the Left

In the following example, 0x02 is shifted left by three places and output in hexadecimal notation:

local(bit_set) = 0x02
#bit_set = #bit_set->bitShiftLeft(3)
#bit_set->asString(-hexadecimal)

// => 10

18.3.3 Set and Test a Specified Bit

In the following example, the second bit of an integer is set and then tested:

local(bit_set) = 0
#bit_set = #bit_set->bitSet(2)
#bit_set->bitTest(2)

// => true

18.4 Creating Decimal Objects

The decimal type represents real or floating point numbers. Basically, 0.0 or any positive or negative number that contains
a decimal point is a decimal object in Lasso. Examples include -123.0 and 456.789. Decimal values can also be written in
exponential notation such as 1.23e2 which is equivalent to 1.23 times 10^2 or 123.0.

type decimal

18.4. Creating Decimal Objects 167



LassoGuide, Release 9.3

decimal()

decimal(i::integer)

decimal(d::decimal)

decimal(s::string)

decimal(b::bytes)

decimal(n::null)

decimal(n::void)
The creator methods for the decimal type converts integer, string, bytes, null, and void objects to a decimal
value.

The precision of a decimal value when converted to a string is always displayed as six decimal places even though the
actual precision of the number may vary based on the size of the number and its internal representation. The output
precision of decimal numbers can be controlled using the decimal->asStringmethod described later in this chapter.

18.4.1 Implicit Decimal Conversion

Integer values are converted to decimal values automatically if they are used as a parameter to an arithmetical operator in
conjunction with a decimal value. The following example shows how the integer 123 is automatically converted to a decimal
value because the other parameter of the + operator is the decimal value 456.0:

456.0 + 123
// => 579.0

The following example shows how a variable with a value of “123” is automatically converted to a decimal value:

local(number) = 123
456.0 + #number

// => 579.0

18.4.2 Explicit Decimal Conversion

Strings containing numeric data can be converted to the decimal type using the decimal creator method. The string must
start with a numeric value. In the following examples the number 123.0 is the result of each explicit conversion. Only the first
decimal value found in the string '123 and then 456' is recognized:

decimal('123')
// => 123.0

decimal('123.0')
// => 123.0

decimal('123 and then 456')
// => 123.0

Integers that are converted to decimals simply have a decimal point appended. The value of the number does not change.

decimal(123)
// => 123.0

168 Chapter 18. Math



LassoGuide, Release 9.3

18.5 Formatting Decimal Objects

Decimal objects can be formatted for display using the decimal->asString method detailed below.

Note: Integers and decimals have no state, so they cannot carry around formatting information. The decimal->asString
method replaces the functionality of the decimal->setFormat method from previous versions of Lasso.

decimal->asString(-decimalChar::string=?, -groupChar::string=?, -precision::integer=?, -scientific::boolean=?,
-padding::integer=?, -padChar::string=?, -padRight::boolean=?)

Returns a string representation of the decimal value formatted as specified by the parameters passed to the method. If
no parameters are passed to the method, the string will be the decimal value with six places of precision.

Parameters

• -decimalChar (string) – The character that should be used for the decimal point. Defaults to a period.

• -groupChar (string) – The character that should be used for thousands grouping. Defaults to an empty
string.

• -precision (integer) – The number of places after the decimal point that should be output. The default
is 6.

• -scientific (boolean) – Set to “true” to force output in exponential notation. Default to “false”, so dec-
imals are only output in exponential notation if required.

• -padding (integer) – Specifies the desired length for the output. If the formatted number is less than
this length then the number is padded.

• -padChar (string) – Specifies the character that will be inserted if padding is required. Defaults to a
space.

• -padRight (boolean) – Set to “true” to pad the right side of the output. By default, padding is prepended
to the left side of the output.

18.5.1 Format a Decimal Number as U.S. Currency

The following example outputs a decimal value as if it were U.S. currency by setting the precision to “2”. For readability, it also
sets a comma as the grouping character.

local(dollar_amt) = 1234.56
#dollar_amt->asString(-precision=2, -groupChar=',')

// => 1,234.56

18.6 Arithmetical Operations

The easiest way to manipulate integer and decimal objects is to use arithmetical operators. The sections below detail all the
operators that can be used with integer and decimal values. See the Operators chapter for further documentation of how
these operators are used.

18.6.1 Basic Arithmetical Operators

Each basic operator takes two parameters, one to its left and the other to its right. If either of the parameters is a decimal
then the result will be a decimal value. Some of the operators can also be used to perform string operations. If either of the

18.5. Formatting Decimal Objects 169



LassoGuide, Release 9.3

parameters is a string value then the string operation defined by the operator will be performed rather than the arithmetical
operation.

Table 18.1: Arithmetical Operators

Operator Name Description

+ Addition Adds two parameters.

- Subtraction Subtracts the right parameter from the left parameter.

* Multiplication Multiplies two parameters.

/ Division Divides the left parameter by the right parameter.

% Modulo Produces the remainder of dividing the left parameter by the right parameter.

Using Arithmetical Operators

Two numbers can be added using the + operator. The output will be a decimal value if either of the parameters are a decimal
value.

100 + 50
// => 150

100 + -12.5
// => 87.500000

The difference between two numbers can be calculated using the - operator. The output will be a decimal value if either of the
parameters are a decimal value. Note that in the second instance, when subtracting a negative number, the two - operators
must be separated by a space so as not to be confused with the -- operator.

100 - 50
// => 50

100 - -12.5
// => 112.500000

Two numbers can be multiplied using the * operator. The output will be a decimal value if either of the parameters are a
decimal value.

100 * 50
// => 5000

100 * -12.5
// => -1250.000000

18.6.2 Arithmetical Assignment Operators

Each of the operators takes two parameters, one to its left and the other to its right. The first parameter must be a variable
that holds an integer, decimal, or string. The second parameter can be an integer, decimal, or string literal. The result of the
operation is calculated and then stored back in the variable specified as the left-hand parameter.

170 Chapter 18. Math



LassoGuide, Release 9.3

Table 18.2: Arithmetical Assignment Operators

Operator Name Description

= Assign Assigns the right parameter to the variable designated by the left parameter.

+= Add-assign Adds the right parameter to the value of the left parameter and assigns the result to the
variable designated by the left parameter.

-= Subtract-assign Subtracts the right parameter from the value of the left parameter and assigns the result to
the variable designated by the left parameter.

*= Multiply-assign Multiplies the value of the left parameter by the value of the right parameter and assigns
the result to the variable designated by the left parameter.

/= Divide-assign Divides the value of the left parameter by the value of the right parameter and assigns the
result to the variable designated by the left parameter.

%= Modulo-assign Assigns the value of the left parameter modulo the right parameter to the variable
designated by the left parameter.

Using Arithmetical Assignment Operators

A variable can be assigned a new value using the assignment operator (=). The following example shows how to define an
integer variable and then set it to a new value, which is then output:

local(my_variable) = 100
#my_variable = 123456
#my_variable

// => 123456

A variable can be used as a collector by adding new values using the += operator. The following example shows how to define
an integer variable, add several values to it, then output the final value:

local(my_variable) = 100
#my_variable += 123
#my_variable += -456
#my_variable

// => -233

18.6.3 Arithmetical Equality Operators

Each of the arithmetical equality operators takes two parameters, one to its left and the other to its right.

Table 18.3: Arithmetical Equality Operators

Operator Name Description

== Equal Returns “true” if the parameters are equal.

!= Not equal Returns “true” if the parameters are not equal.

< Less Returns “true” if the left parameter is less than the right parameter.

<= Less or equal Returns “true” if the left parameter is less than or equal to the right parameter.

> Greater Returns “true” if the left parameter is greater than the right parameter.

>= Greater or equal Returns “true” if the left parameter is greater than or equal to the right parameter.

18.6. Arithmetical Operations 171



LassoGuide, Release 9.3

Using Arithmetical Equality Operators

Two numbers can be compared for equality using the equality (==) and inequality (!=) operators. The result is a boolean “true”
or “false”. Integers are automatically converted to decimal values when compared with decimals.

100 == 123
// => false

100.0 != -123.0
// => true

100 == 100.0
// => true

100.0 != -123
// => true

Numbers can be compared using the relative equality operators (<, <=, >, >=). The result is a boolean “true” or “false”.

-37 > 0
// => false

100 < 1000.0
// => true

18.7 Basic Math Methods

Lasso contains many methods that can perform mathematical functions. The functionality of some of these methods overlaps
the functionality of the mathematical operators. It is recommended that you use the equivalent operator when one is available.

math_abs(value)
Returns the absolute value of the parameter.

math_add(value, ...)
Returns the sum of all parameters.

math_ceil(value)
Returns the next integer greater than the parameter.

math_convertEuro(value, euroTo::string)
Converts between the Euro and other European Union currencies.

math_div(value, ...)
Divides each of the parameters in order from left to right.

math_floor(value)
Returns the next integer less than the parameter.

math_max(value, ...)
Returns the maximum of all parameters.

math_min(value, ...)
Returns the minimum of all parameters.

math_mod(value, factor)
Returns the value of the first parameter modulo the second parameter.

172 Chapter 18. Math



LassoGuide, Release 9.3

math_mult(value, ...)
Returns the product of multiplying each of the parameters together.

math_random()→ decimal

math_random(upper::integer, lower=0)→ integer

math_random(upper::decimal, lower=0.0)→ decimal

math_random(-upper, -lower)→ integer
If called with no parameters, returns a random number between 0.0 and 1.0. Can also take two parameters, with the
first as the upper bound for the random number, and the second as the lower bound. If the first parameter is an integer,
an integer will be returned, and if it is a decimal, then a decimal will be returned.

Can also be called with -upper and -lower keyword parameters and will then return an integer value regardless of
the types of the objects passed as parameters.

When returning integer values, math_random returns a maximum 32-bit value. The range of returned integers is ap-
proximately between +/- 2,000,000,000.

math_rint(value)
Returns a decimal value rounded to the nearest integer.

math_roman(value)
Returns a string representing the number passed in as a Roman numeral.

math_round(value, factor)
Rounds the first parameter to the precision specified by the second parameter.

18.7.1 Using Basic Math Methods

The following are all examples of using basic math methods to calculate the results of various mathematical operations:

math_add(1, 2, 3, 4, 5)
// => 15

math_add(1.0, 100.0)
// => 101.000000

math_sub(10, 5)
// => 5

math_div(10, 9)
// => 1

math_div(10, 8.0)
// => 1.250000

math_max(100, 200)
// => 200

18.7.2 Round to an Integer

Decimals can be rounded to an integer using the integer creator method, the math_floor method to round to the next
lowest integer, or the math_ceil method to round to the next highest integer:

18.7. Basic Math Methods 173



LassoGuide, Release 9.3

integer(37.6)
// => 38

math_floor(37.6)
// => 37

math_ceil(37.6)
// => 38

18.7.3 Round to Nearest Integer

Decimals can be rounded to the nearest integer using the math_rint method. This method rounds the decimal, but does
not convert it to an integer:

math_rint(37.6)
// => 38.000000

18.7.4 Round to a Specified Precision

Numbers can be rounded to arbitrary precision using the math_round method with a decimal parameter. The second param-
eter should be of the form 0.01, 0.0001, 0.000001, etc.

math_round(3.1415926, 0.0001)
// => 3.141600

math_round(3.1415926, 0.001)
// => 3.142000

math_round(3.1415926, 0.01)
// => 3.140000

math_round(3.1415926, 0.1)
// => 3.100000

Numbers can be rounded to an even multiple of another number using the math_round method with an integer parameter.
The integer parameter should be a power of 10.

math_round(1463, 1000)
// => 1000.000000

math_round(1463, 100)
// => 1500.000000

math_round(1463, 10)
// => 1460.000000

Note: If a rounded result needs to be shown to the user but the actual value stored in a variable does not need to be rounded,
either the integer->asString or decimal->asString method can alter how the number is displayed. See the documen-
tation of these methods earlier in this chapter for more information.

174 Chapter 18. Math



LassoGuide, Release 9.3

18.7.5 Return a Random Integer Value

In the following example a random number between 1 and 100 is returned. The random number will be different each time
the page is loaded.

math_random(100, 1)
// => 55

18.7.6 Return a Random Decimal Value

In the following example a random decimal number between 0.0 and 1.0 is returned. The random number will be different
each time the page is loaded.

math_random(1.0, 0.0)
// => 0.532773

18.7.7 Return a Random Hex Color Value

In the following example a random hexadecimal color code is returned. The random number will be different each time the
page is loaded. The range is from 0 to 255 to return two-digit hexadecimal values between 00 and FF.

local(color) = "#" +
math_random(255,0)->asString(-hexadecimal, -padding=2, -padChar='0') +
math_random(255,0)->asString(-hexadecimal, -padding=2, -padChar='0') +
math_random(255,0)->asString(-hexadecimal, -padding=2, -padChar='0')

'<span style="color: ' + #color + ';">Color</span>'

// => <span style="color: #e64b32;">Color</span>

18.8 Trigonometry and Advanced Math Methods

Lasso provides a number of methods for calculating square roots, logarithms, and exponents, and performing trigonometric
functions.

math_acos(value)
Arc Cosine. Returns the value of taking the arc cosine of the passed parameter. The return value is in radians between
“0” and “π”.

math_asin(value)
Arc Sine. Returns the value of taking the arc sine of the passed parameter. The return value is in radians between “-π/2”
and “π/2”.

math_atan(value)
Arc Tangent. Returns the value of taking the arc tangent of the passed parameter. The return value is in radians between
“-π/2” and “π/2”.

math_atan2(value, factor)
Arc Tangent of a Quotient. Returns the value of taking the angle in radians between the x-axis and coordinates passed
to it. The return value is in radians between “-π” and “π”.

math_cos(value)
Cosine. Returns the value of taking the cosine of the passed parameter.

18.8. Trigonometry and Advanced Math Methods 175



LassoGuide, Release 9.3

math_sin(value)
Sine. Returns the value of taking the sine of the passed parameter.

math_tan(value)
Tangent. Returns the value of taking the tangent of the passed parameter.

math_exp(value)
Natural Exponent. Returns the value of taking e raised to the specified power.

math_ln(value)

math_log(value)
Natural Logarithm. Returns the value of taking the natural log of the passed parameter.

math_log10(value)
Base 10 Logarithm. Returns the value of taking the base 10 log of the passed parameter.

math_pow(value, factor)
Exponent. Returns the value of taking the first parameter and raising it to the value of the second parameter.

math_sqrt(value)
Square Root. Returns the positive square root of the passed parameter. The parameter passed to this method must be
positive.

18.8.1 Using Advanced Math Methods

The following are examples of using some of these advanced math methods to calculate various mathematical operations:

math_pow(3, 3)
// => 27

math_sqrt(100.0)
// => 10.000000

math_acos(-1.0)
// => 3.141593

math_exp(math_log(5))
// => 5.000000

176 Chapter 18. Math



Chapter 19

Date and Duration

This chapter introduces the date and duration types in Lasso. Dates are objects that represent a calendar date and/or clock
time. Durations are objects that represents a length of time in hours, minutes, and seconds. Date and duration objects can
be manipulated using operators, and methods can be used to determine date differences, time differences, and more. Date
objects may also be formatted and converted to a number of predefined or custom formats, and specific information may be
extrapolated from a date object (day of week, name of month, etc.).

19.1 Date Objects

Since dates and durations can take many forms, values that represent a date or a duration must be explicitly converted to a
date or duration object using the date and duration creator methods. For example, a value of “01/01/2002 12:30:00” will be
treated as a string until converted to a date object using the date method:

date('01/01/2002 12:30:00')

Once a value is converted to a date or duration object, special member methods, accessors, conversion operations, and math
operations may then be used.

When performing date operations, Lasso uses its internal date libraries to automatically adjust for leap years and daylight
saving time for the local time zone in all applicable regions of the world (as not all regions recognize daylight saving time). The
current time and time zone are based on that of the computer or web server Lasso is running on.

Note: Lasso extracts daylight saving time information from the operating system. For information on special exceptions with
date calculations during daylight saving time, see the section Date and DurationMath.

19.2 Date Type

For Lasso to recognize a string as a date, the string must be explicitly converted to a date type using the date creator method:

date('5/22/2002 12:30:00')

When converting to a date type using the date creator method, the date formats shown below are automatically recognized
as valid date strings by Lasso. These automatically recognized date formats are U.S. or MySQL dates with a four-digit year
followed by an optional 24-hour time with seconds. The slash (/), hyphen (-), and colon (:) characters are the only punctuation
marks recognized in valid date strings by Lasso when used in the formats shown below.

1/25/2002
1/25/2002 12:34
1/25/2002 12:34:56
1/25/2002 12:34:56 GMT
2002-01-25
2002-01-25 12:34:56
2002-01-25 12:34:56 GMT

177



LassoGuide, Release 9.3

Lasso also recognizes a number of special-purpose date formats which are shown below. These are useful when working with
HTTP headers or email message headers.

20020125123456
20020125T12:34:56
Tue, Dec 17 2002 12:34:56 -0800
Tue Dec 17 12:34:56 PST 2002

The date formats containing time zone information (e.g. “-0800” or “PST”) will be recognized as GMT dates. The time zone will
be used to automatically adjust the date/time to the equivalent GMT date/time.

If using a date format not listed above, custom date formats can be defined using the -format parameter of the date creator
method.

The following variations of the automatically recognized date formats are valid without using the -format parameter:

• If the date creator method is used without a parameter then the current date and time is returned. Milliseconds are
rounded to the nearest second.

• If the time is not specified then it is set to be the current hour when the object is created. For example, “22:00:00” if the
object was created at 10:48:59 PM:

mm/dd/yyyy -> mm/dd/yyyy 22:00:00

• If the seconds are not specified then the time is assumed to be even on the minute:

mm/dd/yyyy hh:mm -> mm/dd/yyyy hh:mm:00

• An optional “GMT” designator can specify Greenwich Mean Time rather than local time:

mm/dd/yyyy hh:mm:ss GMT

• Two-digit years are assumed to be in the 1st century. For best results, always use four-digit years:

mm/dd/00 -> mm/dd/0001
mm/dd/39 -> mm/dd/0039
mm/dd/40 -> mm/dd/0040
mm/dd/99 -> mm/dd/0099

• Days and months can be specified with or without leading “0”s. The following are all valid Lasso date strings:

1/1/2002
01/1/2002
1/01/2002
01/01/2002
01/01/2002 16:35
01/01/2002 16:35:45
GMT 01/01/2002 12:35:45 GMT

19.2.1 Converting Values to Dates

If the value is in a recognized string format described previously, simply use the date creator method:

date('05/22/2002')
// => 05/22/2002

date('05/22/2002 12:30:00')

178 Chapter 19. Date and Duration



LassoGuide, Release 9.3

// => 05/22/2002 12:30:00

date('2002-05-22')
// => 2002-05-22

If the value is not in a string format described previously, use the date creator method with the -format parameter. For
information on how to use the -format parameter, see the section Formatting Dates.

date('5.22.02 12:30', -format='%m.%d.%y %H:%M')
// => 5.22.02 12:30

date('20020522123000', -format='%Y%m%d%H%M')
// => 200205221230

Date values stored in database fields or variables can be converted to a date object using the date creator method. Either the
format of the date stored in the field or variable should be in one of the formats described above or the -format parameter
must be used to explicitly specify the format.

date(#myDate)
date(field('modified_date'))
date(web_request->param('birth_date'))

19.2.2 Date Methods

type date

date()

date(-year=?, -month=?, -day=?, -hour=?, -minute=?, -second=?, -dateGMT=?, -locale::locale=?)

date(date::string, -format::string=?, -locale::locale=?)

date(date::integer, -locale::locale=?)

date(date::decimal, -locale::locale=?)

date(date::date, -locale::locale=?)
All the various creator methods that can create a date object. When called without parameters, it returns a date object
with the current date and time. A date object can be created from properly formatted strings, integers, decimals, and
dates. A date object can also be created by passing valid values to the keyword parameters -second, -minute, -hour,
-day, -month, -year, and -dateGMT. Each creator method also allows for specifying a locale object to use with the
-locale keyword parameter. (By default this is set to what the locale_default method returns.)

date_format(value, format::string)

date_format(value, -format::string)
Returns the passed-in date parameter in the specified format. Requires a date object or any valid objects that can be
converted to a date (it automatically recognizes the same formats as the date creator methods). The format can be
specified as the second parameter or as the value part of a -format keyword parameter and defines the format for the
return value. See the section Formatting Dates below for more details on format strings.

date_setFormat(format::string)
Sets the date format for date objects to use for output for an entire Lasso thread. The required parameter is a format
string.

date_gmtToLocal(value)
Converts the date/time of any object that can be converted to a date object from Greenwich Mean Time to the local
time of the machine running Lasso Server.

19.2. Date Type 179



LassoGuide, Release 9.3

date_localToGMT(value)
Converts the date/time of any object that can be converted to a date object from local time to Greenwich Mean Time.

date_getLocalTimeZone()
Returns the current time zone of the machine running Lasso Server as a standard GMT offset string (e.g. “-0700”). An
optional -long parameter shows the name of the time zone (e.g. “America/New_York”).

date_minimum()
Returns the minimum possible date recognized by a date object in Lasso.

date_maximum()
Returns the maximum possible date recognized by a date object in Lasso.

date_msec()
Returns an integer representing the number of milliseconds recorded on the machine’s internal clock. Can be used for
general timing of code execution.

Display Date Values

The current date/time can be displayed with date. The example below assumes a current date and time of “5/22/2002
14:02:05”:

date
// => 2002-05-22 14:02:05

The date type can assemble a date from individual parameters. The following method assembles a valid Lasso date by spec-
ifying each part of the date separately. Since the time is not specified it is assumed to be the current time the date object is
created in the example below assumes the current date and time of “5/7/2013 15:45:04”:

date(-year=2002, -month=5, -day=22)
// => 2002-05-22 15:45:04

Convert Date Values To and From GMT

Any date object can be converted to and from Greenwich Mean Time (GMT) using the methods date_gmtToLocal and
date_localToGMT. These methods will only convert to and from the current time zone of the machine running Lasso. The
following example uses Eastern Daylight Time (EDT) as the current time zone:

date_gmtToLocal(date('5/22/2002 14:02:05 GMT'))
// => 05/22/2002 10:02:05 EDT

date_localToGMT(date('5/22/2002 14:02:05 EDT'))
// => 05/22/2002 18:02:05 GMT+00:00

Display the Current Time Zone of the Server

The date_getLocalTimeZone method displays the current time zone of the machine running Lasso. The following example
uses Eastern Standard Time (EST) as the current time zone:

date_getLocalTimeZone
// => -0500

date_getLocalTimeZone(-long)
// => America/New_York

180 Chapter 19. Date and Duration



LassoGuide, Release 9.3

Time a Section of Lasso Code

Call the date_msec method to get a clock value before and after the code has executed. The difference in times represents
the number of milliseconds that have elapsed. Note that the date_msec value may occasionally roll back around to zero so
any negative times reported by this code should be disregarded.

local(start) = date_msec

// ... the code to time ...

'The code took ' + (date_msec - #start) + ' milliseconds to process.'
// => The code took 5 milliseconds to process.

19.2.3 Formatting Dates

Various methods take a format string for one of their parameters. A format string is a compilation of symbols that define the
format of the string to be output or parsed. There are two different sets of formatting strings. Detailed in the following table
are the classic formatting symbols, first introduced in earlier versions of Lasso:

Table 19.1: Classic Date Formatting Symbols

Symbol Description

%D U.S. Date Format (mm/dd/yyyy)

%Q MySQL date format (yyyy-mm-dd)

%q MySQL timestamp format (yyyymmddhhmmss)

%r 12-hour time format (hh:mm:ss [AM/PM])

%T 24-hour time format (hh:mm:ss)

%Y 4-digit year

%y 2-digit year

%m month number (01=January, 12=December)

%B full English month name (e.g. “January”)

%b abbreviated English month name (e.g. “Jan”)

%d day of month (01–31)

%w day of week (1=Sunday, 7=Saturday)

%W week of year

%A full English weekday name (e.g. “Wednesday”)

%a abbreviated English weekday name (e.g. “Wed”)

%H 24-hour time hour (0–23)

%h 12-hour time hour (1–12)

%M minute (0–59)

%S second (0–59)

%p AM/PM for 12-hour time

%G GMT time zone indicator (e.g. GMT-05:00)

%z time zone offset in relation to GMT (e.g. +0100, -0800)

%Z time zone designator (e.g. PST, EDT)

%% percent character

Each of the date format symbols that returns a number (except %w) automatically pads that number with “0” so all values
returned by the method are the same length.

19.2. Date Type 181



LassoGuide, Release 9.3

• An optional underscore (_) between the percent sign (%) and the letter designating the symbol specifies that a space
should be used instead of “0” for the padding character, e.g. %_m will return “ 1” for January.

• An optional hyphen (-) between the percent sign (%) and the letter designating the symbol specifies that no padding
should be performed, e.g. %-m will return “1” for January.

Note: For %W, previous versions of Lasso count weeks of the year starting at 0; starting week 1 on the next Monday, and week
52 on the last Monday of the year. The current version starts week 1 on the last Sunday of the previous year if the first day of
the year falls on a Sunday through Wednesday, or the first Sunday of the current year otherwise, in which case the days before
are part of the last week of the previous year.

Note: A date value parsed with the %z or %Z symbols will result in a date object for the equivalent GMT date/time.

As of version 9, Lasso also recognizes ICU date formatting symbols37 for both creating and displaying dates. These format
strings simply use letters to specify the format without any flags (such as the % character). For example, the ICU format string
to output a two-digit year is yy, and to output a four-digit year is yyyy. Because of this, characters that are not symbols need
to be escaped if they are in the format string. To escape characters in an ICU format string, wrap them in single quotes. Use
two consecutive single quotes for a literal single quote.

Table 19.2: ICU Date Formatting Symbols

Symbol Description Example Result

G era designator G, GG, or GGG AD

GGGG Anno Domini

GGGGG A

y year yy 96

y or yyyy 1996

Y year of “Week of Year” Y 1997

u extended year u 4601

U cyclic year name (Chinese lunar calendar) U 甲子
Q quarter Q or QQ 2

QQQ Q2

QQQQ 2nd quarter

q stand alone quarter q or qq 2

qqq Q2

qqqq 2nd quarter

M month in year M or MM 9

MMM Sept

MMMM September

MMMMM S

L stand alone month in year L or LL 9

LLL Sept

LLLL September

LLLLL S

w week of year w or ww 27

Continued on next page

37 http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax

182 Chapter 19. Date and Duration

http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax


LassoGuide, Release 9.3

Table 19.2 – continued from previous page

Symbol Description Example Result

W week of month W 2

d day of month d 2

dd 2

D day of year D 189

F day of week in month F 2 (2nd Wed in July)

g modified Julian day g 2451334

E day of week E, EE, or EEE Tues

EEEE Tuesday

EEEEE T

EEEEEE Tu

e local day of week e or ee 2

eee Tues

eeee Tuesday

eeeee T

eeeeee Tu

c stand alone local day of week c or cc 2

ccc Tues

cccc Tuesday

ccccc T

cccccc Tu

a am/pm marker a pm

h hour in am/pm (1–12) h 7

hh 7

H hour of day (0–23) H 0

HH 0

k hour of day (1–24) k 24

kk 24

K hour in am/pm (0–11) K 0

KK 0

m minute of hour m 4

mm 4

s second of minute s 5

ss 5

S millisecond (maximum of 3 significant digits) S 2

for S or SS, truncates to the number of letters SS 23

SSS 235

for SSSS or longer, fills additional places with 0 SSSS 2350

A milliseconds in day A 61201235

z Time Zone: specific non-location z, zz, or zzz PDT

zzzz Pacific Daylight Time

Z Time Zone: ISO 860138 basic hms? / RFC 82239 Z, ZZ, or ZZZ -800

Time Zone: long localized GMT (=OOOO) ZZZZ GMT-08:00

Continued on next page

19.2. Date Type 183

https://en.wikipedia.org/wiki/ISO_8601
https://tools.ietf.org/html/rfc822.html


LassoGuide, Release 9.3

Table 19.2 – continued from previous page

Symbol Description Example Result

TIme Zone: ISO 8601 extended hms? (=XXXXX) ZZZZZ -08:00, -07:52:58, Z

O Time Zone: short localized GMT O GMT-8

Time Zone: long localized GMT (=ZZZZ) OOOO GMT-08:00

v Time Zone: generic non-location v PT

(falls back first to VVVV) vvvv Pacific Time or Los Angeles Time

V Time Zone: short time zone ID V uslax

Time Zone: long time zone ID VV America/Los_Angeles

Time Zone: time zone exemplar city VVV Los Angeles

Time Zone: generic location (falls back to OOOO) VVVV Los Angeles Time

X Time Zone: ISO 8601 basic hm?, with Z for 0 X -08, +0530, Z

Time Zone: ISO 8601 basic hm, with Z XX -0800, Z

Time Zone: ISO 8601 extended hm, with Z XXX -08:00, Z

Time Zone: ISO 8601 basic hms?, with Z XXXX -0800, -075258, Z

Time Zone: ISO 8601 extended hms?, with Z XXXXX -08:00, -07:52:58, Z

z Time Zone: ISO 8601 basic hm?, without Z for 0 x -08, +0530

Time Zone: ISO 8601 basic hm, without Z xx -800

Time Zone: ISO 8601 extended hm, without Z xxx -08:00

Time Zone: ISO 8601 basic hms?, without Z xxxx -0800, -075258

Time Zone: ISO 8601 extended hms?, without Z xxxxx -08:00, -07:52:58

' begin/end text string 'text' text

'' literal single quote '' ‘

Note: Format strings in Lasso can contain both percent-based formatting as well as ICU formatting in the same string. Because
of this, be sure you properly escape any characters you don’t want treated as format delimiters in your format string. For
example, if the current date was “2013-03-09 20:15:30”, the following code: date->format("day: %A") would produce
“9PM2013: Saturday” as the “day” portion of the format string would be treated as part of ICU formatting. Wrapping in single
quotes mitigates this: date->format("'day: '%A").

Convert Date Strings to Various Formats

The following examples show how to use date_format to output either Lasso date objects or valid Lasso date strings to
alternate formats:

date_format('06/14/2001', -format='%A, %B %d')
// => Thursday, June 14

date_format('06/14/2001', '%a, %b %d')
// => Thu, Jun 14

date_format('2001-06-14', -format='%Y%m%d%H%M')
// => 200106141600

date_format(date('1/4/2002'), '%m.%d.%y')

38 https://en.wikipedia.org/wiki/ISO_8601
39 https://tools.ietf.org/html/rfc822.html

184 Chapter 19. Date and Duration



LassoGuide, Release 9.3

// => 01.04.02

date_format(date('1/4/2002 02:30:00'), -format='%B, %Y')
// => January, 2002

date_format(date('1/4/2002 02:30:00'), '%r')
// => 02:30:00 AM

date_format(date, -format='y-MM-dd')
// => 2013-02-24

Import and Export Dates from MySQL

A common conversion in Lasso is converting MySQL dates to and from U.S. dates. Dates are stored in MySQL in the format
“yyyy-mm-dd”. The following example shows how to import a date in this format and then output it to U.S. date format using
the date_format method:

date_format('2001-05-22', -format='%-D')
// => 5/22/2001

date_format('5/22/2001', -format='%Q')
// => 2001-05-22

date_format(date('2001-05-22'), '%D')
// => 05/22/2001

date_format(date('5/22/2001'), '%Q')
// => 2001-05-22

Set a Custom Date Format for a Thread

Use the date_setFormat method. This allows all date objects in a thread to be output in a custom format without the use of
the date_format or date->format methods. The format specified is only valid for the currently executing thread after the
date_setFormat method has been called:

date_setFormat('%m%d%y')

The example above means that from now on in the currently executing thread, all dates converted to strings will use that
format.

date('01/01/2002')
// => 010102

19.2.4 Date Formatting Methods

In addition to date_format and date_setFormat, Lasso also offers the date->format and date->setFormat member
methods for performing formatting adjustments on date objects.

date->format()

date->format(format::string, -locale::locale=?)

19.2. Date Type 185



LassoGuide, Release 9.3

date->format(-format::string, -locale::locale=?)
Outputs the date object in the specified format. If no format is passed, the current format stored with the object will be
used. Optionally takes a locale object to set its locale.

date->setFormat(format::string)
Sets a date output format for a particular date object. Requires a format string as a parameter.

date->getFormat()
Returns the current format string set for the current date object. This always returns an ICU format string.

date->clear()
Resets the specified fields to their default values. The following fields can be specified as keyword parameters: -second,
-minute, -hour, -day, -week, -month, -year. If no parameters are specified, the entire date is reset to default values.

date->set(...)
Sets one or more elements of the date to a new value. If a field overflows then other fields may be modified as well.
For example, if you have the date “3/31/2008” and you set the month to “2” then the day will be adjusted to “29”
automatically resulting in “2/29/2008”.

Elements must be specified as keyword=value parameters. See the table Date Field Element Parameters for get and
set for the full list of parameters that this method can set.

date->get(...)
Returns the current value for the specified field of the current date object. Only one field value can be fetched at a time.
Note that many of the more common fields can also be retrieved through individual member methods.

See the table Date Field Element Parameters for get and set for the full list of value types that this method can retrieve.

Table 19.3: Date Field Element Parameters for get and set

Parameter Description

-year Specifies the year field for the date.

-month Specifies the month field for the date.

-week Specifies the week field for the date.

-day Specifies the day field for the date.

-hour Specifies the hour field for the date.

-minute Specifies the minute field for the date.

-second Specifies the second field for the date.

-weekofyear Specifies the week of year field for the date.

-weekofmonth Specifies the week of month field for the date.

-dayofmonth Specifies the day of month field for the date.

-dayofyear Specifies the day of year field for the date.

-dayofweek Specifies the day of week field for the date.

-dayofweekinmonth Specifies the day of week in month field for the date.

-ampm Specifies the am/pm field for the date.

-hourofday Specifies the hour of day field for the date.

-zoneoffset Specifies the time zone offset field for the date.

-dstoffset Specifies the DST offset field for the date.

-yearwoy Specifies the year week of year field for the date.

-dowlocal Specifies the local day of week field for the date.

-extendedyear Specifies the extended year field for the date.

-julianday Specifies the julian day field for the date.

-millisecondsinday Specifies the milliseconds in day field for the date.

186 Chapter 19. Date and Duration



LassoGuide, Release 9.3

Convert Date Objects to Various Formats

The following examples show how to output date objects in alternate formats using the date->format method:

local(my_date) = date('2002-06-14 00:00:00')
#my_date->format('%A, %B %d')
// => Friday, June 14

local(my_date) = date('06/14/2002 09:00:00')
#my_date->format('%Y%m%d%H%M')
// => 200206140900

local(my_date) = date('01/31/2002')
#my_date->format('%d.%m.%y')
// => 31.01.02

local(my_date) = date('09/01/2002')
#my_date->format('%B, %Y')
// => September, 2002

Set an Output Format for a Specific Date Object

Use the date->setFormat method. This causes all instances of a particular date object to be output in a specified format:

local(my_date) = date('01/01/2002')
#my_date->setFormat('%m%d%y')

The example above causes all instances of #my_date in the current code to be output in a custom format without the
date_format or date->format methods:

#my_date
// => 010102

Use Locales to Format Dates

The locale type that allows for automatically formatting data such as dates and currency based on known standards for
various locations. Use locale objects to output dates in these standard formats.

type locale

locale(language::string, country::string=?, variant::string=?)
Creates a locale object which can format the output of various data in the manner specified by the locale.

The method requires one parameter which is the 2-letter ISO 63940 code of the language, and accepts optional param-
eters for the 2-letter ISO 316641 country code and a variant code which allows further refinement to the locale.

locale->format(as::date, style::integer=?, andTime::integer=?, addlFlag::integer=?)
Display a date in the format of the given locale. The method requires one parameter which is the date value to be
formatted. When formatting dates, the method accepts up to three additional integer flags which specify different
date/time formatting types.

The following example creates two locale objects (one for the U.S. and one for Canada) and uses them to output the date in
the format for each locale:

40 http://www.loc.gov/standards/iso639-2/
41 http://www.iso.org/iso/prods-services/iso3166ma/02iso-3166-code-lists/country_names_and_code_elements

19.2. Date Type 187

http://www.loc.gov/standards/iso639-2/
http://www.iso.org/iso/prods-services/iso3166ma/02iso-3166-code-lists/country_names_and_code_elements


LassoGuide, Release 9.3

local(my_date) = date('01/01/2005 08:40:33 AM')
local(en_us) = locale('en', 'US')
local(en_ca) = locale('en', 'CA')

#en_us->format(#my_date, 1)
// => January 1, 2005

#en_ca->format(#my_date, 1)
// => 1 January, 2005

19.2.5 Date Accessor Methods

A date accessor method returns a specific integer or string value from a date object, such as the name of the current month
or the seconds of the time.

date->year()
Returns a four-digit integer representing the year for the date object.

date->month(-long::boolean=?, -short::boolean=?)
Returns the numerical month (1=January, 12=December) for the date object. An optional -long parameter returns the
full month name (e.g. “January”) while an optional -short parameter returns an abbreviated month name (e.g. “Jan”).

date->week()

date->weekOfYear()
Returns the numerical week of the year (out of 52) for the date object.

date->weekOfMonth()
Returns the numerical week of the month for the date object.

date->dayOfWeekInMonth()
Returns the numerical day of week in month for the date object.

date->dayOfYear()
Returns the numerical day of the year (out of 365) for the date object. Will work for leap years as well (out of 366).

date->day()

date->dayOfMonth()
Returns the numerical day of the month (e.g. 15) for the date object.

date->dayOfWeek()
Returns the numerical day of the week (1=Sunday, 7=Saturday) for the date object.

date->hour()

date->hourOfDay()
Returns the hour (0–23) for the date object.

date->hourOfAMPM()
Returns the relative hour (1–12) for the date object.

date->minute()
Returns the minute (0–59) for the date object.

date->second()
Returns the second (0–59) for the date object.

date->millisecond()
Returns the millisecond (0–59) for the date object.

188 Chapter 19. Date and Duration



LassoGuide, Release 9.3

date->time()
Returns the time for the date object.

date->ampm()
Returns “0” if the time is before noon and “1” if the time is noon or later.

date->am()
Returns “true” if the time is in the morning (before noon), otherwise returns “false”.

date->pm()
Returns “true” if the time is in the evening (noon or after), otherwise returns “false”.

date->timezone()
Returns the set time zone for the date object. Defaults to the current time zone of the server.

date->zoneOffset()
Returns the time zone offset field for the date object.

date->gmt()
Returns “true” if the date object is in GMT time and “false” if it is in local time.

date->dst()
Returns “true” if the date object is in daylight saving time and “false” if it is not.

date->dstOffset()
Returns the daylight saving time (DST) offset field for the date object. Returns “0” if the date for the time zone is not
experiencing daylight savings.

date->asInteger()
Returns “epoch time”, the number of seconds from 1/1/1970 to the time of the date object.

Using Date Accessors

The individual parts of a date object can be displayed using the date type member methods:

date('5/22/2002 14:02:05')->year
// => 2002

date('5/22/2002 14:02:05')->month
// => 5

date('2/22/2002 14:02:05')->month(-long)
// => February

date('5/22/2002 14:02:05')->day
// => 22

date('5/22/2002 14:02:05')->dayOfWeek
// => 4

date('5/22/2002 14:02:05')->time
// => 14:02:05

date('5/22/2002 14:02:05')->hour
// => 14

date('5/22/2002 14:02:05')->minute
// => 2

19.2. Date Type 189



LassoGuide, Release 9.3

date('5/22/2002 14:02:05')->second
// => 5

The date->millisecond method can only return the current number of milliseconds (as related to the clock time) for the
machine running Lasso:

date->millisecond
// => 957

19.3 Duration Type

A duration is a special type that represents a length of time. A duration is not a 24-hour clock time, and may represent any
number of hours, minutes, or seconds.

Similar to dates, durations must be created using duration creator methods before they can be manipulated. Durations may
be converted from a “hours:minutes:seconds”-formatted string, or just as seconds.

duration('1:00:00')
// => 1:00:00

duration(3600)
// => 1:00:00

Once an object has been created as a duration type, duration calculations and accessors may then be used. Durations are
especially useful for calculating lengths of time under 24 hours, though they can be used for any lengths of time. Durations
are based on start and end date/time objects. These start and end date/times are either specified when creating the duration
or the current date/time is used as the start date/time while the end date/time is calculated based on the specified length for
the duration.

19.3.1 Duration Methods

type duration

duration(time::string)

duration(time::integer)

duration(start::date, end::date)

duration(start::string, end::string)

duration(-year=?, -week=?, -day=?, -hour=?, -minute=?, -second=?)
Creates a duration object. Requires a duration value as a string in the form 'hours:minutes:seconds', an integer
number of seconds, or a start and end date specified as either dates or strings that can be converted to dates. Or, specify
one or more of the following keyword parameters with a value to add the amount of time indicated by the name of
the keyword parameter: -year, -week, -day, -hour, -minute, or -second.

duration->year()
Returns the integer number of years in a duration (based on the specified start and end date or based on a start date
of when the duration object was created with an end date dependant on the specified length of time).

duration->month()
Returns the integer number of months in a duration (based on the specified start and end date or based on a start date
of when the duration object was created with an end date dependant on the specified length of time).

190 Chapter 19. Date and Duration



LassoGuide, Release 9.3

duration->week()
Returns the integer number of weeks in the duration.

duration->day()
Returns the integer number of days in the duration.

duration->hour()
Returns the integer number of hours in the duration.

duration->minute()
Returns the integer number of minutes in the duration.

duration->second()
Returns the integer number of seconds in the duration.

Create and Display Durations

Durations can be created using the duration creator method with the -week, -day, -hour, -minute, and -second parame-
ters. This always returns a duration object whose duration->asString method returns a string in “hours:minutes:seconds”
format.

duration(-week=5, -day=3, -hour=12)
// => 924:00:00

duration(-day=4, -hour=2, -minute=30)
// => 98:30:00

duration(-hour=12, -minute=45, -second=50)
// => 12:45:50

duration(-hour=3, -minute=30)
// => 03:30:00

duration(-minute=15, -second=30)
// => 00:15:30

duration(-second=30)
// => 00:00:30

Specific elements of time can be returned from a duration using the accessor member methods.

duration('8766:30:45')->year
// => 1

duration('8766:30:45')->month
// => 12

duration('8766:30:45')->week
// => 52

duration('8766:30:45')->day
// => 365

duration('8766:30:45')->hour
// => 8766

duration('8766:30:45')->minute
// => 525990

19.3. Duration Type 191



LassoGuide, Release 9.3

duration('8766:30:45')->second
// => 31559445

19.4 Date and Duration Math

Date calculations can be performed by using special date_… methods, date member methods, and operators. Date calcu-
lations that can be performed include adding or subtracting year, month, week, day, and time increments to and from dates,
and calculations with durations.

Important: Lasso does not account for changes to and from daylight saving time when performing date math and duration
calculations. One should take this into consideration when performing a date or duration calculation across dates that encom-
pass a change to or from daylight saving time, as the resulting date may be off by an hour.

19.4.1 Date Math Methods

Lasso provides a few top-level methods for performing date calculations. These methods are summarized below.

date_add(value, -millisecond::integer=?, -second::integer=?, -minute::integer=?, -hour::integer=?, -day::integer=?,
-week::integer=?, -month::integer=?, -year::integer=?)

Returns a date value generated by adding a specified amount of time to a specified date object or valid date string. The
first parameter is a date object or valid value that can be converted to a date. Keyword/value parameters define what
should be added to the first parameter.

date_subtract(value, -millisecond::integer=?, -second::integer=?, -minute::integer=?, -hour::integer=?, -day::integer=?,
-week::integer=?, -month::integer=?, -year::integer=?)

Returns a date value generated by subtracting a specified amount of time from a specified date value. The first parameter
is a Lasso date object or valid value that can be converted to a date. Keyword/value parameters define what should be
subtracted from the first parameter.

date_difference(value, when, ...)
Returns the time difference between two specified dates. A duration is the default return value. These optional param-
eters may be used to output a specific integer time value instead of a duration: -millisecond, -second, -minute,
-hour, -day, -week, -month, or -year.

Add Time to a Date

Using the date_add method, a specified number of hours, minutes, seconds, days, or weeks can be added to a date object or
valid value that can be converted to a date. The following examples show the result of adding different values to the current
date of “5/22/2002 14:02:05”:

date_add(date, -second=15)
// => 2002-05-22 14:02:20

date_add(date, -minute=15)
// => 2002-05-22 14:17:05

date_add(date, -hour=15)
// => 2002-05-23 05:02:05

date_add(date, -day=15)

192 Chapter 19. Date and Duration



LassoGuide, Release 9.3

// => 2002-06-06 14:02:05

date_add(date, -week=15)
// => 2002-09-04 14:02:05

date_add(date, -month=6)
// => 2002-11-22 14:02:05

date_add(date, -year=1)
// => 2003-05-22 14:02:05

Subtract Time from a Date

Using the date_subtract method, a specified number of hours, minutes, seconds, days, or weeks can be subtracted a date
object or valid value that can be converted to a date. The following examples show the result of subtracting different values
from the date “5/22/2001 14:02:05”:

date_subtract(date('5/22/2001 14:02:05'), -second=15)
// => 05/22/2001 14:01:50

date_subtract(date('5/22/2001 14:02:05'), -minute=15)
// => 05/22/2001 13:47:05

date_subtract(date('5/22/2001 14:02:05'), -hour=15)
// => 05/21/2001 23:02:05

date_subtract('5/22/2001 14:02:05', -day=15)
// => 05/7/2001 14:02:05

date_subtract('5/22/2001 14:02:05', -week=15)
// => 02/6/2001 14:02:05

Determine the Duration Between Two Dates

Use the date_difference method. The following examples show how to calculate the time difference between two date
object or valid values that can be converted to a date:

date_difference(date('5/23/2002'), date('5/22/2002'))
// => 24:00:00

date_difference(date('5/23/2002'), date('5/22/2002'), -second)
// => 86400

date_difference(date('5/23/2002'), '5/22/2002', -minute)
// => 1440

date_difference(date('5/23/2002'), '5/22/2002', -hour)
// => 24

date_difference('5/23/2002', date('5/22/2002'), -day)
// => 1

date_difference('5/23/2002', date('5/30/2002'), -week)
// => -1

19.4. Date and Duration Math 193



LassoGuide, Release 9.3

date_difference('5/23/2002', '6/23/2002', -month)
// => -1

date_difference('5/23/2002', '5/23/2001', -year)
// => 1

19.4.2 Date Math Member Methods

A number of member methods are used for performing date math operations on date objects, such as adding durations to
dates, subtracting a duration from a date, and determining a duration between two dates. These methods are summarized
below.

date->add(...)
Adds a specified amount of time to a date object. Can pass a duration object or specify the amount of time by passing
keyword parameters to define what values should be added to the object: -second, -minute, -hour, -day, -week,
-month, or -year.

date->roll(...)
Likedate->add, this method adds the specified amount of time to the current date object. However, unlikedate->add,
only the specified field is adjusted. For example, rolling 60 minutes doesn’t change the date at all since the minute field
will roll back to its original value and the hour field will not be modified. Valid fields to roll are -second, -minute, -hour,
-day, -week, -month, or -year.

date->subtract(...)
Subtracts a specified amount of time from a date object. Can pass a duration object or specify the amount of time by
passing keyword/value parameters to define what should be subtracted from the object: -millisecond, -second,
-minute, -hour, -day, or -week.

date->difference(when, ...)
Calculates the duration between two date objects. The first parameter must be a valid value that can be converted to
a date. By default, this method returns a duration object, but will return an integer time value if one of the following
optional parameter is specified: -millisecond, -second, -minute, -hour, -day, -week, -month, or -year.

date->daysBetween(other::date)
Requires another date object as a parameter and returns the number of days between the current date object and the
specified date object.

date->businessDaysBetween(other::date)
Requires another date object as a parameter and returns the number of business days between the current date object
and the specified date object.

date->hoursBetween(other::date)
Requires another date object as a parameter and returns the number of hours between the current date object and the
specified date object.

date->minutesBetween(other::date)
Requires another date object as a parameter and returns the number of minutes between the current date object and
the specified date object.

date->secondsBetween(other::date)
Requires another date object as a parameter and returns the number of seconds between the current date object and
the specified date object.

Note: The date->add, date->roll, and date->subtractmethods do not return any values, but are instead used to change
the value of the object calling them.

194 Chapter 19. Date and Duration



LassoGuide, Release 9.3

Add Time to a Date

Use the date->add method. The following examples show how to add a duration to a date and display that date:

local(my_date) = date('5/22/2002')
#my_date->add(duration('24:00:00'))
#my_date
// => 05/23/2002

local(my_date) = date('5/22/2002 00:00:00')
#my_date->add(duration(3600))
#my_date
// => 05/22/2002 01:00:00

local(my_date) = date('5/22/2002')
#my_date->add(-week=1)
#my_date
// => 05/29/2002

Subtract Time from a Date

Use the date->subtract method. The following examples show how to subtract a duration from a date object and display
that date:

local(my_date) = date('5/22/2002')
#my_date->subtract(duration('24:00:00'))
#my_date
// => 05/21/2002

local(my_date) = date('5/22/2002 00:00:00')
#my_date->subtract(duration(7200))
#my_date
// => 05/21/2002 22:00:00

local(my_date) = date('5/22/2002')
#my_date->subtract(-day=3)
#my_date
// => 05/19/2002

Determine the Duration Between Two Dates

Use the date->difference method. The following examples show how to calculate the time difference between two dates
and display as a duration:

local(my_date) = date('5/15/2002 00:00:00')
#my_date->difference(date('5/22/2002 01:30:00'))
// => 169:30:00

local(my_date) = date('5/15/2002')
#my_date->difference(date('5/22/2002'), -day)
// => 7

19.4. Date and Duration Math 195



LassoGuide, Release 9.3

19.4.3 Date Math Operators

Date and duration math can also be performed using math operators in a manner similar to integer objects. If a date or duration
appears to the left of a math operator then the appropriate math operation will be performed and the result will be a date or
duration as appropriate.

date->+(rhs)
A duration can be added to a date or two durations summed using the + operator.

date->-(rhs)
A duration can be subtracted from a date or duration or the duration between two dates can be determined using the
- operator.

Add or Subtract Dates and Durations

The following examples show addition and subtraction operations using dates and durations:

date('5/22/2002') + duration('24:00:00')
// => 05/23/2002

date('5/22/2002') - duration('48:00:00')
// => 05/20/2002

Determine the Duration Between Two Dates

The following calculates the duration between two dates using the subtraction operator (-):

date('5/22/2002') - date('5/15/2002')
// => 168:00:00

Add One Day to the Current Date

The following example adds one day to the current date:

date + duration(-day=1)
// => 2007-10-30 18:03:27

Return the Duration Between Now and a Future Date

The following example returns the duration between the current date and 12/31/2250:

date('12/31/2250') - date
// => 2079000:56:08

196 Chapter 19. Date and Duration



Chapter 20

Regular Expressions

The regular expression type in Lasso allows for powerful search and replace operations on strings and byte streams. This
chapter details how the regular expression type works and other Lasso methods that use regular expressions.

20.1 Regular Expression Structure

A regular expression is a pattern that describes a sequence of characters that you want to search for in a target (or input) string.
Regular expressions consist of letters or digits that simply match themselves, wildcards that match any character in a class
such as whitespace or digits, and combining symbols that expand wildcards to match several characters rather than just one.
Lasso uses the ICU Regular Expressions package42 for its support of regular expressions.

Note: Full documentation of regular expression methodology is outside the scope of this guide. Consult a standard reference
on regular expressions for more information about how to use this flexible technology.

20.1.1 Basic Matchers

The simplest regular expression is just a pattern containing letters or digits. The regular expression bird is said to match the
string “bird”. The regular expression 123matches the string “123”. The regular expression is matched against an input string by
comparing each character in the regular expression to each character in the input string, one after another. Regular expressions
are normally case-sensitive so the regular expression John would not match the string “john”.

Unicode characters within a regular expression work the same as any other character. The escape sequence \u2FB0 with the
four-digit hex value for a Unicode character can also be used in place of any actual character (within regular expressions or
any Lasso strings). The escape sequence \u2FB0 represents a Chinese character.

Regular expressions can also match part of a string. The regular expression bird is found starting at position 3 in the string “A
bird in the hand”.

A regular expression can contain wildcards that match one of a set of characters. [Jj] is a wildcard which matches either an
uppercase “J” or a lowercase “j”. The regular expression [Jj]ohn will match either the string “John” or the string “john”. The
wildcard[aeiou]matches any lowercase vowel. The wildcard[a-z]matches any lowercase roman letter. The wildcard[0-9]
matches any arabic digit. The wildcard [a-zA-Z] matches any uppercase or lowercase roman letter. If a Unicode character
is used in a character range then any characters between the hex value for the two characters are matched. The wildcard
[\u2FB0-\u2FBF] will match 16 different Chinese characters.

The period (.) is a special wildcard that matches any single character. The regular expression .. would match any
two-character string including “be”, “12”, or even “  ” (two spaces). The period will match any ASCII or Unicode character in-
cluding punctuation or most whitespace characters. It will not match return or newline characters.

A number of other predefined wildcards are available. The predefined wildcards are all preceded by a backslash (\).

42 http://userguide.icu-project.org/strings/regexp

197

http://userguide.icu-project.org/strings/regexp


LassoGuide, Release 9.3

Many of the predefined wildcards come in pairs. The wildcard \s matches any whitespace character including tabs, spaces,
returns, or newlines. The wildcard \Smatches any non-whitespace character. The wildcard \wmatches any alphanumeric char-
acter or underscore. The “w” is said to stand for “word” since these are all characters that may appear within a word. The wildcard
\W matches non-word characters. The wildcard \d matches any arabic digit and the wildcard \D matches any non-digit. For
example, the regular expression \w\w\w would match any three-character word such as “cat” or “dog”. The regular expression
\d\d\d-\d\d\d\d-\d\d\d\d would match a standard North American phone number in the form “360-555-1212”.

The predefined wildcards only work on standard ASCII strings. There is a special pair of wildcards \p and \P that allow matching
different characters in a Unicode string. The wildcard is specified as\p{Property}. A list of properties can be found in the table
below. For example, the wildcard \p{L}matches any Unicode letter character, the wildcard \p{N}matches any Unicode digit,
and the wildcard \p{P} matches any Unicode punctuation characters. The \P{Property} wildcard is the opposite. \P{L}
matches any Unicode character that is not a letter.

Many characters have special meanings in regular expressions including [ ] ( ) { } . * + ? ^ $ \ |. In order to match
one of these characters literally it is necessary to use a backslash in front of it, e.g. \[ matches a literal opening square bracket
rather than starting a character range.

It is important to remember that double- or single-quoted string literals use a backslash for escape sequences, so a double
backslash is required to use the predefined wildcards and to escape special characters. You can avoid having to use a double
backslash by specifying the regular expression using ticked string literals. However, the use of ticked string literals makes it
difficult to match common escape sequences such as returns (\r) or newlines (\n). It is recommended that you use ticked
string literals for all of your regular expressions until you need one of these escape sequences, and then that you concatenate
in a non-ticked string literal for these sequences. For example, the following string concatenation would create a regular
expression that matches a letter followed by a tab followed by a digit:

local(my_regexp) = `\w` + "\t" + `\d`

Basic Matching Strings

Below is a listing of basic matchers and a brief definition. Matches are case-sensitive by default. Be sure to note whether quoted
or ticked string literals are being used.

`.`
Period matches any single character except a line break.

`[ ]`
Character class. Matches any character contained between the square brackets.

`[^ ]`
Character exception class. Matches any character that is not contained between the square brackets.

`[a-z]`
Lowercase character range. Matches any character between the two specified.

`[A-Z]`
Uppercase character range.

`[a-zA-Z]`
Combination character range matching any letter.

`[0-9]`
Numeric character range.

"\t"
Matches a tab character.

"\r"
Matches a return character.

198 Chapter 20. Regular Expressions



LassoGuide, Release 9.3

"\n"
Matches a newline character.

`"`
Matches a double quote.

`'`
Matches a single quote.

`\x##`
Matches a single ISO-8859-1 character. The number signs should be replaced with the 2-digit hex value for the character.

`\u####`
Matches a single Unicode character. The number signs should be replaced with the 4-digit hex value (code point) for the
Unicode character.

`\p{ }`
Matches a single Unicode character with the stated property. (The available properties are listed next.)

`\P{ }`
Matches a single Unicode character that does not have the stated property. (The available properties are listed next.)

`\w`
Matches an alphanumeric “word” character, including underscores.

`\W`
Matches a non-alphanumeric character (whitespace or punctuation).

`\s`
Matches a blank, whitespace character. Equivalent to [\t\n\f\r\p{Z}].

`\S`
Matches a non-blank, non-whitespace character.

`\d`
Matches a digit character. Equivalent to [0-9].

`\D`
Matches a non-digit character.

`\`
Escapes the next character. This allows any symbol to be specified as a matching character including the reserved charac-
ters [ ] ( ) { } . * + ? ^ $ \ |.

The following table lists the property symbols that can be used with the \p and \P wildcards. The main symbol (e.g. \p{L})
will match all of the characters that are matched by each of the variants.

Table 20.1: Unicode Property Symbols

Symbol Property Variants Description

L letter Lu Uppercase Letter

Ll Lowercase Letter

Lt Titlecase Letter

Lm Modifier Letter

Lo Other Letter

N number Nd Decimal Digit Number

Nl Letter Number

No Other Number

Continued on next page

20.1. Regular Expression Structure 199



LassoGuide, Release 9.3

Table 20.1 – continued from previous page

Symbol Property Variants Description

P punctuation character Pc Connector Punctuation

Pd Dash Punctuation

Ps Open Punctuation

Pe Close Punctuation

Pi Initial Punctuation

Pf Final Punctuation

Po Other Punctuation

S symbol Sm Math Symbol

Sc Currency Symbol

Sk Modifier Symbol

So Other Symbol

Z separator (typically whitespace) Zs Space Separator

Zl Line Separator

Zp Paragraph Separator

M mark Mn Non-Spacing Mark

Mc Spacing Combining Mark

Me Enclosing Mark

C “other” character Cc Control

Cf Format

Cs Surrogate

Co Private Use

Cn Not Assigned

20.1.2 Combining Symbols

Combining symbols allow expanding wildcards to match entire substrings rather than individual characters. For example,
the wildcard [a-z] matches one lowercase letter and needs to be repeated three times to match a three letter word
[a-z][a-z][a-z]. Instead, the combining symbol {3} can be used to specify that the preceding wildcard should be re-
peated three times [a-z]{3}.

The combining symbol + matches one or more repetitions of the preceding matcher. The expression [a-z]+ matches any
string of lowercase letters. This expression matches the strings “a”, “green”, or “international”. It does not match “$1,544,897.00”
because that string does not contain any lowercase letters.

The combining symbol + can be used with the .wildcard to match any string of one or more characters (.+), with the wildcard
\w to match any word (\w+), or with the wildcard \s to match one or more whitespace characters (\s+). The + symbol can
also be used with a simple letter to match one or more repetitions of the letter. The regular expression Me+t matches both
the string “Met” and the string “Meet”, not to mention “Meeeeeet”.

The combining symbol * matches zero or more repetitions of the preceding matcher. The * symbol can be used with the
generic wildcard . to match any string of characters (.*). The * symbol can be used with the whitespace wildcard \s to
match a string of whitespace characters. For example, the expression \s*cat\s* will match the string “cat”, but also the
string “ cat ”.

Braces are used to designate a specific number of repetitions of the preceding wildcard. When the braces contain a single
number they designate that the preceding wildcard should be matched exactly that number of times. For example, [a-z]{3}
matches any three lowercase letters. When the braces contain two numbers they allow for any number of repetitions from
the lower number to the upper number. The pattern [a-z]{3,5} matches any three to five lowercase letters. If the second

200 Chapter 20. Regular Expressions



LassoGuide, Release 9.3

number is omitted then the braces function similarly to a +, e.g. [a-z]{3,} matches any string of lowercase letters with a
length of 3 or longer.

The symbol ? on its own makes the preceding matcher optional. For example, the expression mee?t will match either the
string “met” or “meet” since the second “e” is optional, but it won’t match “meeeet”.

When used after a +, *, or braces the ?makes the match non-greedy. Normally, a subexpression will match as much of the input
string as possible. The expression <.*> will match a string that begins and ends with angle brackets. It will match the entire
string "<b>Bold Text</b>". With the non-greedy option the expression <.*?> will match the shortest string possible. It
will now match just the first part of the string "<b>" and a second application of the expression will match the last part of the
string "</b>".

+
Matches 1 or more repetitions of the preceding symbol.

*
Matches 0 or more repetitions of the preceding symbol.

?
Makes the preceding symbol optional.

{n}
Braces. Matches “n” repetitions of the preceding symbol.

{n,}
Matches at least “n” repetitions of the preceding symbol.

{n,m}
Matches at least “n”, but no more than “m” repetitions of the preceding symbol.

+?
Non-greedy variant of the plus sign; matches the shortest string possible.

*?
Non-greedy variant of the asterisk; matches the shortest string possible.

{ }?
Non-greedy variant of braces; matches the shortest string possible.

20.1.3 Groupings

Groupings have two purposes in regular expressions: they allow designating portions of a regular expression as groups that can
be used in a replacement pattern, and they allow building more complex regular expressions from simple regular expressions.

Parentheses are used to designate a portion of a regular expression as a replacement group. Most regular expressions are used
to perform find/replace operations so this is an essential part of designing a pattern. Note that if parentheses are meant to be
a literal part of the pattern then they need to be escaped as \( and \). The regular expression <b>(.*?)</b> matches an
HTML bold tag. The contents of the tag are designated as a group. If this regular expression is applied to the string "<b>Bold
Text</b>" then the pattern matches the entire string and “Bold Text” is designated as the first group.

Similarly, a phone number could be matched by the regular expression ((d{3})) (d{3})-(d{4}) with three groups. The
first group represents the area code (note that the parentheses appear in both escaped form \( \) to match literal opening
and closing parentheses and normal form ( ) to designated a grouping). The second group represents the prefix and the
third group the subscriber number. When the regular expression is applied to the string “(360) 555-1212” then the pattern
matches the entire string and generates the groups “360”, “555”, and “1212”.

Parentheses can also be used to create a subexpression that does not generate a replacement group using (?:). This form can
be used to create subexpressions that function much like very complex wildcards. For example, the expression (?:blue)+will
match one or more repetitions of the subexpression “blue”. It will match the strings “blue”, “blueblue” or “blueblueblueblue”.

20.1. Regular Expression Structure 201



LassoGuide, Release 9.3

The | symbol can be used to specify alternation. It is most useful when used with subexpressions. The expression (?
:blue)|(?:red) will match either the word “blue” or the word “red”.

( )
Grouping for output. Defines a numbered group for output. Up to nine groups can be defined.

(?: )
Grouping without output. Can be used to create a logical grouping that should not be assigned to an output.

|
Alternation. Matches either the characters before or the characters after the symbol. May appear within a group to limit
the alternation boundary.

20.1.4 Replacement Expressions

When regular expressions are used for find/replace operations the replacement expression can contain placeholders into
which the defined groups from the search expression are substituted. The placeholder $0 represents the entire matched
string. The placeholders $1 through $9 represent the first nine groupings as defined by parentheses in the regular expression.

The regular expression <b>(.*?)</b> from above matches an HTML bold tag with the contents of the tag designated as a
group. The replacement expression <em>$1</em>will essentially replace the bold tags with emphasis tags without disrupting
the tags’ contents, e.g. the string "<b>Bold Text</b>" would become "<em>Bold Text</em>" after such a find/replace
operation.

The phone number expression ((d{3})) (d{3})-(d{4}) from above matches a phone number and creates three groups
for the parts of the phone number. The replacement expression $1-$2-$3 would rewrite the phone number to be in a more
standard format. For example, the string “(360) 555-1212” would result in “360-555-1212” after a find/replace operation.

$0–$9
Names a group in the replace string. $0 represents the entire matched string. Up to nine groups can be specified using
the digits 1 through 9.

Tip: To place a literal $ in a replacement string, escape it as \$.

20.1.5 Advanced Expressions

The ICU library also supports a number of more advanced symbols for special purposes. Some of these symbols are listed in
the following table, but a reference on regular expressions should be consulted for full documentation of these symbols and
other advanced concepts. A list of regular expression flags follows.

(?# )
Regular expression comment. The contents are not interpreted as part of the regular expression.

(?i)
Sets a flag to make the remainder of the regular expression case-insensitive. Similar to specifying -ignoreCase.

(?-i)
Sets the remainder of the regular expression to be case-sensitive (the default).

(?i: )
The contents of this group will be matched case-insensitive and the group will not be added to the output.

(?-i: )
The contents of this group will be matched case-sensitive and the group will not be added to the output.

202 Chapter 20. Regular Expressions



LassoGuide, Release 9.3

(?= )
Positive lookahead assertion. The contents are matched following the current position, but not added to the output pat-
tern.

(?! )
Negative lookahead assertion. The same as above, but the content must not match following the current position.

(?<= )
Positive lookbehind assertion. The contents are matched preceding the current position, but not added to the output
pattern. The length of possible strings matched by lookbehinds cannot be unbounded (no * or + operators).

(?<! )
Negative lookbehind assertion. The same as above, but the contents must not match preceding the current position.

`\b`
Matches the boundary between a word and a space. Does not properly interpret Unicode characters. The transition be-
tween any regular ASCII character (matched by \w) and a Unicode character is seen as a word boundary.

`\B`
Matches a boundary not between a word and a space.

`\A`
Matches the beginning of the input.

`\Z`
Matches the end of the input.

`^`
Matches the beginning of the input, or the line if the m flag is set.

`$`
Matches the end of the input, or the line if the m flag is set.

Regular Expression Flags

i
Sets matching to be case-insensitive.

x
Allows whitespace in comments and patterns.

s
Allows the . character to also match line break characters.

m
Allows the characters ^ and $ to match the start and end of lines, respectively. By default these will only match at the start
and end of the input.

w
Changes the behavior of \b so that word boundaries are defined according to Unicode Standard Annex #2943 .

20.2 Regexp Type

The regexp type allows a regular expression to be defined once and then reused many times. It facilitates simple search
operations, splitting strings, and interactive find/replace operations.

43 http://www.unicode.org/reports/tr29/

20.2. Regexp Type 203

http://www.unicode.org/reports/tr29/


LassoGuide, Release 9.3

The regexp type has some advantages over the string_… methods that perform regular expression operations. Perfor-
mance can be increased by creating a regular expression once and then reusing it multiple times. The type has a number of
member methods that allow access to the stored regular expressions and input and output of strings, performing find/replace
operations, or acting as components in an interactive find/replace operation. These are described below.

20.2.1 Creating Regular Expression Objects

type regexp

regexp(find::string, replace::string, input::string, ignorecase::boolean)

regexp(find::string, replace::string=?, input::string=?, -ignoreCase::boolean=?)

regexp(-find::string, -replace::string=?, -input::string=?, -ignoreCase::boolean=?)
The regexp creator method creates a reusable regular expression. A regexp object must be initialized with a string
regular expression pattern as either the first parameter or as the argument of a -find keyword parameter. The type will
also store a replacement pattern, and input string passed as either the second and third parameters or specified with
the -replace or -input keyword parameter, respectively. These can be overridden with particular member methods.
The type also has an -ignoreCase option which controls whether regular expressions are applied with case sensitivity
or not.

A regular expression can be created that explicitly specifies the find pattern, replacement pattern, input string, and
optionally with the -ignoreCase option. Using a fully qualified regular expression that is output to the page (rather
than being stored in a variable) is an easy way to perform a quick find/replace operation.

regexp(`[aeiou]`, 'x', 'The quick brown fox jumped over the lazy dog.')->replaceAll
// => Thx qxxck brxwn fxx jxmpxd xvxr thx lxzy dxg.

However, a regular expression will usually be stored in a variable and then later run against an input string. The following
code stores a regular expression with a find and replace pattern into the variable “my_regexp”. The following section
Simple Find/Replace and Split Methods will show how this regular expression can be applied to strings.

local(my_regexp) = regexp(-find=`[aeiou]`, -replace=`x`, -ignoreCase)

regexp->findPattern()
Returns the find pattern.

regexp->replacePattern()
Returns the replacement pattern.

regexp->input()
Returns the input string.

regexp->ignoreCase()
Returns “true” if the -ignoreCase flag has been set, otherwise returns “false”.

regexp->groupCount()
Returns an integer specifying how many groups were found in the find pattern.

regexp->output()
Returns the output string.

For example, the regular expression above can be inspected by the following code. The group count is “0” since the find
expression does not contain any groups (designated by parentheses):

'FindPattern: ' + #my_regexp->findPattern + '\n'
'ReplacePattern: ' + #my_regexp->replacePattern + '\n'
'IgnoreCase: ' + #my_regexp->ignoreCase + '\n'
'GroupCount: ' + #my_regexp->groupCount + '\n'

204 Chapter 20. Regular Expressions



LassoGuide, Release 9.3

// =>
// FindPattern: [aeiou]
// ReplacePattern: x
// IgnoreCase: true
// GroupCount: 0

20.2.2 Simple Find/Replace and Split Methods

The regexp type provides two member methods that perform a find/replace on an input string and one method that splits
an input string into an array. These methods are documented with examples below, and are shortcuts for longer operations
that can be performed using the interactive methods described in the next section.

regexp->replaceAll(replace::string)

regexp->replaceAll(-input=?, -find=?, -replace=?, -ignoreCase=?)
The first listed incarnation of this method allows changing the replacement string. The second will replace all occur-
rences of the current find pattern with the current replacement pattern. The -input parameter specifies what string
should be operated on. If no input is provided then the input stored in the regular expression object is used. If desired,
new -find and -replace patterns can also be specified within this method along with the -ignoreCase flag.

regexp->replaceFirst(-input=?, -find=?, -replace=?, -ignoreCase=?)
Replaces the first occurrence of the current find pattern with the current replacement pattern. The -input parameter
specifies what string should be operated on. If no input is provided then the input stored in the regular expression
object is used. If desired, new -find and -replace patterns can also be specified within this method along with the
-ignoreCase flag.

regexp->split(-input=?, -find=?, -replace=?, -ignoreCase=?)
Splits the string using the regular expression as a delimiter and returns a staticarray of substrings. The -input parameter
specifies what string should be operated on. If no input is provided then the input stored in the regular expression
object is used. If desired, new -find and -replace patterns can also be specified within this method along with the
-ignoreCase flag.

Use the Same Regular Expression on Multiple Inputs

The same regular expression can be used on multiple inputs by first creating the regular expression using one of the regexp
creator methods and then calling regexp->replaceAll with a new -input as many times as necessary. Since the regular
expression is only created once this technique can be considerably faster than using the string_replaceRegExp method
repeatedly.

local(my_regexp) = regexp(-find=`[aeiou]`, -replace=`x`, -ignoreCase)
#my_regexp->replaceAll(-input='The quick brown fox jumped over the lazy dog.')
#my_regexp->replaceAll(-input='Lasso Server')

// =>
// Thx qxxck brxwn fxx jxmpxd xvxr thx lxzy dxg.
// Lxssx Sxrvxr

The replace pattern can also be changed if necessary. The following code changes both the input and replace patterns each
time the regular expression is used:

local(my_regexp) = regexp(-find=`[aeiou]`, -replace=`x`, -ignoreCase)
#my_regexp->replaceAll(-input='The quick brown fox jumped over the lazy dog.', -replace=`y`)
#my_regexp->replaceAll(-input='Lasso Server', -replace=`z`)

20.2. Regexp Type 205



LassoGuide, Release 9.3

// =>
// Thy qyyck brywn fyx jympyd yvyr thy lyzy dyg.
// Lzssz Szrvzr

The replacement pattern can reference groups from the input using $1 through $9. The following example uses a regular
expression to clean up the formatting on a couple of telephone numbers:

local(my_regexp) = regexp(`\((\d{3})\) (\d{3})-(\d{4})`, `$1-$2-$3`)
#my_regexp->replaceAll(-input='(360) 555-1212')
#my_regexp->replaceAll(-input='(800) 555-1212')

// =>
// 360-555-1212
// 800-555-1212

Split a String Using a Regular Expression

The regexp->split method can split a string using a regular expression as the delimiter. This allows strings to be split into
parts using sophisticated criteria. For example, rather than splitting a string on a comma, the “and” before the last item can be
taken into account. Or, rather than splitting a string on space, the string can be split into words taking punctuation and other
whitespace into account.

The same regular expression from the example above can split a string into substrings. In this case the string will be split on
vowels, generating a staticarray with elements containing only consonants or spaces:

local(my_regexp) = regexp(-find=`[aeiou]`, -replace=`x`, -ignoreCase)

#my_regexp->split(-input='The quick brown fox jumped over the lazy dog.')
// => staticarray(Th, q, , ck br, wn f, x j, mp, d , v, r th, l, zy d, g.)

The -find pattern can be modified in-place within the regexp->split method to split the string on a different regular
expression. In this example the string is split on any one of one or more non-word characters. This splits the string into words
not including any whitespace or punctuation.

#my_regexp->split(-find=`\W+`, -input='The quick brown fox jumped over the lazy dog.')
// => staticarray(The, quick, brown, fox, jumped, over, the, lazy, dog)

If the -find expression contains groups then they will be returned in the array in between the split elements. For exam-
ple, surrounding the -find pattern above with parentheses will result in an array of alternating word elements and whites-
pace/punctuation elements.

#my_regexp->split(-find=`(\W+)`, -input='The quick brown fox jumped over the lazy dog.')
// => staticarray(The, , quick, , brown, , fox, , jumped, , over, , the, , lazy, , dog, .)

20.2.3 Interactive Find/Replace Methods

The regexp type provides a collection of member methods that make interactive find/replace operations possible. Interactive
in this case means that Lasso code can intervene in each replacement as it happens. Rather than performing a simple one-shot
find/replace like those shown in the last section, it is possible to programmatically determine the replacement strings using
database searches or any logic.

The order of operations of an interactive find/replace operation is as follows:

1. The regular expression object is initialized with a -find pattern and -input string. In this example the find pattern will
match each word in the input string in turn:

206 Chapter 20. Regular Expressions



LassoGuide, Release 9.3

local(my_regexp) = regexp(
-find=`\w+`,
-input='The quick brown fox jumped over the lazy dog.',
-ignoreCase

)

2. A while loop is used to advance the regular expression match with regexp->find. Each time through the loop the
pattern is advanced one match forward. If there are no further matches then the method returns “false” and the loop is
exited:

while(#my_regexp->find) => {
// ...

}

3. Within the while loop the regexp->matchString method is used to inspect the current match. If the find pattern
had groups then they could be inspected here by passing an integer parameter to regexp->matchString:

local(match) = #my_regexp->matchString

4. The match is manipulated. For this example the match string will be reversed using the string->reverse method.
This will reverse the word “lazy” to be “yzal”:

#match->reverse

5. The modified match string is now appended to the output string using the regexp->appendReplacement method.
This method will automatically append any parts of the input string that weren’t matched (the spaces between the
words):

#my_regexp->appendReplacement(#match)

6. After the while loop the regexp->appendTail method is used to append the unmatched end of the input string to
the output (the period at the end of the example input):

#my_regexp->appendTail

7. Finally, the output string from the regular expression object is displayed:

#my_regexp->output
// => ehT kciuq nworb xof depmuj revo eht yzal god.

This same basic order of operation is used for any interactive find/replace operation. The power of this methodology comes in
the fourth step where the replacement string can be generated using any code necessary, rather than needing to be a simple
replacement pattern.

regexp->find(position::integer=?)
Advances the regular expression one match in the input string. Returns “true” if the regular expression was able to find
another match, otherwise returns “false”. Defaults to checking from the start of the input string (or from the end of the
most recent match), but an optional integer parameter can be passed to set the position in the input string at which to
start the search.

regexp->matchString(group::integer=?)
Returns a string containing the last pattern match. An optional integer parameter specifies a group from the find pattern
to return, defaulting to returning the entire pattern match.

regexp->matchPosition(group::integer=?)
Returns a pair containing the start position and length of the last pattern match. An optional integer parameter specifies
a group from the find pattern to return, defaulting to returning information about the entire pattern match.

20.2. Regexp Type 207



LassoGuide, Release 9.3

regexp->appendReplacement(pattern::string)
Performs a replace operation on the current pattern match and appends the result onto the output string. Requires a
single parameter specifying the replacement pattern including group placeholders $0–$9. Automatically appends any
unmatched runs from the input string.

regexp->appendTail()
The final step in an interactive find/replace operation. Appends the final unmatched run from the input string into the
output string.

regexp->reset(-input=?, -find=?, -replace=?, -ignoreCase=?)
Resets the object. If called with no parameters, the input string is set to the output string. Accepts optional -find,
-replace, -input, and -ignoreCase parameters.

regexp->matches(position::integer=?)
Returns “true” if the pattern matches the entire input string. An optional integer parameter sets the position in the input
string at which to start the search.

regexp->matchesStart(position::integer=?)
Returns “true” if the pattern matches a substring of the input string. Defaults to checking the start of the input string.
An optional integer parameter sets the position in the input string at which to start the search.

Perform an Interactive Find/Replace Operation

This example searches for variable names with a dollar sign in an input string and replaces them with variable values. An
interactive find/replace operation is used so that the existence of each variable can be checked dynamically as the string is
processed.

The string has several words replaced by variable references and each replacement is defined with a replacement word in a
map.

local(my_string) = 'The quick $color fox $verb over the lazy $animal.'
local(replacements) = map(

'color' = "red",
'verb' = "soared",
'animal' = "ocelot"

)

A regular expression is initialized with the input string and a pattern that looks for words beginning with a dollar sign. The word
itself is defined as a group within the find pattern. A while loop uses regexp->find to advance through all the matches in
the input string. The method regexp->matchString with a parameter of “1” returns the map key for each match. If this key
exists then its value is substituted back into output string using regexp->appendReplacement, otherwise, the full match
is substituted back into the output string with the replacement pattern $0. Finally, any remaining unmatched input string is
appended to the end of the output string using regexp->appendTail.

local(my_regexp) = regexp(-find=`\$(\w+)`, -input=#my_string, -ignoreCase)
while(#my_regexp->find) => {

#my_regexp->appendReplacement(
#replacements->find(#my_regexp->matchString(1)) or `$0`

)
}
#my_regexp->appendTail

After the operation has completed the output string is displayed:

#my_regexp->output
// => The quick red fox soared over the lazy ocelot.

208 Chapter 20. Regular Expressions



LassoGuide, Release 9.3

20.3 String Methods Taking Regular Expressions

The string_findRegExp and string_replaceRegExp methods can perform regular expression find and replace routines
on text strings.

string_findRegExp(input, -find::string, -ignoreCase=?)
Requires two parameters: a string value and a -find keyword parameter. Returns an array with each instance of the
-find regular expression in the string parameter. An optional -ignoreCase parameter uses case-insensitive patterns.

string_replaceRegExp(input, -find::string, -replace::string, -ignoreCase=?, -replaceOnlyOne=?)
Requires three parameters: a string value, a -find keyword parameter, and a -replace keyword parameter. Returns
an array with each instance of the -find regular expression replaced by the value of the -replace string parameter.
An optional -ignoreCase parameter uses case-insensitive parameters, and an optional -replaceOnlyOne parameter
replaces only the first pattern match.

20.3.1 Matching Patterns Using string_findRegExp

The string_findRegExp method returns an array of items that match the specified regular expression within the string. The
array contains the full matched string in the first element, followed by each of the matched subexpressions in subsequent
elements.

In the following example, every email address in a string is returned in an array:

string_findRegExp(
'Send email to address@example.com.',
-find=`\w+@\w+\.\w+`

)

// => array(address@example.com)

In the following example, every email address in a string is returned in an array and subexpressions are used to divide the
username and domain name portions of the email address. The result is an array with the entire match string, then each of
the subexpressions.

string_findRegExp(
'Send email to address@example.com.',
-find=`(\w+)@(\w+\.\w+)`

)

// => array(address@example.com, address, example.com)

In the following example, every word in the source is returned in an array. The first character of each word is separated as a
subexpression. The returned array contains 16 elements, one for each word in the source string and one for the first character
subexpression of each word in the source string.

string_findRegExp(
`The quick brown fox jumped over a lazy dog.`,
-find=`(\w)\w*`

)

// => array(The, T, quick, q, brown, b, fox, f, jumped, j, over, o, a, a, lazy, l, dog, d)

The resulting array can be divided into two arrays using the following code. This code loops through the array (stored in
result_array) and places the odd elements in the array word_array and the even elements in the array char_array.

20.3. String Methods Taking Regular Expressions 209



LassoGuide, Release 9.3

local(word_array, char_array) = (: array, array)
local(result_array) = string_findRegExp(

`The quick brown fox jumped over a lazy dog.`,
-find=`(\w)\w*`

)
with key in #result_array->keys
let value = #result_array->get(#key)
do {

if(#key % 2 == 0) => {
#char_array->insert(#value)

else
#word_array->insert(#value)

}
}

#word_array
// => array(The, quick, brown, fox, jumped, over, a, lazy, dog)

#char_array
// => array(T, q, b, f, j, o, a, l, d)

In the following example, every phone number in a string is returned in an array. The \d symbol is used to match individual
digits and the {3} symbol is used to specify that three repetitions must be present. The parentheses are escaped \( and \)
so they aren’t treated as grouping characters.

string_findRegExp(
'Phone (800) 555-1212 for information.',
-find=`\(\d{3}\) \d{3}-\d{4}`

)

// => array((800) 555-1212)

In the following example, only words contained between HTML bold tags are returned. Positive lookahead and lookbehind
assertions are used to find the contents of the tags without the tags themselves. Note that the pattern inside the assertions
uses a non-greedy modifier.

string_findRegExp(
'This is some <b>sample text</b>!',
-find=`(?<=<b>).+?(?=</b>)`

)

// => array(sample text)

20.3.2 Replacing Values Using string_replaceRegExp

In the following example, every occurrence of the world “Blue” in the string is replaced by the HTML code <span
style="color: blue;">Blue</span> so that the word “Blue” appears in blue on the web page. The -find parameter
is specified so either a lowercase or uppercase “b” will be matched. The -replace parameter references $1 to insert the
actual value matched into the output.

string_replaceRegExp(
'Blue Lake sure is blue today.',
-find=`([Bb]lue)`,
-replace=`<span style="color: blue;">$1</span>`

)

210 Chapter 20. Regular Expressions



LassoGuide, Release 9.3

// => <span style="color: blue;">Blue</span> Lake sure is <span style="color: blue;">blue</span> today.

In the following example, every email address is replaced by an HTML anchor tag that links to the same email address. The
\w symbol is used to match any alphanumeric characters or underscores. The at sign (@) matches itself. The period must be
escaped (\.) in order to match an actual period and not just any character. This pattern matches any email address of the
format name@example.com:

string_replaceRegExp(
'Send email to address@example.com.',
-find=`(\w+@\w+\.\w+)`,
-replace=`<a href="mailto:$1">$1</a>`

)

// => Send email to <a href="mailto:address@example.com">address@example.com</a>.

20.3. String Methods Taking Regular Expressions 211





Chapter 21

Collections

Lasso provides a variety of collection data types for storing data in an ordered and unordered manner. Objects of these types
contain zero or more other arbitrary objects. Built-in support is provided for common collection types such as arrays, lists,
maps, and others.

21.1 Ordered Collection Types

Ordered collections store their elements positioned by the order in which they are inserted. The element inserted first into an or-
dered collection will always be first unless subsequently repositioned. Lasso provides support for pair, array, staticarray,
list, queue, and stack types.

21.1.1 Pair Type

type pair
Pairs are one of the most basic of collections. A pair always contains two elements. These are referred to as the “first”
and “second” elements and are accessed through methods of the same name.

Creating Pair Objects

pair()

pair(p::pair)

pair(value, value)

pair(value=value)
A pair is created in one of four ways. First, a zero parameter call to the pair method will generate a pair with the first
and second values set to “null”. Second, a pair can be created by passing it another pair. This will set the first and second
values to the first and second values from the passed pair. Third and fourth, a pair can be created by specifying the first
and second values as parameters or a key and value when calling the pair method.

Using Pair Objects

pair->first()

pair->second()
Returns the first or second element of a pair.

pair->first=(value)

pair->second=(value)
Sets the first or second element of a pair to the passed value.

213



LassoGuide, Release 9.3

21.1.2 Array Type

type array
Array objects store zero or more elements and provide random access to those elements by position. Positions are
1-based integers. Arrays will grow as needed to accommodate new elements. Elements can be inserted and removed
from arrays at any position. However, inserting an element in any position except at the end of an array results in all
subsequent elements being moved down. Therefore, arrays are best used when inserting or removing only at the end
of the array.

Creating Array Objects

array()

array(value, ...)
An array can be created with zero or more parameters. All parameters passed to the arraymethod will be inserted into
the new array.

Using Array Objects

array->insert(value, position::integer=?)
Adds a new element to the array. Elements are added to the end of the array by default, but a second parameter permits
the position of the insertion to be specified. Position 1 is at the beginning of the array. Position zero and negative
positions will cause the method to fail. A position larger than the size of the array will insert the element at the end.

array->remove(position::integer=?)

array->remove(position::integer, count::integer)

array->removeAll(matching=?)
Removes one or more elements from the array. Calling remove with no parameters removes the last element from the
array, while remove with a position parameter will remove the element from that location. All subsequent elements
will then be moved up to fill the slot. A second count parameter can be specified to remove more than one element,
starting from the specified position.

The removeAll method with no parameters will remove all elements from the array. The second form takes one pa-
rameter. All elements in the array to which the parameter compares equally will be removed.

array->get(position::integer)

array->get=(value, position::integer)
The getmethod returns the element located at the specified position. The method will fail if the position is out of range.
The setter version of this method allows the position to be assigned a new value, e.g.:

#array->get(2) = "I am the second element!"

array->sub(position::integer, count::integer=?)
Returns a range of elements from the array. The first parameter specifies the starting position and an optional second
parameter can specify how many of the elements to return.

array->first()

array->second()

array->last()
Returns the first, second, and last elements from the array, respectively. If the array does not have an element for that
position, “null” will be returned.

array->contains(matching)→ boolean

214 Chapter 21. Collections



LassoGuide, Release 9.3

array->count(matching)→ integer

array->findPosition(matching, startPosition=1)

array->find(matching)
Searches the array for elements matching the parameter. The contains method returns “true” if the matching param-
eter compares equally to any contained elements. The count method returns the number of matching elements. The
findPosition method returns the position at which the next matching element can be found, which can accept an
optional second parameter specifying where the search should begin. The findmethod returns a new array containing
all of the matched objects.

array->size()→ integer
Returns the number of elements in the array.

array->sort(ascending::boolean=true)
Performs a sort on the elements. Elements are repositioned in either ascending or descending order depending on the
given parameter.

array->join(delimiter::string=’‘)→ string
Joins all the elements as strings with the delimiter parameter between each.

Example of joining an array of numbers:

array(1, 2, 3, 4, 5)->join(', ')
// => 1, 2, 3, 4, 5

array->asStaticArray()→ staticarray
Returns the array’s elements in a new staticarray.

array->+(rhs::trait_forEach)→ array
Arrays can be combined with other collection types by using the + operator. A new array containing all the elements is
returned.

Example of combining an array, staticarray, and pair into a new array:

array(1, 2, 3, 4, 5) + (: '6', '7', '8') + pair('nine', 'ten')
// => array(1, 2, 3, 4, 5, 6, 7, 8, nine, ten)

21.1.3 Staticarray Type

type staticarray
A staticarray is a collection object that is created with a fixed size and is not resizable. Positions within the staticarray
can be reassigned different objects, but new positions cannot be added or removed. Staticarrays are designed to be
as efficient as possible both in the time used to create a new object and in the memory used for the object itself. The
elements of a staticarray are accessed randomly, like an array, with 1-based positions.

Lasso provides a shortcut for creating staticarray objects through the (:) syntax. This syntax begins with an open
parenthesis followed by a colon, then zero or more elements, finalized by a closing parenthesis.

Creating Staticarray Objects

staticarray()

staticarray(value, ...)

staticarray_join(count::integer, value)
The first two methods create a new staticarray given zero or more elements. The last method, staticarray_join,
creates a new staticarray of the given size with each element filled by the value given as the second parameter.

21.1. Ordered Collection Types 215



LassoGuide, Release 9.3

Example of creating a few staticarrays:

// staticarray with no elements
(:)

// staticarray with variety of elements
(: 1, 2, 8, 'Hi!', pair(1, 2))

// staticarray with 12 elements set to void
staticarray_join(12, void)

Using Staticarray Objects

staticarray->get(position::integer)

staticarray->get=(value, position::integer)
The get method returns the element at the specified position. It will fail if the position is out of range. The get method
also permits a position to be reassigned with an assignment statement in the same manner as array->get=.

staticarray->first()

staticarray->second()

staticarray->last()
The first, second, and last methods return the corresponding element or “null” if there is no element at the position.

staticarray->contains(matching)→ boolean

staticarray->findPosition(matching, startPosition=1)

staticarray->find(matching)
Searches the staticarray for elements matching the parameter. The contains method returns “true” if the matching
parameter compares equally to any contained elements. The findPositionmethod returns the position at which the
next matching element can be found, which can accept an optional startPosition parameter specifying where the
search should begin. The find method returns a new array containing all of the matched objects.

staticarray->join(count::integer, value)→ staticarray

staticarray->join(s::staticarray)→ staticarray
Combines the staticarray with other elements to create a new staticarray. The first method adds the number of positions
specified by the first parameter and fills them with the value specified by the second parameter. The second method
combines the staticarray with the passed staticarray to produce a new staticarray containing the elements from both.

Example of joining new elements into a new staticarray:

(: 1, 2, 3)->join(5, 'Hi')
// => staticarray(1, 2, 3, Hi, Hi, Hi, Hi, Hi)

(: 1, 2, 3)->join((: 4, 5, 6))
// => staticarray(1, 2, 3, 4, 5, 6)

staticarray->sub(position::integer, count::integer=?)→ staticarray
The sub method returns a range of elements. The first parameter specifies the starting position and an optional second
parameter can specify how many elements to return. The elements are returned as a new staticarray.

staticarray->+(s::staticarray)→ staticarray

staticarray->+(value)→ staticarray
The + operator can be used with staticarrays to create a new staticarray with the additional elements. The first variant

216 Chapter 21. Collections



LassoGuide, Release 9.3

returns a new staticarray with all the elements from the two staticarrays, and the second returns a staticarray with all
the elements of the first and the additional element on the right-hand side of the operator.

21.1.4 List Type

type list
A list presents a series of objects stored in a linked manner. Elements can be efficiently added or removed from a list at
the end or the beginning, but cannot be added into the middle. Lists do not support random access, so the only way
to get particular elements from a list is through one of the iterative constructs such as query expressions.

Creating List Objects

list()

list(value, ...)
The list method creates a new list object using the parameters given as the elements for the list.

Using List Objects

list->insertFirst(value)

list->insertLast(value)

list->insert(value)
Inserts new elements into the list. Elements can be inserted at the beginning or the ending of the list. The insert
method with no parameters inserts at the end of the list.

list->removeFirst()

list->removeLast()

list->remove()
Removes an element from the list. Either the first or the last element can be removed. The remove method with no
parameters removes the last element.

list->removeAll(matching=?)
The first removeAll method with no parameters removes every element from the list. The second form accepts a
parameter to compare against each element. All matching elements are removed from the list.

list->first()

list->last()
Returns the first and last elements, respectively.

list->contains(matching)→ boolean
Compares the given parameter against the elements in the list. Returns “true” if the list contains a match.

21.1.5 Queue Type

type queue
Queue objects store data in a “first in, first out” (FIFO) manner. Elements can efficiently be inserted into the end of the
queue (called “pushing”) and removed from the front of the queue (called “popping”). Queues do not support random
access, so the only way to get particular elements from a queue is through one of the iterative constructs such as query
expressions.

21.1. Ordered Collection Types 217



LassoGuide, Release 9.3

Creating Queue Objects

queue()

queue(value, ...)
Creates a queue object using the parameters passed to it as the elements of the queue.

Using Queue Objects

queue->insert(value)

queue->insertLast(value)

queue->insertFrom(value::trait_forEach)
Inserts new elements into the queue. Elements will always be inserted at the end of the queue. The insert-
From method allows for multiple elements to be inserted into the queue by taking an object that implements
trait_forEach.

queue->first()

queue->get()
Returns the first element in the queue. (This is the least recently inserted element.) The get method additionally re-
moves the element from the queue.

queue->size()
Returns the number of elements in the queue.

queue->remove()

queue->removeFirst()
Removes the first element in the queue. (This is the least recently inserted element.)

queue->unspool(i::integer=?)
Returns a staticarray of the elements in the queue and removes them from the queue. The number of elements to
return and remove can be specified as an integer parameter to this method.

21.1.6 Stack Type

type stack
Deprecated since version 9.2: Use array instead.

Stack objects store data in a “last in, first out” (LIFO) manner. Elements can efficiently be inserted into the beginning
of the stack (called “pushing”) and removed from the beginning of the stack (called “popping”). Stacks do not support
random access, so the only way to get particular elements from a stack is through one of the iterative constructs such
as query expressions.

Creating Stack Objects

stack()

stack(value, ...)
Creates a stack object using the parameters passed to it as the elements of the stack.

218 Chapter 21. Collections



LassoGuide, Release 9.3

Using Stack Objects

stack->insert(value)

stack->insertFirst(value)
Inserts new elements into the stack. Elements will always be inserted at the beginning of the stack.

stack->first()

stack->get()
Returns the first element in the stack. (This is the most recently inserted element.) The getmethod additionally removes
the element from the stack.

stack->size()
Returns the number of elements in the stack.

stack->remove()

stack->removeFirst()
Removes the first element in the stack. (This is the most recently inserted element.)

21.2 Unordered Collection Types

Unordered collections store their elements without position-based ordering. Lasso supports two unordered collection types:
map and set. Maps provide access to the elements via separate keys. Sets store only the elements themselves.

21.2.1 Map Type

type map
Maps are used to store values along with associated keys. An element can later be found given the key value with which
it was inserted. New elements can be inserted or removed freely from a map. Only one element can be stored for any
given key and inserting a duplicate key will replace any existing element.

The keys used in a map can be of any type, provided that type has a suitable onCompare method. Keys must compare
themselves consistently such that if A < B then always B >= A. Most built-in Lasso types, such as strings, integers, and
decimals, fit this criteria.

Creating Map Objects

map()

map(p::pair, ...)

map(key=value, ...)
A map is created with zero or more key/value pair parameters. Any non-pair parameters given are inserted as a key with
a “null” value.

Example of creating a map with a series of parameters using string-based keys:

local(myMap) = map(
'C' = 247,
'L' = "Hi!",
'G' = 97.401,
'N' = array(4, 5, 6)

)

21.2. Unordered Collection Types 219



LassoGuide, Release 9.3

Using Map Objects

map->insert(p::pair, ...)

map->insert(key=value, ...)
Inserts a new key/value pair into the map. If the key specified already exists, it is replaced.

map->remove(key)

map->removeAll(matching=?)
The first method, remove, removes the specified key/value from the map. If the key does not exist in the map then no
action is taken. The second method, removeAll with no parameters, removes all of the keys/values from the map. If
called with a parameter, all keys matching that parameter are removed.

map->get(key)

map->get=(value, key)

map->find(key)

map->contains(key)→ boolean
Fetches particular elements from the map or tests that a key is contained within the map. The get method finds the
element within the map associated with the key and returns the value, or reassigns it if a new value is assigned. If the
key is not found the method will fail. The find method will search for the key within the map and return the value if
it exists. If the key is not found, the method will return “void”. The contains method will return “true” if the matching
parameter compares equally to any contained elements.

map->size()→ integer
Returns the number of elements contained within the map.

21.2.2 Set Type

type set
A set contains only unique elements. Each element is itself a key. Sets support quickly determining if an object is con-
tained within it. Elements within a set must be able to onCompare themselves just as described for map keys.

Creating Set Objects

set()

set(key, ...)
A set is created with zero or more element parameters. The element values are inserted into the set.

Using Set Objects

set->find(key)

set->get(key)

set->contains(key)→ boolean
Fetches the given key within the set. Thefindmethod will return the key if it is found, or “void” if the key is not contained
in the set. The get method will return the key, but will fail if the key is not contained in the set. The contains method
will return “true” if the key is contained in the set.

set->insert(key)
Inserts the key into the set. Any duplicate key value is replaced.

set->remove(key)

220 Chapter 21. Collections



LassoGuide, Release 9.3

set->removeAll()
The remove method removes the specified key from the set. If the key is not contained within the set then no action is
taken. The removeAll method removes all keys from the set.

21.2. Unordered Collection Types 221





Chapter 22

Encryption

Lasso provides a set of data encryption methods which support the most common encryption and hash functions used on
the Internet today. These encryption methods make it possible to interoperate with other systems that require encryption and
to store data in a secure fashion within data sources or files.

Lasso has built-in methods for the BlowFish encryption algorithm and for the SHA1 and MD5 hash algorithms.

Lasso’s cipher methods provide access to a wide range of industry-standard encryption algorithms. The cipher_listmethod
lists which algorithms are available on your system and the cipher_encrypt, cipher_decrypt, and cipher_digestmeth-
ods allow values to be encrypted, decrypted, or digest values to be generated, respectively.

22.1 Encryption Methods

Lasso provides a number of methods that encrypt data for secure storage or transmission. Three different types of encryption
are supplied:

BlowFish
This is a fast, popular encryption algorithm. Lasso provides tools to encrypt and decrypt string values using a
developer-defined seed. This is the best method to use for data that needs to be stored in a database or transmitted
securely and decrypted later.

MD5
This is a one-way cryptographic hash algorithm that is often used to verify file integrity. MD5 is generally considered un-
suitably weak for security purposes.

SHA1
This is a one-way cryptographic hash algorithm that is often used for passwords. There is no way to decode data that has
been hashed using SHA1.

encrypt_blowfish(plaintext, -seed::string)
Encrypts a string using the industry-standard BlowFish algorithm. Requires two parameters: a string to be encrypted
and a -seed keyword parameter with the key or password for the encryption. Returns an encrypted bytes object.

The BlowFish methods are not binary-safe, so the output of the method will be truncated after the first null character.
It is necessary to use encode_base64, encode_hex, or encode_utf8 prior to using this method to encrypt data that
might contain binary characters.

decrypt_blowfish(cipherText, -seed::string)
Decrypts a byte stream encrypted using the industry-standard BlowFish algorithm. Requires two parameters: a byte
stream to be decrypted and a -seed keyword parameter with the key or password for the decryption. Returns a de-
crypted bytes object.

encrypt_md5(data::bytes)→ string

encrypt_md5(data::any)→ string
Hashes a string using the one-way MD5 hash algorithm. Requires one parameter, the data to be hashed. Returns a
fixed-size hash value in hexadecimal as a string.

223



LassoGuide, Release 9.3

encrypt_hmac(-password, -token, -digest=?, -base64::boolean=?, -hex::boolean=?, -cram::boolean=?, ...)
Generates a keyed hash message authentication code for a given input and password. The method requires a
-password parameter to specify the key for the hash and a -token parameter to specify the text message that is
to be hashed. These parameters should be specified as a string or as a byte stream. The digest algorithm used for the
hash can be specified using an optional -digest parameter, defaulting to “MD5”. “SHA1” is another common option.
However, any of the digest algorithms returned by cipher_list(-digest) can be used.

The output is a bytes object by default. The -base64 parameter specifies the output should be a Base64 encoded
string. The -hex parameter specifies the output should be a hex format string like “0x0123456789abcdef”. The -cram
parameter specifies the output should be in a cram hex format like “0123456789ABCDEF”.

22.1.1 BlowFish Seeds

BlowFish requires a seed in order to encrypt or decrypt a string. The same seed that was used to encrypt data using the
encrypt_blowfish method must be passed to the decrypt_blowfish method to decrypt that data. If you lose the key
used to encrypt data then the data will be essentially unrecoverable.

Seeds can be any string between 4 characters and 112 characters long. Pick the longest string possible to ensure a secure
encryption. Ideal seeds contain a mix of letters, digits, and punctuation.

Caution: The security considerations of storing, transmitting, and hard-coding seed values is beyond the scope of this
book. The examples that follow present methodologies that are easy to use, but may not provide the highest level of
security possible. You should consult a security expert if security is very important for your website.

22.1.2 Store Encrypted Data in a Database

Use the encrypt_blowfish and decrypt_blowfish methods to encrypt data that will be stored in a database and then
decrypt the data when it is retrieved from the database.

In the example below, the data in the variable “plaintext” is encrypted and stored in the “ciphertext” variable. This is then used
to store the data in the “ciphertext” field of the “people” table in the “contacts” database.

local(plaintext) = 'The data to be encrypted.'
local(ciphertext) = encrypt_blowfish(#plaintext, -seed='My Insecure Seed')

inline(
-add,
-database='contacts',
-table='people',
-keyField='id',
'first_name'='John',
'last_name'='Doe',
'ciphertext'=encode_base64(#ciphertext)

) => {}

The example below retrieves the record created above and places the Base64-decoded value of the “ciphertext” field in a
variable of the same name. It then decrypts the data into the “plaintext” variable and displays that variable.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'first_name'='John',

224 Chapter 22. Encryption



LassoGuide, Release 9.3

'last_name'='Doe'
) => {

local(ciphertext) = decode_base64(field('ciphertext'))
}

local(plaintext) = decrypt_blowfish(#ciphertext, -seed='My Insecure Seed')
#plaintext

// => The data to be encrypted.

22.1.3 Store and Check Hashed Passwords

The encrypt_md5 method can store a hashed version of a password for a site visitor. On every subsequent visit, the password
given by the visitor is hashed using the same method and compared to the stored value. If they match, the visitor has supplied
the same password they initially created.

The following example takes a visitor-supplied password from a form and stores it hashed using MD5 into the “people” table
in the “contacts” database:

local(visitor_password) = web_request->param('password')
inline(

-add,
-database='contacts',
-table='people',
-keyField='id',
'first_name'='John',
'last_name'='Doe',
'username'='dodo',
'password'=encrypt_md5(#visitor_password)

) => {}

On subsequent visits, the visitor would be prompted for their username and password. The following example shows how to
verify the credentials they supply via a form:

local(username) = web_request->param('username')
local(password) = web_request->param('password')

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'username'=#username,
'password'=encrypt_md5(#password)

) => {
local(is_authenticated) = (found_count > 0)

}
if(#is_authenticated) => {

// ... login successful ...
else

// ... credentials don't match ...
}

Important: For more security, most login solutions require both a username and a password. Also, many login solutions restrict
the number of login attempts that they will accept from a client’s IP address, use salts, and iterate over the hashing algorithm

22.1. Encryption Methods 225



LassoGuide, Release 9.3

thousands of times. Again, you should consult a security expert if security is very important for your website.

22.2 Cipher Methods

Lasso includes a set of methods that allow access to a wide variety of encryption algorithms. These cipher methods provide
implementations of many industry-standard encryption methods and can be very useful when communicating using Internet
protocols or communicating with legacy systems. The cipher_list method can list which algorithms are supported on a
particular Lasso installation.

Note: The actual list of supported algorithms may vary between Lasso installations depending on the platform and system
version. The algorithms listed in this guide should be available on all systems, but other more esoteric algorithms may be
available on some systems and not on others.

cipher_encrypt(data, -cipher::string, -key, -seed=?)→ bytes
Encrypts a string using a specified algorithm. Requires three parameters: the data to be encrypted, a -cipher keyword
parameter specifying which algorithm to use, and a -key keyword parameter specifying the key for the algorithm. An
optional -seed parameter can seed some algorithms with a random component.

cipher_decrypt(data, -cipher::string, -key, -seed=?)→ bytes
Decrypts a string using a specified algorithm. Requires three parameters: the data to be decrypted, a -cipher keyword
parameter specifying which algorithm to use, and a -key keyword parameter specifying the key for the algorithm. An
optional -seed parameter can seed some algorithms with a random component.

cipher_digest(data, -digest, -hex::boolean=?)→ bytes
Hashes data using a specified digest algorithm. Requires two parameters: the data to be encrypted and a -digest
parameter that specifies the algorithm to be used. An optional -hex parameter will encode the result as a hexadecimal
string.

cipher_list(-digest::boolean=?)
Lists the algorithms that the cipher methods support. With an optional -digest parameter, it returns only digest algo-
rithms.

The following list some of the cipher algorithms that can be used with cipher_encrypt and some of the digest algorithms
that can be used with cipher_digest. Use cipher_list for a full list of supported algorithms.

AES
Advanced Encryption Standard. A symmetric key encryption algorithm which is the replacement for DES. An implementa-
tion of the Rijndael algorithm.

DES
Data Encryption Standard. A block cipher developed by IBM in 1977 and previously used as the government standard
encryption algorithm for years.

3DES
Triple DES. This algorithm uses the DES algorithm three times in succession with different keys.

RSA
A public key algorithm named after Rivest, Shamir, and Adleman. One of the most commonly used encryption algorithms.
(Note that Lasso does not generate public/private key pairs.)

DSA
Digital Signature Algorithm. Part of the Digital Signature Standard. Can be used to sign messages, but not for general
encryption.

226 Chapter 22. Encryption



LassoGuide, Release 9.3

SHA1
Secure Hash Algorithm. Produces a 160-bit hash value. Used by DSA.

MD5
Message Digest. A hash function that generates a 128-bit message digest. Replaces the MD4 and MD2 algorithms (which
are also supported). Also implemented in Lasso as encrypt_md5.

22.2.1 List All Supported Algorithms

Use the cipher_list method. The following example returns a list of all the cipher algorithms supported by this installation
of Lasso:

cipher_list
// => staticarray(DES-ECB, DES-EDE, DES-CFB, DES-OFB, DES-CBC, DES-EDE3-CBC, \
// RC4, RC2-CBC, BF-CBC, CAST5-CBC, RC5-CBC)

With a -digest parameter the method will limit the returned list to all of the digest algorithms supported by this installation
of Lasso:

cipher_list(-digest)
// => staticarray(MD2, MD4, MD5, SHA, SHA1, DSA-SHA, DSA, RIPEMD160)

22.2.2 Calculate a Digest Value

Use the cipher_digestmethod. The following example returns the DSA signature for the value of a database field “message”:

cipher_digest(field('message'), -digest='DSA')

22.2.3 Encrypt a Value Using 3DES

Use the cipher_encrypt method. The following example returns the 3DES encryption for the value of a database field
“message”:

cipher_encrypt(field('message'), -cipher='DES-EDE3-CBC', -key='My Very Secret Key For 3DES')

22.2. Cipher Methods 227





Chapter 23

Serialization and Compression

To serialize an object is to convert the object into a format that can be transmitted over the network or written to a file. The
serialized object data can then later be used to deserialize—or re-create—the object.

Lasso uses XML for object serialization. An object whose type supports serialization can be converted to and from XML, or can
be stored in a session. The object is given control over which of its data members will be written to the output.

Lasso also provides a set of methods to compress or decompress data for more efficient data transmission.

23.1 Serializing and Deserializing Objects

An object is serialized by calling its serialize method, which serializes the object and returns the resulting data as a string.
This method is provided through trait_serializable, which is described below.

Serialized object data is converted back into an object by using a serialization_reader object. This object is created with
the serialized data after which its read method is called. If the read is successful, a new object of the same type and data as
the original serialized object is returned.

type serialization_reader

serialization_reader(s::string)

serialization_reader(x::xml_element)
Creates a serialization_reader object. Can be instantiated with a string of XML or an xml_element object.

serialization_reader->read(x::xml_element=?)
Re-creates the serialized element.

This example code serializes an array of objects, then deserializes it back into a new array:

local(a) = array(1, 2, 'three', pair(4='five'))
local(data) = #a->serialize
local(a2) = serialization_reader(#data)->read

#a == #a2
// => true

23.2 Supporting Serialization

In order to be serializable, an object must meet a few requirements. When creating new object types, these requirements must
be met or the objects will not be serializable. Additionally, any objects contained by a serializable type must themselves also
be serializable in order to be properly handled.

Serializable objects must implement the following methods:

trait trait_serializable

229



LassoGuide, Release 9.3

require trait_serializable->onCreate()
A serializable object must implement a zero parameter onCreate method. Note that if a type has no onCreate meth-
ods at all, a suitable method is automatically added to the type to meet this requirement. During deserialization, a new
instance of the object is created. No parameters are passed at that point.

require trait_serializable->serializationElements()→ trait_forEach
Called during object serialization. It should return an array, staticarray, or some other suitable object containing each of
the elements that should be serialized along with the target object.

Each element in the return value should be a serialization_element. These objects contain a key and a value. The
key and the value must both be serializable. The key and the value can be objects of any type. They are both given back
to the object when it is deserialized in order to return it to the state it was in when it was serialized to begin with.

require trait_serializable->acceptDeserializedElement(d::serialization_element)
When an object is deserialized by a serialization_reader, first a new instance is created, then this method is called
once for each of the serialization elements that were originally included in the data. The serialization_element
items contain the keys and values used to re-create the original object state.

Implementing the proper methods allows the object to import trait_serializable, which provides the serialize
method. This trait should be added when the type is defined.

provide trait_serializable->serialize()→ string
Serializes the object and returns the resulting data. That data can then be deserialized, re-creating an object with the
correct data.

serialization_element objects are used when both serializing and deserializing. This simple object must be created with
a key and a value. The key and value are made available through methods named accordingly.

type serialization_element

serialization_element(key, value)
Create a new serialization_element object with a key and value.

serialization_element->key()

serialization_element->value()
Respectively return the key and value that was set when the object was created. Both the key and value can be objects
of any serializable type.

23.2.1 Serializable Type Example

This example illustrates how to create a new object type that is serializable. The example type has data members that are
saved during serialization.

define example_obj => type {
trait { import trait_serializable }

data public dmem1 = 'Value for first member',
public dmem2 = 'Second member\'s value'

public serializationElements()::trait_forEach => {
return (:

serialization_element(1, .dmem1),
serialization_element(2, .dmem2)

)
}

public acceptDeserializedElement(d::serialization_element) => {
match(#d->key) => {

230 Chapter 23. Serialization and Compression



LassoGuide, Release 9.3

case(1)
.dmem1 = #d->value

case(2)
.dmem2 = #d->value

}
}

}

local(
obj = example_obj,
data = #obj->serialize,
new = serialization_reader(#data)->read

)
#new->dmem1

// => Value for first member

23.3 Compression Methods

Lasso provides two methods for storing or transmitting data more efficiently. The compress method can compress any text
string into an efficient byte stream that can be stored in a binary field in a database or transmitted to another server. The
decompress method can then restore a compressed byte stream into the original string.

compress(b::bytes)

compress(s::string)
Compresses a string or byte stream.

uncompress(b::bytes)

decompress(b::bytes)
Decompresses a byte stream.

The compression algorithm should only be used on large string values. For strings of less than one hundred characters the
algorithm may actually result in a larger string than the source.

These methods can be used in concert with the serialize method which creates a string representation of a type that im-
plements trait_serializable, and the serialization_reader->read method which returns the original value based
on a string representation.

23.3.1 Compress and Decompress a String

The following example takes the string value stored in the variable “input” and compresses it and stores that information in
“smaller”. Finally, it decompresses the data into the variable “output” and then displays the value now stored in output.

local(input) = 'This is the string to be compressed.'
local(smaller) = compress(#input)
local(output) = decompress(#smaller)
#output

// => This is the string to be compressed.

23.3. Compression Methods 231



LassoGuide, Release 9.3

23.3.2 Compress and Decompress an Array

The following example takes an array value stored in “my_array” and serializes the data into the “input” variable. It then com-
presses that data into the “smaller” variable. The “output” variable is then set to the decompressed and deserialized value
stored in the “smaller” variable. The value in “output” is then displayed.

local(my_array) = array('one', 'two', 'three', 'four', 'five')
local(input) = #my_array->serialize
local(smaller) = compress(#input)
local(output) = serialization_reader(xml(decompress(#smaller)))->read
#output

// => array(one, two, three, four, five)

232 Chapter 23. Serialization and Compression



Part IV

System Input and Output

233





Chapter 24

File System

Lasso provides access to the local file system through the file and dir types. File objects are used to create, delete, read, and
write file data. Dir objects are use to create and delete directories and to iterate through directory contents. Each are front ends
for the filedesc and dirdesc types, which are internal interfaces used by these and other methods for communication with
the filesystem and other processes (e.g. net_tcp, split_thread).

24.1 Paths

Individual files and directories are identified by their paths. Paths may include “..” or “.” components to specify “parent” or “cur-
rent” locations, respectively. Path components are generally separated by forward slashes, though backward slashes are ac-
ceptable as well and may be more natural on Windows operating systems. Regardless of which type of slash is used, Lasso will
normalize all paths to match the conventions of the operating system before using the path in any system function.

Paths can be either relative or full. Full paths always start with at least one slash, or in the case of Windows, may start with a
drive letter designation (e.g. “C:”). Full file paths are based from the file system root. When serving web requests under Lasso
Server, the file system root defaults to the host document root as indicated by the web server for that request (IIS, Apache,
etc.) or as set by the LASSOSERVER_DOCUMENT_ROOT web request variable. This applies to the current thread only. Any new
threads will not inherit the request-specific file system root.

It is possible to escape the host document root and target the real file system root by using a full path with either a drive letter
designation in the case of Windows, or by prefixing the path with two additional forward slashes. For example, “//foo/bar” and
“C:\foo\bar” would both reference the same file on Windows, provided “C:” is the system drive.

When not serving a web request, such as when running items from “LassoStartup” or when running scripts through thelasso9
command-line tool, the file system root is set to the system’s natural root which is “/” for UNIX-based systems or “C:” (for
example) on Windows-based systems.

Relative paths do not begin with a slash or drive designation and specify a file or directory location based on the current
working directory. During a web request, the current working directory is the directory location of the currently active source
file. For example, when processing a request for the file “/foo/bar.lasso”, “/foo/” is the current working directory and a file with a
relative path of “baz.lasso” will be looked for as “/foo/baz.lasso”. To illustrate, consider the following three example files. Within
the first two are tests checking for the existence of the next file.

/test.lasso - file 'dir/test.lasso' exists
/dir/test.lasso - file 'dir2/test.lasso' exists
/dir/dir2/test.lasso

When not serving a web request or when running shell scripts via lasso9, the current working directory is as set by the operating
system or shell. In this situation, the current working directory path can be retrieved with the io_file_getcwd method, and
the current working directory can be set with the io_file_chdir method. Manipulating the working directory in this way
changes it globally for all threads in the current process.

24.2 File Type

type file

235



LassoGuide, Release 9.3

file()

file(path::string)
File objects can be instantiated with or without an initial path. Creating a file object does not open the file. If created
without a path, a path must be specified when later opening the file.

24.2.1 Opening Files

A file must be opened before it can be read from or written to. Once a file is opened, it should be closed when it is no longer
needed. While Lasso will close all files that become garbage-collected, it is recommended to immediately close files once their
tasks are completed. Many operating systems have limitations on the number of simultaneously opened files, and ensuring
that they are closed promptly will improve system performance.

file->openRead()

file->openWrite()

file->openWriteOnly()

file->openAppend()

file->openTruncate()
Opens the file using the open mode indicated in the method name.

• openRead will open the file in read-only mode.

• openWrite will open the file in read/write mode.

• openAppend will open the file in read/write mode and will set the current write position to the end of the file.

• openTruncate will open the file in read/write mode and will set the file’s size to zero.

Write, append, and truncate modes will create the file if it does not exist. Read-only mode will fail if the file does not
exist.

All the methods will fail if the process does not have access to the file in question. In this case the error_code and
error_msg will be set to the values generated by the operating system.

file->openRead(path::string)

file->openWrite(path::string, okCreate::boolean=?)

file->openWriteOnly(path::string, okCreate::boolean=?)

file->openAppend(path::string, okCreate::boolean=?)

file->openTruncate(path::string, okCreate::boolean=?)
Opens the file in the same manner as the preceding methods, however these methods allow providing the file path
at the time the file is opened. An optional second boolean parameter can be given to specify whether the file should
be created if it does not exist. If “false” is given for this parameter then the file will not be created and a failure will be
generated using the operating system’s error code and message.

24.2.2 Closing Files

Once a file is opened, it must later be closed. Once a file is closed it can no longer be read from or written to until it is reopened.

file->doWithClose()
Requires a capture block when called. The capture block will be invoked and then the file will be closed. This is the safest
method to use when working with files as it will ensure the file is closed even if a failure occurs within the capture block.

Example of writing to a file within a capture block:

236 Chapter 24. File System



LassoGuide, Release 9.3

local(f) = file('n.txt')
#f->doWithClose => {

#f->openWrite
// ... work with file ...

}

file->close()
Simply closes the file.

24.2.3 Reading File Data

File data can be read as either bytes or string objects. By default, string objects, which are always Unicode, are created with the
assumption that the file contains UTF-8 encoded data. This assumption can be changed by settings the file objects’s character
encoding value. When reading the data as a byte stream, the unaltered file data is returned.

Data can be read line by line or as individual bytes or in chunks of bytes. Each read returns the bytes immediately following
the previously read bytes unless the file’s read/write position is moved. Attempts to read past the end of the file will return a
zero-sized bytes object.

file->readBytes(count::integer=?)→ bytes
Reads and returns all the remaining data from the file, or reads up to the requested number of bytes. There may be
fewer bytes available than requested.

file->readString(count::integer=?)→ string
Reads and returns all the remaining data from the file, or reads up to the requested number of bytes and attempts to
convert it into a string object. It is generally not safe to use when dealing with multi-byte characters as the read end
point may come in the middle of a character sequence, producing invalid Unicode data.

file->marker()→ integer

file->marker=(m::integer)
Respectively gets and sets the file object’s current read/write marker. This value controls where the next read or write
will take place. The marker value is zero-based. Settings the marker to zero moves the marker to the beginning of the
file.

file->encoding()→ string

file->encoding=(e::string)
Respectively gets and sets the file object’s character encoding value, which defaults to UTF-8. This value controls how
the file->readString method converts the data read from the file into a string object.

file->forEach()

file->forEachLine()
Provides iteration over the file’s bytes either one at a time or line by line.

Example of performing an operation for each line of a file:

#f->forEachLine => {
local(theLine) = #1
// ...

}

24.2.4 Writing File Data

Data can be written to files using either bytes or string objects as the source. When writing Unicode string data to a file, the
file’s encoding value is used. Writing past the end of the file will increase the file’s size. Manipulating the file’s marker will adjust

24.2. File Type 237



LassoGuide, Release 9.3

where the next write takes place.

file->writeBytes(b::bytes)→ integer

file->writeString(s::string)→ integer
Writes bytes or string data to the file and returns the number of bytes that were written.

file->moveTo(path::string, overwrite::boolean=false)

file->copyTo(path::string, overwrite::boolean=false)
Attempts to move or copy the file to a new location or fail trying. If the destination file already exists, the method will
fail. Setting overwrite to “true” will have it replace the existing file with the file referenced by the file object.

file->delete()
Closes and deletes the file from the system.

24.2.5 File Manipulation Methods

file->exists()→ boolean
Returns “true” if the file exists on the system.

file->path()→ string
Returns the path to the file.

file->parentDir()→ dir
Returns a dir object set to the file’s parent directory.

file->size()→ integer

file->size=(s::integer)
Respectively gets and sets the file’s size. Setting the size in this manner will change the file’s size on disk.

file->modificationTime()→ integer

file->modificationDate()→ date
Returns the raw file modification time as an integer and the modification time as a date object, respectively.

file->lastAccessTime()→ integer

file->lastAccessDate()→ date
Returns the raw file’s last access time as an integer and last access time as a date object, respectively.

file->linkTo(path::string, hard::boolean=false)
Attempts to create a hard or soft link of the file at the specified location. It may not be available or may not operate
consistently across all supported operating systems.

file->chown(user::string, group::string=?)

file->chown(uid::integer, gid::integer)

file->chmod(to::integer)

file->perms()→ integer
Sets and gets the permissions of the file. These operations are currently supported on UNIX-based systems only.

24.2.6 Standard File Objects

file_stdin()→ file

file_stdout()→ file

238 Chapter 24. File System



LassoGuide, Release 9.3

file_stderr()→ file
Lasso makes the standard in, out, and error files available using these methods. In general, these file objects should
not be closed. The file objects returned from these methods will not close the underlying system file when they are
garbage-collected.

24.3 Dir Type

type dir

dir(path::string, -resolveLinks=false)
Dir objects are instantiated with a path and an optional -resolveLinks keyword parameter, which defaults to “false”.
If set to “true”, the dir object will resolve symbolic links when iterating over its contents, when returning its own
file->perms and when determining if it is indeed a directory through the dir->isDir method.

24.3.1 Creating Directories

dir->create(perms::integer=integer_bitOr( io_file_s_irwxg, io_file_s_irwxu, io_file_s_irwxo))
Attempts to create the directory at the path specified when the dir object was created. The perms parameter specifies
the permissions that the directory should be given. This defaults to the equivalent of “rwxrwxrwx”.

Attempts to create any non-existent intermediate directories along the path with the same permissions. It does not
alter the permissions of any existing directories.

24.3.2 Iterating Directory Contents

The contents of a directory can be explored in a variety of ways. The contents can be returned as a series of string paths or as
a series of file and dir objects. Sub-directory contents can be returned recursively.

The paths of subdirectories produced by these methods will have a trailing forward slash. A dir object will never return a path
or object representing the “..” or “.” directory entries.

Each of the values returned by these methods can be used in query expressions or in iterate. A dir object itself can be used
in a query expression or iterate. In this case, the behavior will be the same as with the dir->eachPath method, described
below.

dir->eachPath()

dir->eachFilePath()

dir->eachDirPath()
Iterates on the relative paths of the contents of the directory. The eachPath method returns both files and subdirecto-
ries, while eachFilePath and eachDirPath return only the file or subdirectory paths, respectively.

dir->eachPathRecursive()

dir->eachFilePathRecursive()

dir->eachDirPathRecursive()
Iterates on the relative paths or the contents of the directory. When a subdirectory is encountered, its contents are also
included, and so on as deep as the directory tree goes.

dir->each()

dir->eachFile()

24.3. Dir Type 239



LassoGuide, Release 9.3

dir->eachDir()
Returns the directory contents as file or dir objects. The each method returns both the files and directories within the
directory. The eachFile and eachDir methods return only the files or directories, respectively.

List Directory Contents

Use a dir object in a query expression to list the contents of the current working directory:

with path in dir('.')
sum #path + '\n'

// =>
// A Folder/
// My_File.txt
// Sub_Directory/

Use a dir object to list a directory’s contents as file objects:

with f in dir('foo/')->eachFile
// f is a file object
sum #f->size->asString(-padding=10) + ' ' + #f->name + '\n'

// =>
// 12779 An Example File.pdf
// 0 empty_file
// 1063 Rhino Habitats.txt
// 109572 Rhino Running.jpg
// 3270 Summary.txt

24.3.3 Directory Manipulation Methods

dir->moveTo(path::string)
Attempts to rename, or “move”, the directory. A failure is generated if the operation fails.

dir->delete()
Attempts to delete the directory. A directory must be empty before it can be successfully deleted. A failure is generated
if the operation fails.

dir->exists()→ boolean
Returns “true” if the directory exists on disk.

dir->path()→ string
Returns the directory’s path as a string.

dir->parentDir()→ dir
Returns the directory’s parent directory as a dir object.

240 Chapter 24. File System



Chapter 25

Images and Media

Lasso includes features that can manipulate and serve images and media files on the fly. The image_… methods allow the
following with image files in the supported image formats:

• Scaling and cropping images, facilitating the creation of thumbnail images on the fly.

• Rotating images and changing image orientation.

• Applying image effects such as modulation, blurring, and sharpening effects.

• Adjusting image color depth and opacity.

• Combining images, adding logos and watermarks.

• Image format conversion.

• Retrieval of image attributes, such as dimensions, bit depth, and format.

• Executing extended ImageMagick commands.

Note: The image type and features in Lasso are implemented using ImageMagick 6.6.6-10 (July 7, 2011 build), which is installed
as part of Lasso Server on OS X. Windows and Linux require ImageMagick to be installed separately, which is covered with their
respective installation instructions. For more information on ImageMagick, visit http://www.imagemagick.org/.

25.1 Image File Operations

Image files can be manipulated via Lasso by setting a variable to an instance of the image type, and then using various
member methods to manipulate the variable. Instantiating an image object usually involves loading data from an image file
on the server into memory as an image object. Once the image file is manipulated, it can either be served directly to the client
browser, or it can be saved to disk on the server.

25.1.1 Dynamically Manipulate an Image File

The following shows an example of initializing, manipulating, saving, and serving an image file named “image.jpg” using the
image type:

<?lasso
local(myImage) = image('/images/image.tif')
#myImage->scale(-height=35, -width=35, -thumbnail)
#myImage->save('/images/image.jpg')

?>
<img src="/images/image.jpg" border="0">

In the example above, an image file named “image.tif” is referenced as a Lasso image object using the image type, then resized
to 35 x 35 pixels using the image->scalemethod. (An optional -thumbnail parameter will optimize the image for the web.)

241

http://www.imagemagick.org/


LassoGuide, Release 9.3

Then the image is converted to JPEG format and saved to disk using the image->save method. Finally, the new image is
displayed on the current page using an HTML <img> tag.

This chapter explains in detail how these and other methods are used to manipulate image and media files. This chapter also
shows how to output an image file to a client browser within the context of a Lasso page.

25.1.2 Supported Image Formats

Because the image member methods are based on ImageMagick, Lasso supports reading and manipulating over 88 major
file formats (not including subformats). A comprehensive list of supported image formats44 can be found at the ImageMagick
website.

A list of commonly used image formats that are certified to work with Lasso out-of-the-box without requiring installation of
additional components are shown in the table Tested and Certified Image Formats.

Table 25.1: Tested and Certified Image Formats

Format Description

BMP Microsoft Windows bitmap file.

CMYK Raw cyan, magenta, yellow, and black samples.

GIF CompuServe Graphics Interchange Format. LZW-compressed 8-bit RGB with up to 256 palette entries.

JPEG Joint Photographic Experts Group format. Also known as JPG.

PNG Portable Network Graphics format.

PSD Adobe Photoshop bitmap file.

RGB Raw red, green, and blue samples.

TIFF Tagged Image File Format. Also known as TIF.

Note: Many of the formats listed on the ImageMagick site such as EPS and PDF may be used with the image_… methods,
but require additional components such as Ghostscript to be installed before they will work. These formats may be used, but
because they rely heavily on third-party components, they are not officially supported.

25.1.3 File Permissions

In order to successfully create, manipulate, and save image files using the image_… methods, the user running the Lasso
process must be allowed by the operating system to write and execute files inside the folder. To check folder permissions in
Windows, right-click on the folder and select Properties → Security. For OS X or Linux, use ls -al from the command line to
check permissions and use the chmod and chown commands to adjust the permissions. (Refer to the ls, chmod, and chown
man pages for more information on their use).

25.2 Referencing Images as Lasso Objects

For Lasso to be able to edit an image, an image file or image data must first be modelled as a Lasso image object using the
image type. Once a variable has been set to an image object, various member methods can manipulate the image. Once the
image data is manipulated, it can either be served directly to the client browser, or it can be saved to disk on the server.

type image

image()
44 http://www.imagemagick.org/script/formats.php#supported

242 Chapter 25. Images and Media

http://www.imagemagick.org/script/formats.php#supported


LassoGuide, Release 9.3

image(filePath::string, -info=?)

image(bytes::bytes, -info=?)
Creates an image object. Requires either the path to an image file or a byte stream with an image’s binary data to
initialize the object. Once an image object is initialized, it may be edited and saved using the image member methods
which are described throughout this chapter.

An optional -info parameter will retrieve all the attributes of an image without reading the pixel data. This allows for
better performance and less memory usage when initializing an image object.

Example of creating an image object from a file:

local(myImage1) = image('/images/image.jpg')

Example of creating an image object with just the attributes:

local(myImage2) = image('/images/largeimage.jpg', -info)

Example of creating an image object with bytes data:

local(binary) = file('image.jpg')->readBytes
local(myImage3) = image(#binary)

25.3 Image Information Methods

Information about an image can be returned using special image member methods. These methods return specific values
representing the attributes of an image such as size, resolution, format, and file comments. All the image information methods
in Lasso are defined below.

image->width()→ integer
Returns the image width in pixels.

image->height()→ integer
Returns the image height in pixels.

image->resolutionH()→ integer
Returns the horizontal resolution of the image in dpi.

image->resolutionV()→ integer
Returns the vertical resolution of the image in dpi.

image->depth()→ integer
Returns the color depth of the image in bits. Can be either 8 or 16.

image->format()
Returns the image format (GIF, JPEG, etc).

image->pixel(x::integer, y::integer, -hex=?)
Returns the color of the pixel located at the specified pixel coordinates (X, Y). The returned value is an array of RGB color
integers (0–255) by default. An optional -hex parameter will return a hex color string (“#FFCCDD”) instead of an RGB
array.

image->comments()
Returns any comments included in the image file header.

image->describe(-short=?)
Lists various image attributes, mostly for debugging purposes. An optional -short parameter will display abbreviated
information.

25.3. Image Information Methods 243



LassoGuide, Release 9.3

image->file()
Returns the image file path and name, or “null” for in-memory images.

25.3.1 Return Height and Width of an Image

Use the image->height and image->width methods on an image object. This returns an integer value representing the
height and width of the image in pixels:

local(myImage) = image('/images/image.jpg')
#myImage->width + ' x ' + #myImage->height

// => 400 x 300

25.3.2 Return Resolution of an Image

Use the image->resolutionH and image->resolutionV methods on an image object. This returns a decimal value repre-
senting the horizontal and vertical DPI (Dots Per Inch) of the image:

local(myImage) = image('/images/image.jpg')
#myImage->resolutionV + ' x ' + #myImage->resolutionH

// => 600 x 600

25.3.3 Return Color Depth of an Image

Use the image->depth method on an image object. This returns an integer value representing the color depth of an image
in bits:

local(myImage) = image('/images/image.jpg')
#myImage->depth

// => 16

25.3.4 Return Format of an Image

Use the image->format method on an image object. This returns a string value representing the file format of the image:

image('/images/image.gif')->format

// => GIF

25.3.5 Return Pixel Information About an Image

Use the image->pixel method on an image object. This returns a string value representing the color of the pixel at the
specified coordinates:

local(myImage) = image('/images/image.jpg')
#myImage->pixel(25, 125, -hex)

// => FF00FF

244 Chapter 25. Images and Media



LassoGuide, Release 9.3

25.4 Converting and Saving Images

This section describes how image files can be converted from one format to another and saved to file. This is all accomplished
using the image->save method, which is described below.

image->convert(ext::string, -quality::integer=?)
Converts an image object to a new format. Requires a file extension as a string parameter which represents the new
format the image is being converted to (e.g. 'jpg', 'gif'). A -quality parameter specifies the image compression
ratio (integer value of 1–100) used when saving to JPEG or GIF format.

image->save(path::string, -quality::integer=?)
Saves the image to a file in a format defined by the file extension. Automatically converts images when the extension
of the image to save as differs from that of the original image. A -quality parameter specifies the image compression
ratio (integer value of 1–100) used when saving to JPEG or GIF format.

image->addComment(comment)
Adds a file header comment to the image before it is saved. Passing a “null” parameter value removes any existing
comments.

25.4.1 Convert an Image File from One Format to Another

Use the image->convert and image->save methods on an image object, specifying the new format as part of the im-
age->convert method:

local(myImage) = image('/images/image.gif')
#myImage->convert('JPG', -quality=100)
#myImage->save('/images/image.jpg', -quality=100)

25.4.2 Automatically Convert the Format of an Image File

Use the image->save method on an image object, changing the image file extension to the desired image format. A
-quality parameter value of “100” specifies that the resulting JPEG file will be saved at the highest quality resolution:

local(myImage) = image('/images/image.gif')
#myImage->save('/images/image.jpg', -quality=100)

25.4.3 Save an Image Object to a File

Use the image->save method on an image object, specifying the desired image name, path, and format:

local(myImage) = image('/folder/image.jpg')
#myImage->save('/images/image_copy.jpg')

25.4.4 Add a Comment to an Image File Header

Use the image->addComment method to add a comment to an image object before it is saved to file. This comment is not
displayed, but stored with the image file information:

local(myImage) = image('/images/image.gif')
#myImage->addComment('This is a comment')
#myImage->save(/images/image.gif')

25.4. Converting and Saving Images 245



LassoGuide, Release 9.3

25.4.5 Remove All Comments from an Image File Header

Use the image->addCommentmethod with a “null” parameter value to remove all comments from an image object before it is
saved to file. The following code adds a comment and then removes all comments. The result is an image with no comments:

local(myImage) = image('/images/image.gif')
#myImage->addComment('This is a comment')
#myImage->addComment(null)
#myImage->save('/images/image.gif')

25.5 Images Manipulation Methods

Images can be transformed and manipulated using special image member methods. These methods change the appearance
of the image as it served to the client browser. This includes methods for changing image size and orientation, applying image
effects, adding text to images, and merging images, which are described in the following subsections.

25.5.1 Changing Image Size and Orientation

Lasso provides methods that can scale, rotate, crop, and invert images. These methods are defined below.

image->scale(...)
Scales an image to a specified size. Requires either a -width or -heightparameter specifying the new size of the image
using either integer pixel values (e.g. “50”) or string percentage values (e.g. “50%”). An optional -sample parameter will
enable pixel sampling so no additional colors will be added to the image. An optional -thumbnail parameter will
optimize the image for display on the web. If only one of the -width or -height is specified then the other value is
calculated proportionally.

image->rotate(deg::integer, -bgColor=::string=?)
Rotates an image counterclockwise by the specified amount in degrees (integer value of 0–360). An optional -bgColor
parameter can specify a hex color to fill the blank areas of the resulting image.

image->crop(...)
Crops the original image by cutting off extra pixels beyond the boundaries specified by the parameters. Requires
-height and -width parameters which specify the pixel size of the resulting image, and -left and -right parame-
ters specify the offset of the resulting image within the initial image.

image->flipV()
Creates a vertical mirror image by reflecting the pixels around the central X-axis.

image->flipH()
Creates a horizontal mirror image by reflecting the pixels around the central Y-axis.

Enlarge an Image

Use the image->scale method on an image object. The following example enlarges “image.jpg” to 225 X 225 pixels. An
optional -sample parameter can specify that pixel sampling should be used:

local(myImage) = image('/images/image.jpg')
#myImage->scale(-height=225, -width=225, -sample)
#myImage->save('/images/image.jpg')

246 Chapter 25. Images and Media



LassoGuide, Release 9.3

Shrink an Image

Use the image->scale method on an image object. The following example shrinks “image.jpg” to 25 x 25 pixels. An optional
-thumbnail parameter will optimize the image for the web:

local(myImage) = image('/images/image.jpg')
#myImage->scale(-height=25, -width=25, -thumbnail)
#myImage->save('/images/image.jpg')

Rotate an Image

Use the image->rotatemethod on an image object. The following example rotates the image 60 degrees counterclockwise
on top of a white background:

local(myImage) = image('/images/image.jpg')
#myImage->rotate(60, -bgColor='FFFFFF')
#myImage->save('/images/image.jpg')

Crop an Image

Use the image->crop method on an image object. The example below crops 10 pixels off of each side of a 70 x 70 image:

local(myImage) = image('/images/image.jpg')
#myImage->crop(-left=10, -right=10, -width=50, -height=50)
#myImage->save('/images/image.jpg')

Mirror an Image

Use the image->flipV method on an image object. The following example mirrors the image vertically:

local(myImage) = image('/images/image.jpg')
#myImage->flipV
#myImage->save('/images/image.jpg')

25.5.2 Applying Image Effects

Lasso provides methods that can add image effects by applying special image filters. This includes color modulation, image
noise enhancement, sharpness controls, blur controls, contrast controls, and composite image merging. These methods are
described below.

image->modulate(bright::integer, saturation::integer, hue::integer)
Controls the brightness, saturation, and hue of an image. Brightness, saturation, and hue are controlled by three
comma-delimited integer parameters, where 100 equals the original value.

image->contrast(increase::boolean=true)
Enhances the intensity differences between the lighter and darker elements of the image. Specify “false” to reduce the
image contrast, otherwise the contrast is increased.

image->blur(-angle::decimal)

image->blur(-gaussian, -radius::decimal, -sigma::decimal)
Applies either a motion or Gaussian blur to an image. To apply a motion blur, an -angle parameter with a decimal
degree value must be specified to indicate the direction of the motion. To apply a Gaussian blur, a -gaussian keyword

25.5. Images Manipulation Methods 247



LassoGuide, Release 9.3

parameter must be specified in addition to -radius and -sigma parameters that require decimal values. The -radius
parameter is the radius of the Gaussian in pixels, and -sigma is the standard deviation of the Gaussian in pixels. For
reasonable results, the radius should be larger than the sigma.

image->sharpen(-radius::integer, -sigma::integer, -amount::decimal=?, -threshold::decimal=?)
Sharpens an image. Requires -radius and -sigma parameters that are integer values. The -radius parameter is the
radius of the Gaussian sharp effect in pixels, and -sigma is the standard deviation of the Gaussian sharp effect in pixels.
For reasonable results, the radius should be larger than the sigma. The optional -amount and -threshold parameters
can add an unsharp masking effect. -amount specifies the decimal percentage of the difference between the original
and the blur image that is added back into the original, and -threshold specifies the threshold in decimal pixels
needed to apply the difference amount.

image->enhance()
Applies a filter that improves the quality of a noisy, lower-quality image.

Adjust Brightness of an Image

Use the image->modulate method on an image object and adjust the first integer parameter, representing brightness. The
following example increases the brightness of an image by a factor of two:

local(myImage) = image('/images/image.jpg')
#myImage->modulate(200, 100, 100)
#myImage->save('/images/image.jpg')

Adjust Color Saturation of an Image

Use the image->modulate method on an image object and adjust the second integer parameter, representing color satura-
tion. The following example decreases the color saturation of an image by 25%:

local(myImage) = image('/images/image.jpg')
#myImage->modulate(100, 75, 100)
#myImage->save('/images/image.jpg')

Adjust Hue of an Image

Use the image->modulate method on an image object and adjust the third integer parameter, representing hue. The follow-
ing example tints the image green by increasing the hue value. Decreasing the hue value tints the image red:

local(myImage) = image('/images/image.jpg')
#myImage->modulate(100, 100, 175)
#myImage->save('/images/image.jpg')

Adjust Contrast of an Image

Use the image->contrast method on an image object. The first example increases the contrast. The second example uses
a “false” parameter value, which reduces the contrast instead:

local(myImage) = image('/images/image.jpg')
#myImage->contrast
#myImage->save('/images/image.jpg')

local(myImage) = image('/images/image.jpg')

248 Chapter 25. Images and Media



LassoGuide, Release 9.3

#myImage->contrast(false)
#myImage->save('/images/image.jpg')

Apply a Motion Blur to an Image

Use the image->blur method on an image object. The following example applies a motion blur at 20 degrees:

local(myImage) = image('/images/image.jpg')
#myImage->blur(-angle=20)
#myImage->save('/images/image.jpg')

Apply a Gaussian Blur to an Image

Use the image->blurmethod with the -gaussian parameter on an image object. The following example applies a Gaussian
blur with a radius of 15 pixels and a standard deviation of 10 pixels:

local(myImage) = image('/images/image.jpg')
#myImage->blur(-radius=15, -sigma=10, -gaussian)
#myImage->save('/images/image.jpg')

Sharpen an Image

Use the image->sharpen method on an image object. The following example applies a Gaussian sharp effect with a radius
of 20 pixels and a standard deviation of 10 pixels:

local(myImage) = image('/images/image.jpg')
#myImage->sharpen(-radius=20, -sigma=10)
#myImage->save('/images/image.jpg')

Sharpen an Image with an Unsharp Mask Effect

Use the image->sharpen method with the -amount and -threshold parameters on an image object. The following exam-
ple applies an unsharp mask effect with a radius of 20 pixels and a standard deviation of 10 pixels:

local(myImage) = image('/images/image.jpg')
#myImage->sharpen(-radius=20, -sigma=10, -amount=50, -threshold=20)
#myImage->save('/images/image.jpg')

Enhance a Low-Quality Image

Use the image->enhance method on an image object:

local(myImage) = image('/images/image.jpg')
#myImage->enhance
#myImage->save('/images/image.jpg')

25.5. Images Manipulation Methods 249



LassoGuide, Release 9.3

25.5.3 Adding Text to Images

Lasso allows text to be overlaid on top of images using the image->annotate method as described below.

image->annotate(annotation::string, -left::integer, -top::integer, -font::string=?, -size::integer=?, -color::string=?,
-aliased::boolean=?)

Overlays text onto an image. Requires a string value as a parameter specifying the text to be overlaid. The required-left
and -top parameters specify the placement of the text in pixel integers relative to the upper left corner of the image. An
optional -font parameter can specify the name (with extension) and full path to a system font to be used for the text,
and an optional -size parameter can specify the text size in integer pixels. An optional -color parameter can specify
the text color as a hex string (“#FFCCDD”). An optional -aliased keyword parameter will enable text anti-aliasing.

Note: The full hard drive path to the font must be used (e.g. -font='//Library/Fonts/Arial.ttf') when specifying a
font. True Type (“*.ttf”), and Type One (“*.pfa”, “*.pfb”) font types are officially supported.

Add Text to an Image

Use the image->annotatemethod on an image object. The example below adds the text “(c) 2013 LassoSoft” to the specified
image:

local(myImage) = image('/images/image.jpg')
#myImage->annotate(

'(c) 2003 LassoSoft',
-left=5,
-top=300,
-font='/Library/Fonts/Arial.ttf',
-size=8,
-color='#000000',
-aliased

)
#myImage->save('/images/image.jpg')

25.5.4 Merging Images

Lasso allows images to be merged using the image->compositemethod. This method supports over 20 different composite
methods, which are described in the table below.

image->composite(second::image, -op::string=?, -left::integer=?, -top::integer=?)
Composites a second image onto the current image. Requires two Lasso image objects to be composited. An -op
parameter specifies the composite method that affects how the second image is applied to the first image (a list of
operators is shown below). The optional -left and -top parameters specify the horizontal and vertical offset of the
second image over the first in integer pixels, defaulting to the upper left corner. An optional -opacity parameter will
attenuate the opacity of the composited second image, where a value of “0” is fully opaque and “1.0” is fully transparent.

The table below shows the various composite operators that can be specified by the -op parameter. The descriptions
for each method are adapted from the ImageMagick web site.

250 Chapter 25. Images and Media



LassoGuide, Release 9.3

Table 25.2: Composite Image Tag Operators

Composite Operator Description

Over The result is the union of the two image shapes with the composite image obscuring the
image in the region of overlap.

In The result is the first image cut by the shape of the second image. None of the second
image data is included in the result.

Out The result is the second image cut by the shape of the first image. None of the first image
data is included in the result.

Plus The result is the sum of the raw image data with output image color channels cropped to
255.

Minus The result is the subtraction of the raw image data with color channel underflow cropped
to zero.

Add The result is the sum of the raw image data with color channel overflow channel wrapping
around 255 to 0.

Subtract The result is the subtraction of the raw image data with color channel underflow wrapping
around 0 to 255.

Difference Returns the difference between two images. This is useful for comparing two very similar
images.

Bumpmap The resulting image is shaded by the second image.

CopyRed The resulting image is the red layer in the image replaced with the red layer in the second
image.

CopyGreen The resulting image is the green layer in the image replaced with the green layer in the
second image.

CopyBlue The resulting image is the blue layer in the image replaced with the blue layer in the
second image.

CopyOpacity The resulting image is the opaque layer in the image replaced with the opaque layer in the
second image.

Displace Displaces part of the first image where the second image is overlaid.

Threshold Only colors in the second image that are darker than the colors in the first image are
overlaid.

Darken Only dark colors in the second image are overlaid.

Lighten Only light colors in the second image are overlaid.

Colorize Only base spectrum colors in the second image are overlaid.

Hue Only the hue of the second image is overlaid.

Saturate Only the saturation of the second image is overlaid.

Luminize Only the luminosity of the second image is overlaid.

Modulate Has the effect of the Hue, Saturate, and Luminize functions applied at the same time.

Overlay an Image On Top of Another Image

Use the image->composite method to add an image object to a second image object. The following example adds “im-
age2.jpg” offset by five pixels in the upper left corner of “image1.jpg”:

local(myImage1) = image('/images/image1.jpg')
local(myImage2) = image('/images/image2.jpg')
#myImage1->composite(#myImage2, -left=5, -top=5)
#myImage1->save('/images/image1.jpg')

25.5. Images Manipulation Methods 251



LassoGuide, Release 9.3

Add a Watermark to an Image

Use the image->composite method with the -opacity parameter to add an image object to a second image object. The
following example adds a mostly transparent version of “image2.jpg” to “image1.jpg”:

local(myImage1) = image('/images/image1.jpg')
local(myImage2) = image('/images/image2.jpg')
#myImage1->composite(#myImage2, -opacity=0.75)
#myImage1->save('/images/image1.jpg')

Shade Image with a Second Image

Use the image->composite method with the “Bumpmap” operator to shade an image object over a second image object:

local(myImage1) = image('/images/image1.jpg')
local(myImage2) = image('/images/image2.jpg')
#myImage1->composite(#myImage2, -op='Bumpmap')
#myImage1->save('/images/image1.jpg')

Return the Pixel Difference Between Two Images

Use the image->compositemethod with the “Difference” operator to return the pixel difference between two defined image
variables:

local(myImage1) = image('/images/image1.jpg')
local(myImage2) = image('/images/image2.jpg')
#myImage1->composite(#myImage2, -op='Difference')
#myImage1->save('/images/image1.jpg')

25.6 Extended ImageMagick Commands

For users who have experience using the ImageMagick command-line utility, Lasso provides the image->execute method
to allow advanced users to take advantage of additional ImageMagick commands and functionality.

image->execute()
Execute ImageMagick commands. Provides direct access to the ImageMagick command-line interface. Supports the
“composite”, “mogrify”, and “montage” commands. See the ImageMagick Command-Line Tools documentation45 for
detailed descriptions of these commands and their corresponding parameters.

25.6.1 Execute an ImageMagick Command Using Lasso

Use the image->execute method on an image object, with the desired command as the parameter. The following example
shows the “mogrify” command adding a distinctive blue border to an image:

local(myImage) = image('/images/image.gif')
#myImage->execute('mogrify -bordercolor blue -border=3x3')
#myImage->save('/images/image.gif')

45 http://www.imagemagick.org/script/command-line-tools.php

252 Chapter 25. Images and Media

http://www.imagemagick.org/script/command-line-tools.php


LassoGuide, Release 9.3

25.7 Serving Image and Media Files

This section discusses how to serve image and media files, including referencing files within HTML pages and serving files
separately via HTTP.

25.7.1 Referencing Within HTML Files

The easiest way to serve images and media files is by simply referencing files stored within the web server root using standard
HTML tags such as <img> or <embed>. The path to the image file can be calculated in the Lasso page or stored within a
database field. Since the specified file is ultimately served by the web server application that is optimized for serving images
and media files, this is the most efficient way to serve images and media files.

Generate the Path to an Image or Media File

The following example shows a variable “company_name” that contains “LassoSoft”. This variable is used to construct a path
to an image file stored within the “images” folder named with the company name and “_logo.gif” to form the full file path
“/images/LassoSoft_logo.gif”:

[local(company_name) = 'LassoSoft']
<img src="/images/[#company_name]_logo.gif" />

// => <img src="/images/LassoSoft_logo.gif" />

Using the same image path described above, the path to the image file is stored within the variable “image_path” and then
referenced in the HTML <img> tag:

[local(company_name) = 'LassoSoft']
[local(image_path) = '/images/' + #company_name + '_logo.gif']
<img src="[#image_path]" />

// => <img src="/images/LassoSoft_logo.gif" />

The following example shows a variable “band_name” that contains “ArtOfNoise”. This variable is used to construct a
path to sound files stored within the “sounds” folder named with the band name and “.mp3” to form the full file path
“/sounds/ArtOfNoise.mp3”. The path to the sound file is stored within the variable “sound_path” and then referenced in the
HTML <a> tag:

[local(band_name) = 'ArtOfNoise']
[local(sound_path) = '/images/' + #band_name + '.mp3']
<a href="[#sound_path]">Download MP3</a>

// => <a href="/sounds/ArtOfNoise.mp3">Art of Noise Song</a>

25.7.2 Serving Files via HTTP

Lasso can also serve image and media files rather than merely referencing them by path. Files are served through Lasso
using the web_response->sendFile method or a combination of the web_response->replaceHeader method and
web_response->includeBytes method. Lasso also includes an image->data method that automatically converts an im-
age object to a bytes object, allowing an edited image object to be output using web_response->sendFile without it first
being written to disk.

25.7. Serving Image and Media Files 253



LassoGuide, Release 9.3

In order to serve an image or media file through Lasso the MIME type of the file must first be determined. Often, this can be
discovered by looking at the configuration of the web server or web browser. The MIME type for a GIF is image/gif and the
MIME type for a JPEG is image/jpeg.

Note: It is not recommended that you configure your web server application to process all “*.gif” and “*.jpg” files through
Lasso. Lasso will attempt to interpret the binary data of the image file as Lasso code. Instead, use one of the procedures below
to serve an image file from a path with a “.lasso” extension.

image->data()
Converts an image object to a binary bytes object. This is useful for serving images to a browser without writing the
image to file.

Serve an Image File

Use the web_response->sendFile method to set the MIME type of the image to be served, and use the image->data
method to get the binary data from an image object. The web_response->sendFile method aborts the current response,
so it will be the last line of code to be processed. The following example shows a GIF named “picture.gif” being served from
an “images” folder:

local(image) = image('/images/picture.gif')
web_response->sendFile(#image->data, -type='image/gif')

Alternatively, use the web_response->replaceHeader method to set the MIME type of the image to be served and use
the web_response->includeBytes method to include data from the image file. If using this method, verify that no stray
data is inadvertently added into the outgoing data buffer as it will corrupt the output. This includes whitespace characters.
The following example shows a GIF named “picture.gif” being served from an “images” folder. It is the only contents of this file
being called by the client browser and calls abort to avoid any data corruption:

<?lasso
web_response->replaceHeader('Content-Type'='image/gif')
web_response->includeBytes('/images/picture.gif')
abort

?>

If either of the code examples above is stored in a file named “image.lasso” at the root of the web serving folder then the image
could be accessed with the following <img> tag:

<img src="/image.lasso" />

Serve a Media File

Use the web_response->sendFilemethod to set the MIME type of the file to be served and pass it a file object to include
data from the media file. The following example shows a sound file named “ArtOfNoise.mp3” being served from a “sounds”
folder:

web_response->sendFile(
file('/sounds/ArtOfNoise.mp3'),
'ArtOfNoise.mp3',
-type='audio/mp3'

)

If the code above is stored in a file named “ArtOfNoise.lasso” at the root of the web serving folder then the sound file could be
accessed with the following <a> tag:

254 Chapter 25. Images and Media



LassoGuide, Release 9.3

<a href="/ArtOfNoise.lasso">Art of Noise Song</a>

This same technique can be used to serve media files of any type by designating the appropriate MIME type in the -type
option passed to the web_response->sendFile method.

Limit Access to a File

Since the Lasso page can process any Lasso code before serving the image it is easy to create a file that generates an error if an
unauthorized person tries to access a file. The following code checks the client_username for the name “John”. If the current
user is not named “John” then a file “error.gif” is served instead of the desired “picture.gif” file. To completely limit access to the
files, they are being served from outside the web root of the web server so that the files can’t be loaded directly by a URL. In
this example, the files are being served from the “secret” folder which is at the root level of the file system:

if('John' == client_username) {
web_response->sendFile(

file('//secret/picture.gif'),
'picture.gif',
-type='image/gif'

)
else

web_response->sendFile(
file('/images/error.gif'),
'picture.gif',
-type='image/gif'

)
}

This same technique can be used to restrict access to any image or media file.

25.7. Serving Image and Media Files 255





Chapter 26

Portable Document Format

Lasso provides support for creating PDF (Portable Document Format) files. The PDF file format46 is a widely accepted standard
for electronic documentation, and facilitates superb printer-quality documents from simple graphs to complex forms such as
tax forms, escrow documents, loan applications, stock reports, and user manuals.

26.1 Lasso and PDF Files

PDF files are created in Lasso by using the pdf_doc type, and calling various member methods and other pdf_… methods
to add data to the object. The PDF is then written to file when the Lasso page containing all code is served by the web server.
The pdf_… methods in Lasso are implemented in LJAPI, and use the iText Java library47 .

26.1.1 Create a Basic PDF File Using Lasso

The following shows an example of creating and outputting a PDF file named “MyFile.pdf” using the pdf_… methods:

local(my_file) = pdf_doc(
-file='MyFile.pdf',
-size='A4',
-margin=(: 144.0, 144.0, 72.0, 72.0)

)
local(font) = pdf_font(-face='Helvetica', -size=36)
local(text) = pdf_text('I am a PDF document', -font=#font)
#my_file->add(#text)
#my_file->close

In the example above, a variable named “my_file” is set to a pdf_doc type with a file name of “MyFile.pdf”. A single font type is
defined for the document using the pdf_font type. Then, the text “I am a PDF document” is defined using the pdf_text type,
and added using the pdf_doc->add member method. The PDF is then written to file upon execution of #my_file->close.
Since no path information was specified along with the file name to the -file parameter, the file “MyFile.pdf” is created in
the same folder as the page whose code created it.

This chapter explains in detail how these and other methods are used to create and edit PDF files. This chapter also shows
how to output a PDF file to a client browser within the context of a Lasso page, which is described in the section Serving PDF
Files below.

Note: When creating files, the user running the Lasso Server instance or command-line process must be allowed to write to
the folder by the operating system. For more information, see the File System chapter.

46 https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html
47 http://itextpdf.com/

257

https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html
http://itextpdf.com/


LassoGuide, Release 9.3

26.2 Reading PDF Files

Lasso provides a type that allows existing PDF files to be read and manipulated. A PDF file is read using pdf_read. The file
can then be inspected for page count, page size, and the values of any embedded form elements. Pages from the file can be
placed within a new PDF file. A range of pages from the PDF file can be saved as a new PDF file and encryption options can
be added to the new PDF file.

type pdf_read

pdf_read(-file::string, -password::string=?)
Reads an existing PDF file into an object. Requires one parameter -file specifying the name of the PDF file to be read.
An optional -password parameter specifies the owner’s password for the file.

pdf_read->pageCount()→ integer
Returns the number of pages in the file.

pdf_read->pageSize(page::integer=?)→ staticarray
Returns the size of a page in the file as a staticarray of width and height. An optional integer parameter specifies which
page in the PDF to return the size of, defaulting to the first page.

pdf_read->getHeaders()→ map

pdf_read->getHeaders(name::string)
Returns a map of header elements from the PDF file, or the value for a specified header name.

pdf_read->fieldNames()→ array
Returns an array of form elements embedded in the PDF file.

pdf_read->fieldType(name::string)
Returns the type of a single form element. Requires one parameter which is the name of the field element to be in-
spected. Types include “Checkbox”, “Combobox”, “List”, “PushButton”, “RadioButton”, “Text”, and “Signature”.

pdf_read->fieldValue(name::string)
Returns the value of a single form element. Requires one parameter which is the name of the field element to be
inspected.

pdf_read->setFieldValue(field::string, value::string, -display::string=?)
Sets the value of a single form element. Requires two parameters: the name of a form element and a new value for the
element. An optional -display parameter specifies a display string for the element.

pdf_read->importFDF(file::string, -noFields=?, -noComments=?)

pdf_read->importFDF(data::bytes, -noFields=?, -noComments=?)
Merges an FDF file into the current PDF file. Any form elements within the file will be populated with the values from
the FDF file. Requires a parameter specifying either the path to the FDF file or a byte stream containing the file data.
The optional -noFields and -noComments parameters prevent either fields or comments from being merged.

pdf_read->exportFDF(path::string=?)
Exports an FDF file from the current PDF file. The FDF file will contain values for each of the form elements in the PDF
file. If a parameter is specified then the FDF file will be written to that path. Otherwise, a byte object containing the data
for the FDF file will be returned.

pdf_read->javaScript()
Returns the global document JavaScript action for the current PDF file.

pdf_read->addJavaScript(script::string)
Adds a JavaScript action to the current PDF file.

pdf_read->save(file::string, -encryptStrong=false, -permissions=’‘, -userPassword=’‘, -ownerPassword=’‘)
Saves a copy of the current PDF file. Requires one parameter specifying the path to the file where the PDF file should be

258 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

saved. Also accepts -userPassword, -ownerPassword, -encryptStrong, and -permissions parameters. See the
descriptions in the following documentation on the pdf_doc type for more information about these parameters.

pdf_read->setPageRange(to::string)
Selects a range of pages to save into a new PDF file. Multiple ranges can be specified separated by commas. Ranges take
the form “4-10” to specify a start and end page number. Adding the optional “e” or “o” prefixes will select only even or
odd pages. An optional “!” prefix can specify a range of pages that should not be included. For example, “o4-10” would
select the pages 5, 7, and 9 while “1-10,!2-9” would select the pages 1 and 10.

Tip: A pdf_read object can be used in concert with the pdf_doc->insertPage method described below to insert pages
from an existing PDF file into a new PDF file.

26.2.1 Read In an Existing PDF File

In order to work with an existing PDF file, it must first be read in as a pdf_read object.

local(old_pdf) = pdf_read('/documents/somepdf.pdf')

26.2.2 Determine Attributes of an Existing PDF File

The number of pages and the dimensions of an existing PDF file can be returned using the pdf_read->pageCount and
pdf_read->pageSize methods.

local(old_pdf) = pdf_read('/documents/somepdf.pdf')
'Number of pages: ' + #old_pdf->pageCount + '<br />\n'
'Page size: ' + #old_pdf->pageSize(1)

// =>
// Number of pages: 12<br />
// Page size: staticarray(0.000000, 792.000000, 612.000000, 792.000000)

26.3 Creating PDF Files

PDF files are initialized and created using the pdf_doc type. This is the basic type used to create PDF documents with Lasso,
and is used in concert with all methods described in this chapter.

type pdf_doc

pdf_doc(...)
Initializes a PDF file. Uses optional parameters that set the basic specifications for the file being created. Data is added to
the object using member methods, which are described throughout this chapter. The table below outlines the optional
parameters that can be passed to a pdf_doc creator method.

Parameters

• -file – Defines the file name and path of the PDF file. If omitted, the PDF file is created in RAM (see the
section Serving PDF Files for more information). If a file name is specified without a folder path, the file is
created in the same location as the Lasso page containing the pdf_… methods.

• -size – Define the page size of the file. Values for this parameter are standard print sizes, and can be “A0”,
“A1”, “A2”, “A3”, “A4”, “A5”, “A6”, “A7”, “A8”, “A9”, “A10”, “B0”, “B1”, “B2”, “B3”, “B4”, “B5”, “ARCH_A”, “ARCH_B”,
“ARCH_C”, “ARCH_D”, “ARCH_E”, “FLSA”, “FLSE”, “HALFLETTER”, “LEDGER”, “LEGAL”, “LETTER”, “NOTE”, and
“TABLOID”. Defaults to “A4”. Optional.

26.3. Creating PDF Files 259



LassoGuide, Release 9.3

• -height – Defines a custom page height for the file. Accepts an integer value which represents the size
in points. This can be used in combination with the -width parameter instead of the -size parameter.
Optional.

• -width – Defines a custom page width for the file. Requires an integer value which represents the size
in points. This can be used in combination with the -height parameter instead of the -size parameter.
Optional.

• -margins – Defines the margin size for the page. Requires an array of four decimal values which define
the left, right, top, and bottom margins for the page ( left, right, top, bottom ). Optional.

• -color – Defines the initial text color of the PDF file. Requires a hex color string. Defaults to “#000000” if
not specified. Optional.

• -useDate – Adds the current date and time to the document header. Optional.

• -noCompress – Produces a PDF without compression to allow viewing PDF code. PDF files are com-
pressed by default if not used. Optional.

• -pageNo – Sets the starting page number for the PDF file. Requires an integer value, which is the page
number of the first page. Optional.

• -pageHeader – Sets text that will be displayed at the top of each page in the PDF. Requires a text string
as a value. Optional.

• 'Header'='Content' – Adds defined document headers to the PDF file. 'Header' is replaced with the
name of the document header (e.g. “Title”, “Author”), and 'Content' is replaced with the header value.
Optional.

• -userPassword – Specifies a password that will be required to open the resulting PDF in a reader ap-
plication including Adobe Reader, Preview, etc. The file will be encrypted if this parameter is specified.
Optional.

• -ownerPassword – Specifies a password that will be required to open the resulting PDF in an editor
including Acrobat Pro, Lasso’s pdf_read type, etc. The file will be encrypted if this parameter is specified.
Optional.

• -encryptStrong – If specified then strong 128-bit encryption is used rather than 40-bit encryption. Note
that encryption will only be performed if either -userPassword or -ownerPassword is specified. Op-
tional.

• -permissions – A comma-delimited list of permissions for the PDF file. Values include “Print”, “Modify”,
“Copy”, or “Annotate”. Four additional options are available only if -encryptStrong is used: “FillIn”, “As-
semble”, “ScreenReader”, and “DegradedPrint”. Optional.

The examples below show creating basic pdf_doc objects, though these objects contain little or no data. Calling
pdf_doc->close on an object with no data will have no result, and no PDF file will be created. Various types of data can
be added to these objects using the methods described in the remainder of this chapter.

26.3.1 Start a Basic PDF File

Use the pdf_doc type to create a PDF file which could eventually be saved to a hard drive location on the machine running
Lasso. Use the-fileparameter to define the location and file name, and the -sizeparameter to define a predefined standard
size. This basic example creates a pdf_doc object that is ready to have data added to the first page:

local(my_file) = pdf_doc(-file='my_file.pdf', -size='A4')

260 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

26.3.2 Start a PDF File with a Custom Page Size

Use the pdf_doc type with the -height and -width parameters to define a custom page size in points. One inch is equal to
72 points.

local(my_file) = pdf_doc(-file='MyFile.pdf', -height='648.0', -width='468.0')

26.3.3 Start a PDF File with Custom Margins

Use the pdf_doc type with the -margins parameter to define custom page margins (in points). The following example adds
a margin of 72 points (one inch) to the left and right sides of the page, but adds no margin to the top and bottom. This example
also adds the date and time of creation to the document header using the -useDate parameter:

local(my_file) = pdf_doc(
-file='MyFile.pdf',
-size='A4',
-margins=(: 72.0, 72.0, 0.0, 0.0),
-useDate

)

26.3.4 Start an Uncompressed PDF File

Use the pdf_doc type with the -noCompress parameter.

local(my_file) = pdf_doc(-file='MyFile.pdf', -size='A4', -noCompress)

26.3.5 Start a PDF File with Custom Document Headers

Use the pdf_doc type with appropriate header.

local(my_file) = PDF_Doc(
-file='MyFile.pdf',
-size='A4',
-title='My PDF File',
-subject='How to create PDF files',
-author='John Doe'

)

26.4 Adding Content to PDFs

There are several different types of data that can be added to a PDF file. Many of these types are first defined as objects using
methods such as pdf_text, pdf_list, pdf_image, pdf_table, or pdf_barcode and then added to a pdf_doc object using
the pdf_doc->add member method. Each type is described separately in subsequent sections of this chapter.

pdf_doc->add(object, ...)
Adds a PDF content object to a file. It can add pdf_text, pdf_list, pdf_image, pdf_table, or pdf_barcode objects.
If no position information is specified then the object is added to the flow of the page, otherwise it is drawn at the
specified location. Requires one parameter for the object to be added. Optional parameters are described below.

Parameters

26.4. Adding Content to PDFs 261



LassoGuide, Release 9.3

• -align – Sets the alignment of the object in the page ('Left', 'Center', or 'Right'). Defaults to “Left”.
Works only for pdf_image and pdf_barcode objects. Optional.

• -wrap – Keyword parameter specifies that text should flow around the embedded object. Works only for
pdf_image and pdf_barcode objects. Optional.

• -left – Specifies the placement of the object relative to the left side of the document. Requires a dec-
imal value, which is the placement offset in points. Works only for pdf_image and pdf_barcode objects.
Optional.

• -top – Specifies the placement of the object relative to the top of the document. Requires a decimal value,
which is the placement offset in points. Works only for pdf_image and pdf_barcode objects. Optional.

• -height – Scales the object to the specified height. Requires a decimal value which is the desired object
height in points. Works only for pdf_image and pdf_barcode objects. Optional.

• -width – Scales the object to the specified width. Requires a decimal value which is the desired object
width in points. Works only for pdf_image and pdf_barcode objects. Optional.

For examples of using the pdf_doc->add method to add text, image, table, and barcode PDF objects to a pdf_doc object,
see the corresponding sections in this chapter.

pdf_doc->getVerticalPosition()
Returns the current vertical position where text will next be inserted on the page.

26.4.1 Adding Pages

If the content of a PDF file will span more than one page, additional pages can be added using special pdf_doc member
methods. These methods signal where pages start and stop within the flow of the Lasso PDF creation methods.

pdf_doc->addPage()
Adds additional blank pages to the pdf_doc object. When used, this method ends in the current page and starts a new
page. Note that a new page will not be added if there is no content on the current page.

The following example ends a preceding page, and starts a new page:

#my_file->add('Thus, ends the discussion on page 1.')
#my_file->addPage
#my_file->add('On page 2, we will discuss something else.')

pdf_doc->addChapter(text::string, -number::integer, -hideNumber=?)

pdf_doc->addChapter(text::pdf_text, -number::integer, -hideNumber=?)
Adds a page with a named chapter title (and bookmark) to a pdf_doc object. Requires a text string or pdf_text object
parameter specifying the chapter title. An additional-numberparameter sets an integer chapter number for the chapter.
An optional -hideNumber parameter can specify that no number will be shown.

The following example adds a page with the text “30. Important Chapter” to the pdf_doc object with a defined chapter
number of 30:

#my_file->addChapter(pdf_text('Important Chapter'), -number=30)

pdf_doc->setPageNumber(page::integer)
Sets a page number for a new page. Requires an integer value.

The following example sets a page number of 5 for the current page:

#my_file->setPageNumber(5)

262 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

pdf_doc->getPageNumber()→ integer
Returns the current page number.

The following example returns a page number of 1 when used within the first page of the file:

#my_file->getPageNumber
// => 1

26.4.2 Adding Pages from Existing PDFs

Pages in existing PDF files can be added to a pdf_doc object using the pdf_read type, which makes it possible to use existing
PDF files as templates.

Note: Lasso cannot change existing text or graphics that are contained within a PDF file read in using pdf_read. Instead, Lasso
is able to overlay text, graphics, and other elements on the PDF.

Once an existing PDF file has been read in as a Lasso object using pdf_read, it may be added to a pdf_doc object using the
pdf-doc->insertPage method.

pdf_doc->insertPage(pdf::pdf_read, number::integer, ...)
Inserts a page from a pdf_read object into a pdf_doc object. Requires a reference to a pdf_read object, followed by
a comma and the number of the page to insert. This method has many optional parameters for specifying how an
existing page should be inserted into a pdf_doc object, which are explained below.

Parameters

• -newPage – Keyword parameter specifying that the new page should be appended at the end of the file.
Otherwise the page is drawn over the first page in the pdf_doc object by default.

• -top – If the page being inserted is shorter than the current pages in the pdf_doc object, this parameter
can specify the offset of the new page from the top of the current page frame in points.

• -left – If the page being inserted is not as wide the current pages in the pdf_doc object, this parameter
can specify the offset of the new page from the left of the current page frame in points.

• -width – Scales the inserted page by width. Requires either a point width value, or a percentage string
(e.g. ‘50%’).

• -height – Scales the inserted page by height. Requires either a point height value, or a percentage string
(e.g. ‘50%’).

Insert an Existing Page Into a New PDF File

Use the pdf_doc->insertPage method with a defined pdf_read object. The example below makes the first page of
“somepdf.pdf” the first page of the pdf_doc object. Content may then be overlaid on top of the new page using the methods
described in the rest of this chapter:

local(new_pdf) = pdf_doc(-file='MyFile.pdf', -size='A4')
local(old_pdf) = pdf_read('/documents/somepdf.pdf')
#new_pdf->insertPage(#old_pdf, 1)

Insert an Existing Page at End of a New PDF File

Use the pdf_doc->insertPage method with the optional -newPage parameter. The example below adds the first page of
the “somepdf.pdf” PDF after all existing pages in the pdf_doc object:

26.4. Adding Content to PDFs 263



LassoGuide, Release 9.3

local(new_pdf) = pdf_doc(-file='MyFile.pdf', -size='A4')
local(old_pdf) = pdf_read('/documents/somepdf.pdf')
#new_pdf->insertPage(#old_pdf, 1, -newPage)

Position an Inserted Page

Use the pdf_doc->insertPage method with the optional -top and/or -left parameters. The example below places the
inserted page 50 points away from the top and left sides of the new document page frame:

local(new_pdf) = pdf_doc(-file='MyFile.pdf', -size='A4')
local(old_pdf) = pdf_read('/documents/somepdf.pdf')
#new_pdf->insertPage(#old_pdf, 1, -top=50, -left=50)

26.5 Accessing PDF File Information

Parameter values of a pdf_doc object can be returned using special accessor methods. These methods return specific values
such as the page size, margin size, or the value of any other pdf_doc data members described in the previous section. All PDF
accessor methods are defined below.

pdf_doc->getMargins()→ staticarray
Returns the current page margins as a staticarray (: left, right, top, bottom).

pdf_doc->getSize()→ staticarray
Returns the current page size as a staticarray of width and height point values (: width, height).

pdf_doc->getColor()→ string
Returns the current color as a hex string.

pdf_doc->getHeaders()
Returns all document headers as a map object in the form map('header1' = 'content1', 'header2' = 'con-
tent2', ...).

pdf_doc->setFont(font::pdf_font)
Sets a font for all following text. The value is a pdf_font object.

26.5.1 Return PDF Page Margins

Use the pdf_doc->getMargins method. The following example returns the current margins of a defined pdf_doc object:

#my_file->getMargins
// => staticarray(72.0, 72.0, 72.0, 72.0)

26.5.2 Return PDF Page Size

Use the pdf_doc->getSize method. The following example returns the current sizes of a defined pdf_doc object:

#my_file->getSize
// => staticarray(595, 842)

264 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

26.5.3 Return PDF Base Font Color

Use the pdf_doc->getColor method. The following example returns the base font color of a defined pdf_doc object:

#my_file->getColor
// => #333333

26.6 Saving PDF Files

Once a pdf_doc object has been filled with the desired content, the pdf_doc->close method must be used to signal that
the PDF file is finished and is ready to be written to file or served to a visitor’s browser.

pdf_doc->close()
Closes a pdf_doc object and commits it to file after all desired data has been added to it. Additional data may not be
added to the specified object after this method is called.

26.6.1 Close a PDF File

Use the pdf_doc->close method after all desired modifications have been performed on the pdf_doc object.

local(my_file) = pdf_doc(
-file='MyFile.pdf',
-size='A4',
-margins=(: 144.0, 144.0, 72.0, 72.0)

)
local(font) = pdf_font(-face='Helvetica', -size=36)
local(text) = pdf_text('I am a PDF document', -font=#font)
#my_file->add(#text)
#my_file->close

26.7 Creating Text Content

Text content is the most basic type of data within a PDF file. PDF text is first defined as a pdf_text object, and then added to a
pdf_doc object using the pdf_doc->add method.

A pdf_text object may be positioned within the current PDF page using the-left and-topparameters of thepdf_doc->add
method. Otherwise, if no positioning parameters are specified, the text will be added to the top left corner of the page by
default.

26.7.1 Setting Fonts

Before adding text, it is important to first define the font and style for the text to determine how it will appear. This is done
using the pdf_font type.

type pdf_font

pdf_font(-face=?, -file=?, -size=?, -color=?, -encoding::string=?, -embed=?)
Stores all the specifications for a font style. This includes font family, size, style, and color. Parameters are used with the
pdf_font creator method that define the font family, size, color, and specifications. The following parameters may be
used with the pdf_font creator method.

Parameters

26.6. Saving PDF Files 265



LassoGuide, Release 9.3

• -face – Specifies the font by its family name. Allowed font names are “Courier”, “Courier-Bold”,
“Courier-BoldOblique”, “Courier-Oblique”, “Helvetica”, “Helvetica-Bold”, “Helvetica-BoldOblique”,
“Helvetica-Oblique”, “Symbol”, “Times-Roman”, “Times-Bold”, “Times-BoldItalic”, “Times-Italic”, and
“ZapfDingbats”. Optional.

• -file – Uses a font from a local font file. The file name and path to the font must be specified (e.g.
“/Fonts/Courier.ttf”). This parameter may be used instead of the -face parameter. Optional.

• -size – Sets the font size in points. Requires an integer point value as a parameter (e.g. “14”). Optional.

• -color – Sets the font color. Requires a hex color string as a parameter (e.g. “#550000”). Defaults to
“#000000” if not specified. Optional.

• -encoding – Sets the desired font encoding, defaulting to “CP1252”. TrueType fonts can be asked to return
an array of supported encodings via the pdf_font->getSupportedEncodings method. Optional.

• -embed – Embeds the fonts used within the PDF file as opposed to relying on the client PDF reader for
font information. Optional.

The following examples show how to set variables as pdf_font objects that define the font styles to be used with a pdf_text
object.

Set a Basic Font Style

Set a variable as a pdf_font object. The following example sets a font style to be a standard “Helvetica” font with a size of 14
points. The font color is also set to green:

local(my_font) = pdf_font(-face='Helvetica', -size=14, -color='#005500')

Individual parameters may be viewed and changed in a pdf_font object using pdf_fontmember methods. These parameters
are most useful for retrieving and setting information about a pdf_font object that was defined using the -file parameter,
and are summarized below.

pdf_font->setFace(face::string)
Changes the font face of the pdf_font object to one of the allowed font names.

pdf_font->setColor(color::string)

pdf_font->setColor(color::pdf_color)
Changes the font color of the pdf_font object.

pdf_font->setSize(size::integer)
Changes the font size of the pdf_font object.

pdf_font->setEncoding(encoding::string)
Changes the encoding of the pdf_font object.

pdf_font->setUnderline(on::boolean=true)
Sets or unsets the pdf_font object style to underlined.

pdf_font->setBold(on::boolean=true)
Sets or unsets the pdf_font object style to bold.

pdf_font->setItalic(on::boolean=true)
Sets or unsets the pdf_font object style to italic.

pdf_font->getFace()
Returns the current font face of a pdf_font object.

pdf_font->getColor()
Returns the current font color of a pdf_font object.

266 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

pdf_font->getSize()
Returns the current font size of a pdf_font object.

pdf_font->getEncoding()
Returns the current encoding of a pdf_font object.

pdf_font->getPSFontName()
Returns the exact PostScript font name of the current font of a pdf_font object, e.g. “AdobeCorIDMinBd”.

pdf_font->isTrueType()
Returns “true” if the current font is a TrueType font.

pdf_font->getSupportedEncodings()
Returns an array of all supported encodings for a current TrueType font face, e.g. “array(‘1252 Latin 1’, ‘1253 Greek’)”.

pdf_font->getFullFontName()
Returns the full TrueType name of the current font of a pdf_font object (e.g. “Comic Sans”, “MS Negreta”).

pdf_font->textWidth(text::string)
Returns an integer value representing how wide (in pixels) the text would be using the current pdf_font object. Requires
a string value that is the text for which the width is desired.

Change a Font Face

Use the pdf_font->setFace method. The following example sets a defined pdf_font object to a standard “Courier” font:

#my_font->setFace('Courier')

Change a Font Color

Use the pdf_font->setColor method. The following example sets a defined pdf_font object to the color red:

#my_font->setColor('#990000')

Underline a Font

Use the pdf_font->setUnderline method. The following example sets a predefined pdf_font object to use an underlined
style:

#my_font->setUnderline

Return a Font Face

Use the pdf_font->getFace method. The following example returns the current font face of a defined pdf_font object:

#my_font->getFace
// => Courier

Return a Font Encoding

Use the pdf_font->getEncodingmethod. The following example returns the encoding of the current font face of a defined
pdf_font object:

26.7. Creating Text Content 267



LassoGuide, Release 9.3

#my_font->getEncoding
// => Cp1252

26.7.2 Adding Text

PDF text content is constructed using the pdf_text type, which is then added to a pdf_doc object using the pdf_doc->add
method. The pdf_text constructor method and parameters are described below.

type pdf_text

pdf_text(text::string, ...)
Creates a text object to be added to a pdf_doc object. The constructor method requires the text string to be added to
the PDF file as the first parameter. Optional parameters are listed below.

Parameters

• -type – Specifies the text type. This can be “Chunk”, “Phrase”, or “Paragraph”. Different parameters are avail-
able for each of these types, as described below. Defaults to the “Paragraph” type if no -type parameter
is specified. Optional.

• -color – Sets the font color. Requires a hex color string as a parameter (e.g. “#550000”). Defaults to
“#000000” if not specified. Optional.

• -backgroundColor – Sets the text background color. Require a hex color string as a parameter (e.g.
“#550000”). Optional.

• -underline – Keyword parameter underlines the text. Optional.

• -textRise – Sets the baseline shift for superscript. Requires a decimal value specifying the text rise in
points. Optional.

• -font – Sets the font for the specified text using a pdf_font object, defaulting to the current inherited
font. Optional.

• -anchor – Links the specified text to a URL. The value of the parameter is the URL string (e.g.
http://www.example.com). Optional.

• -name – Sets the name of an anchor destination within a page. The value of the parameter is the anchor
name (e.g. “Name”). Optional.

• -goTo – Links the specified text to a local anchor destination to go to. The value of the parameter is the
local anchor name (e.g. “Name”). Optional.

• -file – Links the specified text to a PDF file. The value of the parameter is a PDF file name (e.g. “Some-
file.pdf”). The-goToparameter can be used concurrently to specify an anchor name within the destination
file. Optional.

• -leading – Sets the leading space in points (the space above each line of text), requires a decimal value.
For “Phrase” and “Paragraph” types only.

• -align – Sets the alignment of the text in the page ('Left', 'Center', or 'Right'). Optional.

• -indentLeft – Sets the left indent of the text object. Requires a decimal value which is the number of
points to indent the text. Optional. Available for “Paragraph” types only.

• -indentRight – Sets the right indent of the text object. Requires a decimal value which is the number
of points to indent the text. Optional. Available for “Paragraph” types only.

The following examples show how to add text to a defined PDF variable named “my_file” that has been initialized previously
using the pdf_doc method.

268 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

Add a Chunk of Text

Use the pdf_text type with the -type='Chunk' parameter. The following example adds the text “LassoSoft” to the pdf_doc
object with a predefined font. The text is positioned in the top left corner of the page by default:

local(text) = pdf_text('LassoSoft', -type='Chunk', -font=#my_font)
#my_file->add(#text)

Add a Paragraph of Text

Use the pdf_text type with the -type='Paragraph' parameter. The following example adds three sentences of text to the
pdf_doc object with a predefined font:

local(text) = pdf_text(
"The mysterious file cabinet in orbit has been successfully lassoed. The \

file cabinet had been traveling at a velocity of 300 meters per \
second. Top scientists suspect that the cabinet had been in orbit for \
some time.",

-type='Paragraph',
-font=#my_font,
-leading=10.0,
-indentLeft=20.0

)
#my_file->add(#text)

Add a Linked Phrase

Use the pdf_text type with the -anchor parameter. The following example adds the text “Click here to go somewhere” to
the pdf_doc object with a predefined font, and links the phrase to http://www.example.com:

local(text) = pdf_text(
"Click here to go somewhere",
-type='Chunk',
-font=#my_font,
-anchor='http://www.example.com',
-underline

)
#my_file->add(#text, -left=100.0, -top=100.0)

26.7.3 Adding Floating Text

Instead of adding text to the flow of the page, text can also be positioned on a page using the pdf_doc->drawText method.
The pdf_doc->drawText method accepts coordinates to place the text at an absolute position on the page.

pdf_doc->drawText(text::string, -font=?, -alignment=?, -leading::decimal=?, -rotate::decimal=?, -left::integer=?,
-top::integer=?, -width::integer=?, -height::integer=?)

Adds specified text that is positioned on a page using point coordinates. An optional -leading parameter (decimal
value) will set the text leading space in points (the space above each line of the text). A -left parameter specifies
the placement of the left side of the text from the left side of the page in points, and a -top parameter specifies the
placement of the bottom of the image from the bottom of the page in points (decimal value).

26.7. Creating Text Content 269



LassoGuide, Release 9.3

Note: The pdf_doc->drawText method is a graphics operation. It relies on the fill color set using the
pdf_doc->setColor method. The color of the -font parameter will not be recognized.

Add Floating Text

Use the pdf_doc->drawText method. The following example adds the text “Some floating text” to the pdf_doc object with
a predefined font at the coordinates specified in the -top and -left parameters. The coordinates represent the distance in
points from the lower and left sides of the page:

#my_file->drawText('Some floating text',
-font=#my_font,
-left=144.0,
-top=480.0

)

26.7.4 Adding Lists

A list of items can be constructed using the pdf_list type, which can be added to a pdf_doc object. The pdf_list con-
structor method and parameters are described below.

type pdf_list

pdf_list(...)
Creates a list object to be added to a pdf_doc object. Text list items are added to this object using the pdf_list->add
method. Optional parameters for this object are described in the table below.

Parameters

• -format – Specifies whether the list is numbered, lettered, or bulleted. Requires a value of 'Number',
'Letter', 'Bullet'. Defaults to “Bullet” if no -format parameter is specified. Optional.

• -bullet – Specifies a custom character to use as the bullet character. Requires a character as a parameter
(e.g. 'x'). Defaults to the empty string if not specified. Optional.

• -indent – Sets the space between the bullet and the list item. Requires a decimal or integer parameter
which is the width of the indentation in points. Optional.

• -font – Sets the font for the specified text using a pdf_font object, defaulting to the current inherited
font.

• -align – Sets the alignment of the list in the page ('Left', 'Center', or 'Right'). Optional.

• -color – Sets the font color. Requires a hex color string as a parameter (e.g. '#550000'). Defaults to
“#000000” if not used. Optional.

• -backgroundColor – Sets the text background color. Require a hex color string as a parameter (e.g.
'#550000'). Optional.

• -leading – Sets the list leading space in points (the space above each line of text), requires a decimal
value. Optional.

pdf_list->add(text::string)

pdf_list->add(text::pdf_text)
Add objects to the list. Requires a text string or a pdf_text object as a parameter.

270 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

Add a Numbered List

Use the pdf_list type with the -format='Number' parameter to define the list, and the pdf_list->add method to add
items to the list. The example below creates a numbered list with three items:

local(list) = pdf_list(-format='Number', -align='Center', -font=#my_font)
#list->add('This is item one')
#list->add('This is item two')
#list->add('This is item three')
#my_file->add(#list)

Add a Bulleted List

Use the pdf_list type with the -format='Bullet' parameter to define the list, and the pdf_list->add method to add
items to the list. The example below adds a bulleted list with four items, where a hyphen (-) is used as the bullet character:

local(list) = pdf_list(-format='Bullet', -bullet='-', -font=#my_font)
#list->add('This is item one')
#list->add('This is item two')
#list->add('This is item three')
#list->add('This is item four')
#my_file->add(#list)

26.7.5 Special Characters

When adding text to a pdf_doc object, escape sequences can be used to insert special characters such as line breaks, tabs,
and more. These characters are summarized in the table below.

Table 26.1: Supported PDF Escape Sequences

Escape Sequence Description

\n line break (OS X and Linux)

\r\n line break (Windows)

\t tab

\" double quote

\' single quote

\\ backslash

Use Special Characters in a Text String

The following example shows how to use special characters within a pdf_doc text object:

#my_file->add('\\ \t \'Single Quotes\', \"Double Quotes\" ')

26.8 Creating and Using Forms

Forms can be created in PDF files for submitting information to a website. PDF forms use the same attributes as HTML forms,
making them useful for submitting information to a website in place of an HTML form. This section describes how to create
form elements within a PDF file, and also how PDF forms can submit data to a Lasso-enabled database.

26.8. Creating and Using Forms 271



LassoGuide, Release 9.3

Note: Due to the iText implementation of PDF support in Lasso, created PDF files may contain only one form.

26.8.1 Creating Forms

Form elements are created in pdf_doc objects using pdf_doc form member methods which are described below.

pdf_doc->addTextField(name::string, value::string, -left, -top, -width, -height, -font=?)
Adds a text field to a form. Requires the first parameter to specify the name of the text field, and the second parameter
to specify the default value entered. An optional -font parameter can specify a pdf_font object for the font of the text.

pdf_doc->addPasswordField(name::string, value::string, -left, -top, -width, -height, -font=?)
Adds a password field to a form. Requires the first parameter to specify the name of the password field, and the second
parameter to specify the default value entered. An optional -font parameter can specify a pdf_font object for the font
of the text.

pdf_doc->addTextArea(name::string, value::string, -left, -top, -width, -height, -font=?)
Adds a text area to a form. Requires the first parameter to specify the name of the text area, and the second parameter
to specify the default value entered. An optional -font parameter can specify a pdf_font object for the font of the text.

pdf_doc->addCheckBox(name::string, value::string, -left, -top, -width, -height, -checked::boolean=?)
Adds a checkbox to a form. Requires the first parameter to specify the name of the checkbox, and the second parameter
to specify the value for the checkbox. An optional -checked parameter can specify that the checkbox is checked by
default.

pdf_doc->addRadioGroup(name::string)
Adds a radio button group to a form. Requires a parameter specifying the name of the radio button group. Radio buttons
must be assigned to the group using the pdf_doc->addRadioButton method.

pdf_doc->addRadioButton(group::string, value::string, -left, -top, -width, -height)
Adds a radio button to a form. Requires the first parameter to specify the name of the radio button group, and the
second parameter to specify the value of the radio button.

pdf_doc->addComboBox(name::string, values::trait_forEach, -default::string=?, -editable::boolean=?, -left, -top, -width,
-height, -font=?)

Adds a drop-down menu to a form. Requires the first parameter to specify the name of the drop-down menu, and the
second parameter to specify the array of values contained in the menu (: 'Value1', 'Value2'). Optionally, the
array passed as the second parameter can contain a pair for each value. The first element in the pair is the value to be
used upon form submission, and the second element is the human-readable label to be used for display only.

An optional -default parameter can specify the name of a default value to select. An optional -editable parameter
can specify that the user may edit the values on the menu. An optional -font parameter can specify a pdf_font object
for the font of the text.

pdf_doc->addSelectList(name::string, values::trait_forEach, -default=’‘, -left, -top, -width, -height, -font=?)
Adds a select list to a form. Requires the first parameter to specify the name of the select list, and the second parameter
to specify the array of values contained in the select list (: 'Value1', 'Value2'). Optionally, the array passed as
the second parameter can contain a pair for each value. The first element in the pair is the value to be used upon form
submission, and the second element is the human-readable label to be used for display only.

An optional -default parameter can specify the name of a default value to select. An optional -font parameter can
specify a pdf_font object for the font of the text.

pdf_doc->addHiddenField(name::string, value::string)
Adds a hidden field to a form. Requires the first parameter to specify the name of the hidden field and the second
parameter to specify the default value entered.

272 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

pdf_doc->addSubmitButton(name::string, caption::string, value::string, url::string, -left, -top, -width, -height, -font=?)
Adds a submit button to a form. Also specifies the URL to which the form data will be submitted. Requires the first
parameter to specify the name of the button. The second parameter specifies a caption (displayed name) for the button.
The third parameter is the value for the submit button, and the fourth parameter specifies the URL of the response page.
An optional -font parameter can specify a pdf_font object for the font of the text.

pdf_doc->addResetButton(name::string, caption::string, value::string, -left, -top, -width, -height, -font=?)
Adds a reset button to a form. Requires the first parameter to specify the name of the button, the second parameter
specifies a caption (displayed name) for the button, and the third parameter specifies the value for the button. An
optional -font parameter can specify a pdf_font object for the font of the text.

Note: With the exception of the pdf_doc->addSubmitButton and pdf_doc->addResetButton methods, no form input
element methods include captions or labels with the field elements. Field captions and labels can be applied using the
pdf_text and pdf_doc->add methods to position text appropriately. See the section Creating Text Content for more in-
formation.

All pdf_doc form member methods, with the exception of addHiddenField and addRadioButtonGroup, require place-
ment parameters for specifying the exact positioning of form elements within a page. These parameters are summarized in
the table Form Placement Parameters.

Table 26.2: Form Placement Parameters

Parameter Description

-left Specifies the placement of the left side of the form element from the left side of the current page in points.
Requires a decimal value.

-top Specifies the placement of the bottom of the form element from the bottom of the current page in points.
Requires a decimal value.

-width Specifies the width of the form element in points. Requires a decimal value.

-height Specifies the height of the form element in points. Requires a decimal value.

Add a Text Field

Use the pdf_doc->addTextField method. The example below adds a field named “Field_Name” that has “Some Text” en-
tered by default. The field size is 144.0 points (two inches) wide and 36.0 points high:

#my_file->addTextField(
'Field_Name',
'Some Text',
-font=#my_font,
-left=72.0, -top=350.0, -width=144.0, -height=36.0

)

Add a Text Area

Use the pdf_doc->addTextArea method. The example below adds a text area named “Field_Name” that has the text “Insert
default text here” entered by default. The field size is 144.0 points wide and 288.0 points high:

#my_file->addTextArea(
'Field_Name',
'Insert default text here',
-font=#my_font,

26.8. Creating and Using Forms 273



LassoGuide, Release 9.3

-left=72.0, -top=300.0, -width=144.0, -height=288.0
)

Add a Checkbox

Use the pdf_doc->addCheckbox method. The example below adds a field named “Field_Name” with a checked value of
“Checked_Value” that is checked by default. The checkbox is 4.0 points wide and 4.0 points high, and is positioned 272.0
points from the bottom and left sides of the page:

#my_file->addCheckBox(
'Field_Name',
'Checked_Value',
-checked,
-left=272.0, -top=272.0, -width=4.0, -height=4.0

)

Add a Group of Radio Buttons

Use the pdf_doc->addRadioGroup and pdf_doc->addRadioButton methods. The example below adds a radio button
group named “Group_Name” and adds two radio buttons with the values of “Yes” and “No”. The radio buttons are 6.0 points
wide and 6.0 points high each:

#my_file->addRadioGroup('Group_Name')
#my_file->addRadioButton(

'Group_Name',
-value='Yes',
-left=72.0, -top=372.0, -width=6.0, -height=6.0

)
#my_file->addRadioButton(

'Group_Name',
-value='No',
-left=90.0, -top=372.0, -width=6.0, -height=6.0

)

Note: If the pdf_doc->addRadioGroup method is not used, radio buttons will not appear in the form.

Add an Editable Drop-Down Menu

Use the pdf_doc->addComboBox method. The example below adds a drop-down menu named “Menu_Name” with the
values “One”, “Two”, “Three”, and “Four” as menu values. The value “One” is selected by default, and an -editable parameter
allows the users to edit the values if desired. The drop-down menu size is 144.0 points wide and 36.0 points high:

#my_file->addComboBox(
'List_Name',
(: 'One', 'Two', 'Three', 'Four'),
-default='One',
-editable,
-left=72.0, -top=272.0, -width=144.0, -height=36.0

)

274 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

Add a Drop-Down Menu with Different Displayed Values

Use the pdf_doc->addComboBox method whose values are each pairs. The example below adds a drop-down menu named
“Menu_Name” with the values “1”, “2”, “3”, and “4” as submittable menu values, but displays the names “One”, “Two”, “Three”,
and “Four” for each value. No value is selected by default:

#my_file->addComboBox(
'List_Name',
(: pair(1 = 'One'),

pair(2 = 'Two'),
pair(3 = 'Three'),
pair(4 = 'Four')

),
-left=72.0, -top=272.0, -width=144.0, -height=36.0

)

Add a Select List

Use the pdf_doc->addSelectListmethods. The example below adds a select list named “List_Name” with the values “One”,
“Two”, “Three”, and “Four” as list items. The select list is 144.0 points wide and 288.0 points high, and is positioned 72.0 points
from the bottom and left sides of the page:

#my_file->addSelectList(
'List_Name',
(: 'One', 'Two', 'Three', 'Four'),
-default='One',
-left=72.0, -top=72.0, -width=144.0, -height=288.0

)

Add a Hidden Field

Use the pdf_doc->addHiddenField method. The example below adds a hidden field named “Field_Name” with a value of
“Hidden_Value” to a pdf_doc object named “my_file”. No placement coordinates are needed because the field is not displayed
on the page:

#my_file->addHiddenField('Field_Name', 'Some_Value')

Add a Submit Button

Use the pdf_doc->addSubmitButton method. The example below adds a submit button named “Button_Name” with a
value of “Submitted_Value”. The second parameter specifies the displayed name of the button, which is “Submit This Form”. The
fourth parameter specifies that the user will be taken to http://www.example.com/response.lasso when the button is selected
in the form:

#my_file->addSubmitButton(
'Button_Name',
'Submit This Form',
'Submitted_Value',
'http://www.example.com/response.lasso',
-left=72.0, -top=72.0, -width=144.0, -height=36.0

)

26.8. Creating and Using Forms 275



LassoGuide, Release 9.3

Add a Reset Button

Use the pdf_doc->addResetButton method. The example below adds a reset button named “Button_Name” with a value
of “Reset_Value”. The second parameter specifies the displayed name of the button, which is “Reset This Form”:

#my_file->addResetButton(
'Button_Name',
'Reset This Form',
'Reset_Value',
-left=72.0, -top=72.0, -width=144.0, -height=36.0

)

26.8.2 Submitting Form Data to Lasso-Enabled Databases

Using Lasso Server, one has the ability to submit data from a PDF form to a Lasso-enabled site for interaction with a database.
PDF forms may be used in the same way as HTML forms to submit request parameters to a Lasso response page, where
database actions can occur via an inline method.

Submit Information to a Database Using a PDF Form

1. In the “form.lasso” page, name the PDF form fields to correspond to the names of fields in the desired database. The
names of these fields will be used in the inline method in the Lasso response page.

local(my_file) = pdf_doc(-file='form.pdf', -size='A4')
local(my_font) = pdf_font(-face='Helvetica', -size=12)
#my_file->drawText('First Name:', -font=#my_font, -left=80.0, -top=60.0)
#my_file->drawText('Last Name:', -font=#my_font, -left=80.0, -top=60.0)
#my_file->addTextField(

'First Name',
'Enter First Name',
-left=144.0, -top=72.0, -width=144.0, -height=36.0

)
#my_file->addTextField(

'Last Name',
'Enter Last Name',
-left=144.0, -top=92.0, -width=144.0, -height=36.0

)

2. Create a submit button in the “form.lasso” page that contains the name and URL of the Lasso response page.

#my_file->addSubmitButton(
'Search',
'Click here to Search',
'Search',
'http://www.example.com/response.lasso',
-font=#my_font,
-left=144.0, -top=122.0, -width=80.0, -height=36.0

)
#my_file->close

After the pdf_doc object is closed and executed on the server, a “form.pdf” file will be created with the form.

3. In the “response.lasso” page, create an inline method that uses the action parameters passed from the PDF form to
perform a database action. This example performs a search on the “Contacts” database using the values for “first_name”
and “last_name” passed from the PDF form.

276 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'first_name'=web_request->param('first_name'),
'last_name'=web_request->param('last_name')

) => {^
'There were ' + found_count + ' record(s) found in the People table.\n'
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

If the user of the PDF form entered “Jane” for the first name and “Doe” for the last name, the following results would be
returned:

// =>
// There were 1 record(s) found in the People table.
// <br />Jane Doe

You could also use this method to update data in a database.

26.9 Creating Tables

Tables can be created in PDF files for displaying data. These are created using the pdf_table type and added to a PDF object
using pdf_doc member methods, which are described in this section.

26.9.1 Defining Tables

Tables for organizing data can be defined for use in a PDF file using the pdf_table type. Objects of this type are added to a
pdf_doc object.

type pdf_table

pdf_table(cols::integer, rows::integer, ...)
Creates a table to be placed in a PDF. Uses parameters that set the basic specifications of the table to be created. The
first parameter is required and specifies the number of columns in the table. The second parameter is also required and
specifies the number of rows in the table. Below is a list of optional parameters for the pdf_table constructor method.

Parameters

• -spacing – Specifies the spacing around a table cell. Defaults to “0” (no spacing) if not specified. Optional.

• -padding – Specifies the padding within a table cell. Defaults to “0” (no padding) if not specified. Optional.

• -width – Specifies the width of the table as a percentage of the current page width. Defaults to the width
of the cell text plus spacing, padding, and borders if not specified. Optional.

• -borderWidth – Specifies the border width of the table in points. Requires a decimal value. Optional.

• -borderColor – Specifies the border color of the table. Requires a hex color string (e.g. '#000000').
Optional.

• -backgroundColor – Specifies the background color of the table. Requires a hex color string (e.g. '#CC-
CCCC'). Optional.

26.9. Creating Tables 277



LassoGuide, Release 9.3

• -colWidth – Sets the column width for each column in the table. Requires an array of decimals repre-
senting the width percentage of each column. Optional.

Member methods can set additional specifications for a pdf_table object, as well as access data member values from pdf_table
objects. These methods are summarized below.

pdf_table->getColumnCount()
Returns the number of columns in a pdf_table object.

pdf_table->getRowCount()
Returns the number of rows in a pdf_table object.

pdf_table->getAbsWidth()
Returns the total pdf_table object width in pixels.

Create a Basic Table

Use the pdf_table type. The example below creates a table with two columns and five rows, with table cell spacing of one
point and cell padding of two points. The width of the table is set at 75% of the current page width:

local(my_table) = pdf_table(
2,
5,
-spacing=1,
-padding=2,
-width=75,
-backgroundColor='#CCCCCC'

)

Create a Table with a Border

Use the pdf_table type with the -borderWidth and -borderColor parameters. The example below creates a basic table,
and then adds a black border with a width of 3 points to the table:

local(my_table) = pdf_table(
2,
5,
-spacing=1,
-padding=2,
-borderWidth=3,
-borderColor='#000000'

)

Rotate a Table

Use the pdf_table type with the -rotate parameter. The example below creates a basic table, and then rotates it by 90
degrees clockwise:

local(my_table) = pdf_table(
2,
5,
-spacing=1,
-padding=2,
-rotate=90

)

278 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

Create a Table with Specific Column Widths

Use the pdf_table type with the -colWidth parameter. The example below creates a basic table with percentage widths
for three columns:

local(my_table) = pdf_table(
2,
5,
-spacing=1,
-padding=2,
-colWidth=(: '50.0', '25.0', '25.0')

)

26.9.2 Adding Content to Table Cells

Content is added to table cells using additional pdf_table member methods which are summarized below.

pdf_table->add(str::string, col::integer, row::integer, ...)

pdf_table->add(text::pdf_text, col::integer, row::integer, ...)

pdf_table->add(table::pdf_table, col::integer, row::integer, ...)

pdf_table->add(image::pdf_image, col::integer, row::integer, ...)

pdf_table->add(barcode::pdf_barcode, col::integer, row::integer, ...)
Inserts text content, a new nested table, an image, or a barcode into a cell. Requires a string, pdf_text, pdf_table,
pdf_image, or pdf_barcode object to be inserted as the first parameter. Also requires specifying the column number
as the second parameter and row number as the third parameter. Row and columns numbers start from “0” with rows
increasing from top to bottom and columns increasing from left to right. The table below lists the optional parameters
that can also be specified.

Parameters

• -colspan – Specifies the number of columns a cell should span. If specified, requires an integer value “1”
or greater. Optional.

• -rowspan – Specifies the number of rows a cell should span. If specified, requires an integer value “1” or
greater. Optional.

• -verticalAlignment – Vertical alignment for text within a cell. Accepts a value of 'Top', 'Center', or
'Bottom'. Defaults to “Center” if not specified. Optional.

• -horizontalAlignment – Horizontal alignment for text within a cell. Accepts a value of 'Left', 'Cen-
ter', or 'Right'. Defaults to “Center” if not specified. Optional.

• -borderColor – Specifies the border color for the cell (e.g. '#440000'). Defaults to “#000000” if not
specified. Optional.

• -borderWidth – Specifies the border width of the cell in points. Requires an integer value. Defaults to “0”
if not specified. Optional.

• -header – Specifies that the cell is a table header. This is typically used for cells in the first row. Optional.

• -noWrap – Specifies that the text contained in a cell should not wrap to conform to the cell size specifica-
tions. If used, the cell will expand to the right to accommodate longer text strings. Optional.

26.9. Creating Tables 279



LassoGuide, Release 9.3

Add a Cell to a Table

Use the pdf_table->add method. The example below adds a cell to the first row and column in a table. Note that the first
row and column are numbered “0”:

#my_table->add(
'This is the first cell in my table',
0,
0,
-colspan=1,
-rowspan=1

)

Add a Multi-Column Cell to a Table

Use the pdf_table->addmethod with the number of columns to span for the -column parameter. The example below adds
a cell to the first row that spans three columns. The -noWrap parameter specifies that the added text will not be wrapped into
multiple lines:

#my_table->add(
'This text will only stay on one line regardless of the table size',
0,
0,
-colspan=3,
-rowspan=1,
-noWrap

)

Add a Header Cell to a Table

Use the pdf_table->add method with the -header parameter. The example below adds the header “My Column Title” to
the first column of the table:

#my_table->add(
'My Column Title',
0,
0,
-header

)

Add a Cell with a Border to a Table

Use the pdf_table->add method with the -borderWidth and -borderColor parameter. The example below adds a cell
with a red border to the first column of the table:

#my_table->add(
'This cell has a border',
0,
0,
-borderWidth=45.0,
-borderColor='#440000'

)

280 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

26.9.3 Adding Tables

Once a pdf_table object is completely defined and has cell content, it may then be added to a pdf_doc object using the
pdf_doc->add method.

Add a Table to a pdf_doc Object

Use the pdf_doc->add method. The following example adds a predefined pdf_table object named “my_table” to a pdf_doc
object named “my_file”:

#my_file->add(#my_table)

26.10 Creating Graphics

This section describes how to draw custom graphic objects and insert image files within a PDF file.

26.10.1 Inserting Images

Image files can be placed within PDF pages using the pdf_image type in conjunction with the pdf_doc->addImagemethod
as documented below.

type pdf_image

pdf_image(...)
Reads an image file as a Lasso object so it can be placed into a PDF file. Requires either a -file, -url, or -rawparameter,
as described in the list below. Only images in JPEG, GIF, PNG, and WMF formats may be used.

Parameters

• -file – Specifies the local path to an image file. Required if the -url or -raw parameters are not used.

• -url – Specifies a URL to an image file. Required if the -file or -raw parameters are not used.

• -raw – Inputs a raw string of bits representing the image. Required if the -url or -file parameters are
not used.

• -height – Scales the image to the specified height. Requires a decimal value which is the desired image
height in points. Optional.

• -width – Scales the image to the specified width. Requires a decimal value which is the desired image
width in points. Optional.

• -proportional – Keyword parameter specifying that all scaling should preserve the aspect ratio of the
inserted page. Optional.

• -rotate – Rotates the image by the specified degrees clockwise. Optional.

Add an Image File to a pdf_doc Object

Use the pdf_image type. The following example adds a file named “Image.jpg” in a “/Documents/Images/” folder to a pdf_doc
object named “my_file”:

local(image) = pdf_image(-file='/Documents/Images/Image.jpg')
#my_file->add(#image, -left=144.0, -top=300.0)

26.10. Creating Graphics 281



LassoGuide, Release 9.3

Scale an Image File

Use the pdf_image type with the -height or -width parameter. The following example proportionally reduces the size of
the added image by 50%:

local(image) = pdf_image(-file='/Documents/Images/Image.jpg', -height='50%')
#my_file->add(#image, -left=144.0, -top=300.0)

Rotate an Image File

Use the pdf_image type with the -rotate parameter. The following example rotates the added image by 90 degrees clock-
wise:

local(image) = pdf_image(-file='/Documents/Images/Image.jpg', -rotate=90.0)
#my_file->add(#image, -left=144.0, -top=300.0)

26.10.2 Drawing Graphics

To draw custom graphics, Lasso uses a coordinate system to determine the placement of each graphical object. This coordinate
system is a standard coordinate plane with horizontal (X) vertical (Y) axis, where a point on a page is defined by an array
containing horizontal and vertical position values “(X, Y)”. The base point of the coordinate plane “(0, 0)” is located in the lower
left corner for the current page. Increasing an X-Value moves a point to the right in the page, and increasing the Y-Value moves
the point up in the page. The current width and height of the page in points defines the maximum X and Y values.

Custom graphics may be drawn in PDF pages using pdf_doc drawing member methods. These member methods operate
by controlling a “virtual pen” which draws graphics similar to a true graphics editor. These member methods are summarized
below.

pdf_doc->setColor(type::string, color::pdf_color)

pdf_doc->setColor(type::string, color::string, ...)
Sets the color and style for subsequent drawing operations on the page. Requires the first parameter to specify whether
the drawing action is of type “Stroke”, “Fill”, or “Both”. The second parameter is also required and is either a pdf_color
object or a string specifying a color type of “Gray”, “RGB”, or “CMYK”. If “Gray” is specified, a decimal specifies a color
strength value. If “RGB” is specified, three decimal values specify red, green, and blue values, respectively. If “CMYK” is
specified, four decimal values specify cyan, magenta, yellow, and black values, respectively. Color values are specified
as decimals ranging from “0” to “1.0”.

pdf_doc->setLineWidth(width::decimal)
Sets the line width for subsequent drawing actions on the page in points. Requires a decimal point value.

pdf_doc->line(x1, y1, x2, y2)
Draws a line. Requires a set of integer values specifying the starting point and ending point of the line.

pdf_doc->curveTo(x1, y1, x2, y2, x3, y3)
Draws a curve. Requires a set of integer values specifying the starting point, middle point, and ending point of the curve.

pdf_doc->rect(x, y, width, height, -fill::boolean=?)
Draws a rectangle. Requires the first two parameters to be a set of “X” and “Y” integer values specifying the lower right
corner of the rectangle, and the next two parameters specify the height and width of the rectangle sides from that
coordinate. An optional -fill parameter will draw a filled rectangle.

pdf_doc->circle(x, y, radius, -fill::boolean=?)
Draws a circle. Requires the first two parameters to be a set of integer points for the center coordinates of the circle and
the third parameter to be the length of the radius. An optional -fill parameter will draw a filled circle.

282 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

pdf_doc->arc(x, y, radius, start, end, -fill::boolean=?)
Draws an arc. Requires the first two parameters to be a set of integer values for the center coordinates of the arc and
the third parameter to be the radius of the invisible circle to which the arc belongs. The fourth parameter must be a
starting degree specifying the degrees of the circle at which the arc starts, and the fifth parameter must be an ending
degree specifying the circle degrees at which the arc ends. Angles start with “0” to the right of the center and increase
counter-clockwise. An optional -fill parameter will draw a filled arc.

Note: The color and line width must be set on each new page of the PDF prior to calling any drawing methods.

Set Color and Style for a Drawing Action

Use the pdf_doc->setColor method. The example below sets a color of red for all subsequent drawing action until another
pdf_doc->setColor method is called:

#my_file->setColor('Stroke', 'RBG', 0.1, 0.9, 0.9)

The example below sets the fill color of red for all subsequent drawing action until another pdf_doc->setColor method is
called. The methods to draw rectangles, circles, or arcs must be called with the optional -fill parameter for this color choice
to be applied:

#my_file->setColor('Fill', 'RBG', 0.1, 0.9, 0.9)

Set Line Width of a Drawing Action

Use the pdf_doc->setLineWidthmethod. The example below sets a line width of 5 points for all subsequent drawing action
until another pdf_doc->setLineWidth method is called:

#my_file->setLineWidth(5.0)

Draw a Line

Use the pdf_doc->line method. The example below draws a horizontal line from points “(8, 8)” to points “(32, 32)”:

#my_file->line(8, 8, 32, 32)

Draw a Curve

Use the pdf_doc->curveTo method. The example below draws a curve starting from points “(8, 8)”, peaking at points “(32,
32)”, and ending at points “(56, 8)”:

#my_file->curveTo(8, 8, 32, 32, 56, 8)

Draw a Filled Rectangle

Use the pdf_doc->rect method. The example below draws a rectangle whose lower left corner is at coordinates “(10, 60)”,
has left and right sides that are 50 points long, and has top and bottom sides that are 20 points long. An optional -fill
parameter will ensure this rectangle has the current fill color applied:

26.10. Creating Graphics 283



LassoGuide, Release 9.3

#my_file->rect(10, 60, 20, 50, -fill)

Draw a Circle

Use the pdf_doc->circle method. The example below draws a circle whose center is at coordinates “(50, 50)” and has a
radius of 20 points:

#my_file->circle(50, 50, 20)

Draw an Arc

Use the pdf_doc->arc method. The example below draws an arc whose center is at coordinates (50, 50), has a radius of 20
points, and runs from 0 degrees to 90 degrees from the center:

#my_file->arc(50, 50, 20, 0, 90)

26.11 Creating Barcodes

Barcodes are special device-readable images that can be created in PDF files using the pdf_barcode type, and added to
a pdf_doc using member methods, which are described in this section. Lasso can create the following industry-standard
barcodes:

• Code 39 (alphanumeric, ASCII subset)

• Code 39 Extended (alphanumeric, escaped text)

• Code 128

• Code 128 UCC/EAN

• Code 128 Raw

• EAN (8 digits)

• EAN (13 digits)

• POSTNET

• PLANET

Barcodes can be defined for use in a PDF file using the pdf_barcode type. Objects of this type can then be added to pdf_doc
objects.

type pdf_barcode

pdf_barcode(...)
Creates a barcode image to be placed in a PDF. Uses parameters which set the basic specifications of the barcode to be
created.

Parameters

• -type – Specifies the type of barcode to be created. Available parameters are 'CODE39', 'CODE39_EX',
'CODE128', 'CODE128_UCC', 'CODE128_RAW', 'EAN8', 'EAN13', 'POSTNET', and 'PLANET'. Re-
quired.

284 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

• -code – Specifies the numeric or alphanumeric barcode data. Some formats require specific data strings:
“EAN8” requires an 8-digit integer, “EAN13” requires a 13-digit integer, “POSTNET” requires a ZIP code, and
“CODE39” requires uppercase characters. Required.

• -color – Specifies the color of the bars in the barcode. Requires a hex string color value. Defaults to
“#000000” if not specified. Optional.

• -supplemental – Adds an additional two or five-digit supplemental barcode to “EAN8” or “EAN13” bar-
code types. Requires a two or five-digit integer as a parameter. Optional.

• -generateChecksum – Generates a checksum for the barcode. Optional.

• -showCode39StartStop – Displays start and stop characters (“*”) in the text for Code 39 barcodes. Op-
tional.

• -showEANGuardBars – Show the guard bars for “EAN” barcodes. Optional.

• -barHeight – Sets the height of the bars in points. Requires a decimal value.

• -barWidth – Sets the width of the bars in points. Requires a decimal value.

• -baseLine – Sets the text baseline in points. Requires a decimal value.

• -showChecksum – Keyword parameter sets the generated checksum to be shown in the text.

• -font (pdf_font) – Sets the text font. Requires a pdf_font object.

• -barMultiplier – Sets the bar multiplier for wide bars. Requires a decimal value.

• -textSize – Sets the size of the text. Requires a decimal value.

26.11.1 Create a Barcode

Use the pdf_barcode type. The example below creates a basic Code 39 barcode with the data “1234567890”, and uses the
optional Code 39 start and stop characters (“*”). The barcode is then added to a pdf_doc object using pdf_doc->add:

local(barcode) = pdf_barcode(
-type='CODE39',
-code='1234567890',
-showCode39StartStop

)
#my_pdf->add(#barcode, -left=150.0, -top=100.0)

26.11.2 Create a Barcode with a Specified Bar Width

Use the pdf_barcode type with the -barWidth parameter. The following example sets a pdf_barcode object with a bar
width of 0.2 points:

local(barcode) = pdf_barcode(
-type='CODE39',
-code='1234567890',
-barWidth=0.2

)
#my_pdf->add(#barcode, -left=150.0, -top=100.0)

26.11. Creating Barcodes 285



LassoGuide, Release 9.3

26.11.3 Create a Barcode with a Specified Bar Multiplier

Use the pdf_barcode type with the -barMultiplier parameter. The following example sets a pdf_barcode object with a
bar multiplier constant of “4.0”. The barcode is then added to a pdf_doc object using pdf_doc->add:

local(barcode) = pdf_barcode(
-type='CODE39',
-code='1234567890',
-barMultiplier=4.0

)
#my_pdf->add(#barcode, -left=150.0, -top=100.0)

26.11.4 Create a Barcode with a Specified Text Size

Use the pdf_barcode type with the -textSize parameter. The following example sets a pdf_barcode object with a text size
of 6.0 points. The barcode is then added to a pdf_doc object using pdf_doc->add:

local(barcode) = pdf_barcode(
-type='CODE39',
-code='1234567890',
-textSize=6.0

)
#my_pdf->add(#barcode, -left=150.0, -top=100.0)

26.11.5 Create a Barcode with a Specified Font

Use the pdf_barcode type with the -font parameter. The following example sets a pdf_barcode object font specified in a
pdf_font object named “my_font”. The barcode is then added to a pdf_doc object using pdf_doc->add:

local(barcode) = pdf_barcode(
-type='CODE39',
-code='1234567890',
-font=#my_font

)
#my_pdf->add(#barcode, -left=150.0, -top=100.0)

26.12 PDF File Examples

This section provides complete examples of creating PDF files using the methods described in this chapter. Examples include
a two-page PDF file with multiple text styles, a PDF file with a form, a PDF file with a table, a PDF file with drawn graphics, and
a PDF file with a barcode.

Note: All examples in this section use the OS X and Linux line break character "\n" in the text sections. If creating PDF files on
the Windows version of Lasso, change all instances of "\n" to "\r\n".

26.12.1 PDF Text Example

The following example creates a PDF file that contains two pages of text with multiple text styles:

286 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

local(text_example) = pdf_doc(-file='Text_Example.pdf', -size='A4')
#text_example->addPage
#text_example->setPageNumber(1)

local(font1) = pdf_font(-face='Helvetica', -size='24', -color='#990000')
local(font2) = pdf_font(-face='Helvetica', -size='14', -color='#000000')
local(font3) = pdf_font(-face='Helvetica', -size='14', -color='#0000CC')

local(title) = pdf_text('Lasso Server', -type='Chunk', -font=#font1)
#text_example->add(#title, -number=1)

local(text1) = pdf_text("\n\nThe Lasso product line consists of authoring and
serving tools that allow web designers and web developers to quickly build
and serve powerful data-driven web sites with maximum productivity and
ease. The product line includes Lasso Server for serving and administering
data-driven web sites, and LassoLab for building and testing data-driven
web sites within a graphical editor.\n\nLasso Server works with the
following data sources:",
-type='Paragraph',
-leading=15,
-font=#font2

)
#text_example->add(#text1)

local(list) = pdf_list(
-format='Bullet',
-bullet='-',
-font=#font2,
-indent=30

)
#list->add('FileMaker Server')
#list->add('MySQL')
#list->add('Microsoft SQL Server')
#list->add('Frontbase')
#list->add('Sybase')
#list->add('PostgreSQL')
#list->add('DB2')
#list->add('Plus many other ODBC-compliant databases')
#text_example->add(#list)

local(text2) = pdf_text("\nLasso's innovative architecture provides an
industry-first multi-platform, database-independent and open standards
approach to delivering database-driven web sites firmly positioning Lasso
technology within the rapidly evolving server-side web tools market. Lasso
technology is used on hundreds of thousands of web sites worldwide.\n\n",
-type='Paragraph',
-font=#font2

)
#text_example->add(#text2)

local(text3) = pdf_text(
"Click here to go to the LassoSoft website",
-type='Phrase',
-font=#font3,
-underline='true',
-anchor='http://www.lassosoft.com'

)
#text_example->add(#text3)

26.12. PDF File Examples 287



LassoGuide, Release 9.3

#text_example->drawText(
#text_example->getPageNumber->asString,
-font=#font2,
-top=30,
-left=560

)
#text_example->addPage

#text_example->setPageNumber(2)

local(text4) = pdf_text("Lasso Server is server-side software that adds a
suite of dynamic functionality and administration to your web server. This
functionality empowers you to build and serve just about any dynamic web
application and do so with maximum productivity and ease.\n\n",
-type='Paragraph',
-leading=15,
-font=#font2

)
#text_example->add(#text4)

local(text5) = pdf_text("Lasso works by using a simple scripting language,
which can be embedded in web pages and scripts residing on your web
server. By default, Lasso Server is designed to run on the most prevalent
modern web server platforms with the most popular web serving
applications. Additionally, Lasso's extensibility allows web server
connectors to be authored for any web server for which default
connectivity is not provided.\n\n",
-type='Paragraph',
-leading=15,
-font=#font2

)
#text_example->add(#text5)

#text_example->drawText(
#text_example->getPageNumber->asString,
-font=#font2,
-top=30,
-left=560

)
#text_example->close

26.12.2 PDF Form Example

The following example creates a PDF file that contains both text and a form:

local(form_example) = pdf_doc(-file='Form_Example.pdf', -size='a4')
local(myFont) = pdf_font(-face='Helvetica', -size='12')

#form_example->addText(
'This PDF file contains a form. See below.\n',
-font=#myFont

)
#form_example->drawText('Select List', -font=#myFont, -left=90, -top=116)
#form_example->addSelectList(

'mySelectList',

288 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

(: 'one', 'two', 'three', 'four'),
-default='one',
-left=216, -top=104, -width=144, -height=72,
-font=#myFont

)
#form_example->drawText(

'Drop-Down Menu',
-font=#myFont,
-left=90,
-top=200

)
#form_example->addComboBox(

'myComboBox',
(: 'one', 'two', 'three', 'four'),
-default='one',
-left=216, -top=188, -width=144, -height=18,
-font=#myFont

)
#form_example->drawText('Text Area', -font=#myFont, -left=90, -top=238)
#form_example->addTextArea(

'myTextArea',
'Some text',
-left=216, -top=230, -width=144, -height=72,
-font=#myFont

)
#form_example->drawText('Password Field', -font=#myFont, -left=90, -top=334)
#form_example->addPasswordField(

'myPassword',
'***',
-left=216, -top=322, -width=144, -height=18,
-font=#myFont

)
#form_example->drawText('Text Field', -font=#myFont, -left=90, -top=368)
#form_example->addTextField(

'myTextField',
'Some More Text',
-left=216, -top=360, -width=144, -height=18,
-font=#myFont

)
#form_example->addHiddenField('myHiddenField', 'Shh')
#form_example->addSubmitButton(

'myButton',
'Submit Form',
'Submit',
'http://www.example.com/response.lasso',
-left=216, -top=400, -width=100, -height=26,
-font=#myFont

)
#form_example->addResetButton(

'Reset',
'Reset Form',
'Reset',
-left=365, -top=400, -width=100, -height=26,
-font=#myFont

)
#form_example->close

26.12. PDF File Examples 289



LassoGuide, Release 9.3

26.12.3 PDF Table Example

The following example creates a PDF file that contains both text and a table:

local(table_example) = pdf_doc(-file='Table_Example.pdf', -size='A4')

local(font1) = pdf_font(-face='Helvetica', -size='24')
local(text) = pdf_text(

"This PDF file contains a table. See below.\n\n",
-leading=15,
-font=#font1

)
#table_example->add(#text)

local(font2) = pdf_font(-face='Helvetica', -size='12')
local(cell1) = pdf_text('Cell One', -font=#font2)
local(cell2) = pdf_text('Cell Two', -font=#font2)
local(cell3) = pdf_text('Cell Three', -font=#font2)
local(cell4) = pdf_text('Cell Four', -font=#font2)
local(my_table) = pdf_table(2, 2,

-spacing=4, -padding=4, -width=75, -borderWidth=7
)
#my_table->add(#cell1, 0, 0, -borderWidth=4)
#my_table->add(#cell2, 0, 1, -borderWidth=4)
#my_table->add(#cell3, 1, 0, -borderWidth=4)
#my_table->add(#cell4, 1, 1, -borderWidth=4)

#table_example->add(#my_table)
#table_example->close

26.12.4 PDF Graphics Example

The following example shows how to create a PDF file that contains drawn graphic objects:

local(graphic_example) = pdf_doc(-file='Graphic_Example.pdf', -height=650, -width=550)
local(text) = pdf_text("This PDF file contains lines and circles. See below.\n")
#graphic_example->add(#text)
#graphic_example->line(200, 400, 400, 400)
#graphic_example->line(200, 500, 400, 500)
#graphic_example->line(266, 333, 266, 566)
#graphic_example->line(333, 333, 333, 566)
#graphic_example->line(200, 333, 400, 566)
#graphic_example->circle(233, 366, 20)
#graphic_example->circle(300, 452, 20)
#graphic_example->circle(366, 533, 20)
#graphic_example->line(220, 432, 240, 472)
#graphic_example->line(220, 472, 240, 432)
#graphic_example->line(360, 432, 380, 472)
#graphic_example->line(360, 472, 380, 432)
#graphic_example->line(220, 517, 240, 558)
#graphic_example->line(220, 558, 240, 517)
#graphic_example->close

290 Chapter 26. Portable Document Format



LassoGuide, Release 9.3

26.12.5 PDF Barcode Example

The following example shows how to create a PDF file that contains text accompanied by a barcode:

local(barcode_example) = pdf_doc(
-file='Barcode_Example.pdf',
-height=172,
-width=300

)
local(font1) = pdf_font(-face='Courier', -size=12)
local(myBarcode) = pdf_barcode(

-type='CODE39',
-code='1234567890',
-generateCheckSum,
-showCode39StartStop,
-textSize=6.0

)
#barcode_example->drawText('The Shipping Company\n',

-font=#font1,
-left=72,
-top=90

)
#barcode_example->add(#myBarcode, -left=72, -top=40)
#barcode_example->close

26.13 Serving PDF Files

This section describes how PDF files can be served using Lasso Server. This can be done by supplying a download link to the
created PDF file, or by using the pdf_serve method described below.

26.13.1 Linking to PDF Files

Named PDF files may be linked to in a Lasso page using basic HTML. Once a user clicks on a link to a file with a “.pdf” extension,
the client browser should prompt to download the file or launch the file in PDF reader (if configured to do so).

Link to a PDF file

The example below shows how a PDF can be created and written to file, and then linked to from the Lasso page:

<?lasso
local(my_file) = pdf_doc(-file='MyFile.pdf', -size='A4')
local(my_text) = pdf_text('Hello World')
#my_file->add(#my_text)
#my_file->close

?>
<html>

<body>
<p>Click on the following link to download MyFile.pdf.</p>
<p><a href="MyFile.pdf">Click Here</a></p>

</body>
</html>

26.13. Serving PDF Files 291



LassoGuide, Release 9.3

26.13.2 Serving PDF Files to Client Browsers

PDF files may also be served directly to a client browser using the pdf_serve method. This method automatically informs
the client web browser that the data being loaded is a PDF file, and outputs the file with the correct file name. If the client
web browser is configured to handle PDF files via a reader, the served PDF file will automatically be opened in the client’s
configured PDF reader. Otherwise, the client web browser should prompt the user to save the file.

pdf_serve(doc::pdf_doc, -file, -type=?)
Serves a PDF file to a client browser with a MIME type of application/pdf. Requires the first parameter to specify the
pdf_doc object to serve, and the second parameter -file to specify the name of the file to be output to the browser.
An optional -type parameter can specify additional MIME types.

Serve a PDF File to a Client Browser

Use the pdf_serve method to serve the created PDF file. The -file parameter specifies the file name that should be output.

local(my_file) = pdf_doc(-file='MyFile.pdf', -size='A4', -noCompress)
#my_file->add(pdf_text('Hello World'))
#my_file->close
pdf_serve(#my_file, -file='MyFile.PDF')

Serve a PDF File Without Writing to File

PDF files may be served to the client browser without ever writing them to file on the local server. This is done by creating a
pdf_doc object without the -file parameter. This allows a PDF file to be created in the system memory, but does not the
save the file to a hard drive location. The resulting file can be saved by the end user to a location on the end user’s hard drive.

local(my_file) = pdf_doc(-size='A4', -noCompress)
#my_file->add(pdf_text('Hello World'))
#my_file->close
pdf_serve(#my_file, -file='MyFile.PDF')

292 Chapter 26. Portable Document Format



Chapter 27

XML Documents

Lasso provides a full suite of objects both for constructing new XML documents and parsing existing XML documents. Lasso’s
implementation follows the DOM Level 2 Core specification48 as closely as possible. This introduces a series of objects each
representing the various components that can be found within an XML document. The Lasso object names match up with
the objects specified in the DOM standard with the addition of an xml_ prefix. Also provided is a simplified method for parsing
existing XML data. This method is called xml and does not conform to the DOM specification.

Lasso also provides both XPath and XSLT functionality. This functionality is integrated into the XML object model, though it is
not considered part of the DOM specification itself.

In cases where elements are accessed by numeric position, Lasso’s implementation conforms to the DOM specification’s
zero-based indexes, as opposed to Lasso’s standard one-based positions. This will be noted in all relevant cases within this
chapter.

27.1 Creating XML Documents

XML documents are created either from existing XML character data or as empty documents. An empty XML document will
initially contain only the root document node which can then have children or attributes added to it. A document created
from existing XML character data will be parsed and validated and the resulting document object tree will be created. When
attempting to create an XML document from existing data, and the data is not valid, a failure will be generated during parsing.
The current error_msg will indicate the encountered error.

New XML documents can be created in one of two ways: the DOM Level 2-conformant xml_DOMImplementation type, or
the xml method. Both have the same abilities, but the xml method provides a simplified interface and is compatible with
earlier Lasso versions. It’s important to note that xml is not itself an object, it is merely a method that provides a moderately
easier to use interface to XML document creation. Internally, the xml method uses the xml_DOMImplementation type and
therefore provides equivalent functionality to the xml_DOMImplementation type.

27.1.1 Using xml

The xml method is presented in five variations; two for parsing existing XML documents and three for creating new blank
documents.

xml(text::string)

xml(text::bytes)
These first two methods parse existing XML data in either string or raw bytes form. If the document parsing is successful,
these methods return the top-level xml_document node object.

xml(nsUri::string, rootNodeName::string, dtd::xml_documentType=?)

xml()
These subsequent three methods create a new document consisting of only the root xml_document node and no
children, returning the top-level xml_document node object. The first methods create the document given a names-
pace and a root element name, along with an optional document type node (an xml_documentType, created through

48 http://www.w3.org/TR/DOM-Level-2-Core/

293

http://www.w3.org/TR/DOM-Level-2-Core/


LassoGuide, Release 9.3

the xml_DOMImplementation->createDocumentType method). The last method takes no parameters and returns
a document with no namespace and the root element name set to “none”.

In all cases, the resulting value from the xml method will be the root element of the document. This will be an object of
type xml_element. It’s important to note that this is not the xml_document object, which differs from the root element
node. This behavior is a departure from that of the xml_DOMImplementation type which does return the xml_document
object itself. The owning xml_document object can be obtained from any node within that document by calling the
xml_node->ownerDocument method.

xml Examples

Example of creating an XML document from existing data:

local(myDocumentText) = '<a><b>b content</b><c/></a>'
local(myDocumentObj) = xml(#myDocumentText)

Example of creating a blank XML document:

local(myDocumentObj) = xml('my_namespace', 'a')

27.1.2 Using xml_DOMImplementation

The xml_DOMImplementation type provides comparable functionality to the xml method, but follows the DOM Level 2
specification. An object of the type xml_DOMImplementation is stateless and can be created with no parameters. Once an
xml_DOMImplementation object is obtained it can create or parse XML documents as well as create XML document types.

This functionality is presented in the following four methods.

type xml_DOMImplementation

xml_DOMImplementation->createDocument(nsUri::string, rootNodeName::string, dtd::xml_documentType=?)

xml_DOMImplementation->createDocumentType(qname::string, publicid::string, systemid::string)

xml_DOMImplementation->parseDocument(text::bytes)

In contrast to the xmlmethod, when creating or parsing an XML document the xml_DOMImplementation object returns the
document node. This will be an object of type xml_document. It’s important to note that this is not the root element node.
The root element node can be obtained through the xml_document->documentElement method.

xml_DOMImplementation Examples

Example of creating an XML document from existing data:

local(myDocumentText) = '<a><b>b content</b><c/></a>'
local(myDocumentObj) =

xml_DOMImplementation->parseDocument(
bytes(#myDocumentText)

)

Example of creating a blank XML document:

local(domImpl) = xml_DOMImplementation
local(docType) = #domImpl->createDocumentType(

'svg:svg',
'-//W3C//DTD SVG 1.1//EN',
'http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd'

294 Chapter 27. XML Documents



LassoGuide, Release 9.3

)
local(myDocumentObj) = #domImpl->createDocument(

'http://www.w3.org/2000/svg',
'svg:svg',
#docType

)

The resulting document would have the following format:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg:svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns:svg="http://www.w3.org/2000/svg"/>

27.1.3 Creating XML Node Objects

While the xml_DOMImplementation object is responsible for creating the initial xml_document object, the xml_document
object is the means through which new XML node object types are created, including element, attribute, and text nodes. All
XML objects always belong to a particular instance of the xml_document type. No XML node objects can be created with-
out an existing document. Nodes can be copied into another existing xml_document, but nodes are never shared between
documents.

The following methods are use for creating new nodes:

type xml_document

xml_document->createElement(tagName::string)→ xml_element

xml_document->createElementNS(nsUri::string, qualifiedName::string)→ xml_element
The first version creates a new element node without a namespace. The second version permits a namespace to be
specified.

xml_document->createAttribute(name::string)→ xml_attr

xml_document->createAttributeNS(nsUri::string, qualifiedName::string)→ xml_attr
The first version creates a new attribute without a namespace. The second version permits a namespace to be specified.

xml_document->createDocumentFragment()→ xml_documentFragment

xml_document->createTextNode(data::string)→ xml_text

xml_document->createComment(data::string)→ xml_comment

xml_document->createCDATASection(data::string)→ xml_cdataSection

xml_document->createProcessingInstruction(target::string, data::string)→ xml_processingInstruction

xml_document->createEntityReference(name::string)→ xml_entityReference

xml_document->importNode(importedNode::xml_node, deep::boolean)→ xml_node
Imports a node from another document into the document of the target object and returns the new node. The new
node is not yet placed within the current document and so it has no parent. If “false” is given for the second parameter,
the node’s children and attributes are not copied. If “true” is given, then all attributes and child nodes are copied into
the current document.

The following table lists all the possible objects that may be encountered within or inserted into an XML document.

27.1. Creating XML Documents 295



LassoGuide, Release 9.3

Table 27.1: XML Object Names

Lasso XML Object Name XML DOM Level 2 Name Description

xml_DOMImplementation DOMImplementation Creates xml_document and xml_documentType
objects. Can parse existing XML documents or create new
empty documents.

xml_node Node Base functionality supported by all objects.

xml_document Document Represents the entire document and provides access to
the document’s data.

xml_element Element Represents an XML element node.

xml_attr Attr Represents an attribute of an XML element node.

xml_characterData CharacterData Represents character data within the document. This is
the base object type for xml_text and
xml_cdataSection objects.

xml_text Text Represents the character data of an xml_element or
xml_attr node.

xml_cdataSection CDATASection Represents a CDATA node.

xml_entityReference EntityReference Represents an entity reference.

xml_entity Entity Represents a parsed or unparsed entity within the
document.

xml_processingInstruction ProcessingInstruction Represents a processing instruction located within the
document.

xml_comment Comment Represents the content of an XML comment node.

xml_documentType DocumentType Represents the doctype attribute of an XML document.

xml_documentFragment DocumentFragment Represents a minimal document object.

xml_notation Notation Represents a notation declared in the DTD.

xml_nodeList NodeList Represents a list of node objects. Provides random access
to the list. This list uses zero-based indexes, in contrast to
Lasso’s standard one-based positions.

xml_namedNodeMap NamedNodeMap Represents a collection of nodes that can be accessed by
name.

27.1.4 Inspecting XML Objects

Lasso’s XML interface permits all the various pieces of an XML document to be inspected. This includes accessing attributes,
node content, node children etc. The methods listed in this section are not meant to be exhaustive, but instead to show the
methods most commonly used when working with an XML document.

type xml_node

xml_node->nodeType()→ string
Returns the name of the type of node. For example, an xml_element node would return “ELEMENT_NODE”. This is in
contrast to the DOM Level 2 specification which returns an integer value.

xml_node->nodeName()→ string
Returns the name of the node. This value will depend on the type of the node in question. For xml_element nodes,
this will be the same value as the tag name. For xml_attr nodes, this will be the same as the attribute name.

xml_node->prefix()
Returns the namespace prefix of the node or “null” if it is unspecified.

296 Chapter 27. XML Documents



LassoGuide, Release 9.3

xml_node->localName()
Returns the local part of the qualified name of the node.

xml_node->namespaceURI()
Returns the namespace URI of the node or “null” if it is unspecified.

xml_node->nodeValue()
Returns the value of the node as a string. This result will vary depending on the node type. For example, an attribute
node will return the attribute value, and a text node will return the text content for the node. Many node types, such as
element nodes, will return “null”. This value is read/write for nodes that have values, and in such cases can be set with
the xml_node->nodeValue= method.

xml_node->parentNode()
Returns the parent of the node or “null” if there is no parent. Some, such as attribute nodes and the document node,
do not have parents.

xml_node->ownerDocument()
Returns the xml_document that is the owner of the target node. In the case of the document node, this will be “null”.

type xml_element

xml_element->tagName()→ string
Returns the name of the element.

xml_element->getAttribute(name::string)→ string
Returns the value of the specified attribute. Returns an empty string if the attribute does not exist or has no value.

xml_element->getAttributeNS(nsUri::string, localName::string)
Returns the value of the attribute matching the given namespace and local name. Returns an empty string if the at-
tribute does not exist or has no value.

xml_element->getAttributeNode(name::string)
Returns the specified attribute node. Returns “null” if the attribute does not exist.

xml_element->getAttributeNodeNS(nsUri::string, localName::string)
Returns the attribute node matching the given namespace and local name. Returns “null” if the attribute does not exist.

xml_element->hasAttribute(name::string)→ boolean
Returns “true” if the specified attribute exists.

xml_element->hasAttributeNS(nsUri::string, localName::string)→ boolean
Returns “true” if the attribute matching the given namespace and local name exists.

type xml_attr

xml_attr->name()→ string
Returns the name of the attribute.

xml_attr->ownerElement()
Returns the element node that owns the attribute or “null” if the attribute is not in use.

xml_attr->value()→ string
Returns the value of the attribute. This value is read/write.

type xml_nodeList

xml_nodeList->length()→ integer
Returns the number of nodes in the list.

xml_nodeList->item(index::integer)
Returns the node specified by the index. Indexes start at zero and go up to length-1. Returns “null” if the index is invalid.

type xml_nodeMap

27.1. Creating XML Documents 297



LassoGuide, Release 9.3

xml_nodeMap->length()→ integer
Returns the number of nodes in the map.

xml_nodeMap->getNamedItem(name::string)
Returns the node matching the specified name.

xml_nodeMap->getNamedItemNS(nsUri::string, localName::string)
Returns the node matching the specified namespace URI and local name.

xml_nodeMap->item(index::integer)
Returns the node specified by the index. Indexes start at zero and go up to length-1. Returns “null” if the index is invalid.

27.1.5 Modifying XML Objects

Various parts of an XML document can be modified. This includes setting node values, adding or removing child nodes, adding
or removing attributes, or removing items from node maps.

xml_node->nodeValue=(value::string)
Sets the value of the node to the specified string. Only the following node types are able to have their values set:
xml_attr, xml_cdataSection, xml_comment, xml_processingInstruction, xml_text.

xml_node->insertBefore(new::xml_node, ref::xml_node)→ xml_node
Inserts the new node into the document immediately before the ref node. Returns the newly inserted node.

xml_node->replaceChild(new::xml_node, ref::xml_node)→ xml_node
Replaces the ref node in the document with the new node. Returns the new node.

xml_node->appendChild(new::xml_node)→ xml_node
Inserts the new node into the document at the end of the target node’s child list. Returns the new node.

xml_node->removeChild(c::xml_node)→ xml_node
Removes the specified child node from the document. Returns the removed node.

xml_node->normalize()
Modifies the document such that no two text nodes are adjacent. All adjacent text nodes are merged into one text
node.

xml_element->setAttribute(name::string, value::string)
Adds an attribute with the given name and value. If the attribute already exists then the value is set accordingly.

xml_element->setAttributeNS(uri::string, qname::string, value::string)
Adds an attribute with the given namespace, name, and value. If the attribute already exists its value is set accordingly.

xml_element->setAttributeNode(node::xml_attr)
Adds the new attribute node. If an attribute with the same name already exists it is replaced. To add a namespace-aware
attribute, use xml_element->setAttributeNodeNS instead.

xml_element->setAttributeNodeNS(node::xml_attr)
Adds the new attribute node. If an attribute with the same namespace/name combination already exists it is replaced.

xml_element->removeAttribute(name::string)
Removes the attribute with the specified name.

xml_element->removeAttributeNS(uri::string, qname::string)
Removes the attribute with the given namespace/name combination.

xml_element->removeAttributeNode(node::xml_attr)→ xml_attr
Removes the specified attribute node. Returns the removed node.

Note: Some node maps are read-only and cannot be modified.

298 Chapter 27. XML Documents



LassoGuide, Release 9.3

xml_nodeMap->setNamedItem(node::xml_node)→ xml_node
Adds the node to the node map based on the “nodeName” value of the node. Replaces any duplicate node within the
map. Returns the added node.

xml_nodeMap->setNamedItemNS(node::xml_node)→ xml_node
Adds the node to the node map based on the namespace/name combination. Replaces any duplicate node within the
map. Returns the added node.

xml_nodeMap->removeNamedItem(name::string)
Removes the node with the given name from the map. Returns the removed node.

xml_nodeMap->removeNamedItemNS(uri::string, qname::string)
Removes the node with the given namespace/name combination from the map. Returns the removed node.

27.2 XPath

Lasso’s XML API supports the XPath 1.0 specification for any xml_node type through the xml_node->extract and
xml_node->extractOne methods. Consult the XPath specification49 for the specifics of XPath syntax.

27.2.1 Using XPath

XPath is used to address a specific set of nodes within an XML document. For example, child nodes matching a node name
pattern can be located, or nodes with specific attributes can be easily found within the document.

xml_node->extract(xpath::string)
Executes the XPath in the node and returns all matches as a staticarray.

xml_node->extract(xpath::string, namespaces::staticarray)
Executes the XPath in the node and returns all matches as a staticarray. This method should be used for XML documents
that use namespaces. The second parameter is a staticarray containing the relevant namespace prefixes and URI pairs
that are used within the XPath expression. Note that the namespace prefixes used in the XPath expression do not have
to match those used within the document itself.

xml_node->extractOne(xpath::string)
Executes the XPath in the node and returns the first matching node or “null” if there are no matches.

xml_node->extractOne(xpath::string, namespaces::staticarray)
Executes the XPath in the node and returns the first matching node or “null” if there are no matches. This method
should be used for XML documents that use namespaces. The second parameter is a staticarray containing the relevant
namespace prefixes and URI pairs that are used within the XPath expression. Note that the namespace prefixes used in
the XPath expression do not have to match those used within the document itself.

XPath Examples

Extract all child elements of the a node:

local(doc) = xml(
'<a>

<b at="val"/>
<c at="val2">C Content</c>

</a>')
#doc->extract('//a/*')

// => staticarray(<b at="val"/>, <c at="val2">C Content</c>)

49 http://www.w3.org/TR/xpath/

27.2. XPath 299

http://www.w3.org/TR/xpath/


LassoGuide, Release 9.3

Using namespaces, extract all child elements of the a node:

local(doc) = xml(
'<a xmlns="my_uri">

<b at="val"/>
<c at="val2">C Content</c>

</a>')
#doc->extract('//n:a/*', (: 'n'='my_uri'))

// => staticarray(<b at="val"/>, <c at="val2">C Content</c>)

Extract the first child element of the a node:

local(doc) = xml(
'<a>

<b at="val"/>
<c at="val2">C Content</c>

</a>')
#doc->extractOne('//a/*')

// => <b at="val"/>

Extract the "at" attribute from the second child element of the a node:

local(doc) = xml(
'<a xmlns="my_uri">

<b at="val"/>
<c at="val2">C Content</c>

</a>')
#doc->extractOne('//n:a/*[2]/@at', (: 'n'='my_uri'))

// => at="val2"

27.3 XSLT

Lasso’s XML API supports XSL Transformations (XSLT) 1.0. For the specifics of XSLT, consult the XSLT specification50 .

XSLT support is provided on any xml_node type through the transform method, which accepts an XSLT template as a string
as well as a list of all variables to be made available during the transformation. The transformation is performed and a new
XML document is returned.

xml_node->transform(sheet::string, variables::staticarray)→ xml_document
Performs an XSLT transformation on the document and returns the resulting newly produced document.

50 http://www.w3.org/TR/xslt/

300 Chapter 27. XML Documents

http://www.w3.org/TR/xslt/


Chapter 28

Logging

Lasso Server has a built-in error logging system that allows warning messages to be logged at several different levels. Each log
level can be routed to one or more destinations, allowing for a great deal of flexibility in handling.

The built-in log levels include:

Critical
Critical errors that affect the operation of Lasso Server. Critical errors are logged to all destinations by default. Typically, the
server or site administrator will need to fix whatever is causing the critical error.

Warning
Warnings are informative messages about possible problems with the functioning of Lasso Server. Warnings do not always
require action by the server or site administrator. Warnings are logged only to the console by default.

Detail
Detailed messages about the normal functioning of Lasso Server. Includes status messages from the email queue and
event scheduler, etc. Detail messages are logged only to the console by default.

Deprecated
Flags any use of deprecated functionality in Lasso code. Deprecated methods are supported in this version of Lasso, but
may not be supported in a future version. Any deprecated functionality should be updated to new, preferred syntax for
best compatibility with future versions of Lasso. Deprecated messages are logged only to the console by default.

The destinations that the log levels can be routed to include:

Console
The Lasso Server instance’s console, which is viewable from the Instance Manager. It is stored in a file named lasso.out.
txt in the instance’s LASSO9_HOME directory and has a max file size of 10 MB by default.

File
The lasso_logbook.txt file, located in the instance’s LASSO9_HOME directory. This file is also capped at 10 MB by default.

Database
The “logbook” table in the “lasso_logbook” SQLite database, viewable via the “Log Book” section of Lasso Server Admin
(http://example.com/lasso9/admin/logbook).

The routing of Lasso’s internal log levels can be modified using the “Log Book” section of the Lasso Server Admin interface
(http://example.com/lasso9/admin/logbook). For details on how to change the log level routing programmatically, see the sec-
tion Log Routing later in this chapter.

28.1 Logging Methods

The log_critical, log_warning, log_detail, and log_deprecated methods are used to log custom data to the Lasso
internal error logs with a defined Lasso error level of “Critical”, “Warning”, “Detail”, or “Deprecated”, respectively.

log_critical(...)
Logs to Lasso’s internal error logs with an error level assignment of “Critical”. Requires the text to be logged as a param-
eter. Logging options for this error level are set in Lasso Server Admin.

301



LassoGuide, Release 9.3

log_warning(...)
Logs to Lasso’s internal error logs with an error level assignment of “Warning”. Requires the text to be logged as a
parameter. Logging options for this error level are set in Lasso Server Admin.

log_detail(...)
Logs to Lasso’s internal error logs with an error level assignment of “Detail”. Requires the text to be logged as a parameter.
Logging options for this error level are set in Lasso Server Admin.

log_deprecated(...)
Logs to Lasso’s internal error logs with an error level assignment of “Deprecated”. Requires the text to be logged as a
parameter. Logging options for this error level are set in Lasso Server Admin.

log_always(...)
Logs to Lasso’s console. This error level cannot be routed, and is always sent to Lasso’s console.

28.1.1 Create a Log Message

The following example creates a log statement at the level of “Warning” if Lasso throws a “Divide By Zero” error. The displayed
result is the log message that gets sent to the console; note that it contains a timestamp in brackets:

handle(error_code == error_code_divideByZero) => {
log_warning('A mathematical error occurred while processing this page')

}

// => [2013-03-23 16:59:41] A mathematical error occurred while processing this page

28.2 Logging to Files

In addition to using the built-in log level routing system, it is sometimes desirable to create a separate log file specific to a
custom solution. The log method can write text messages out to a log file.

log(path)
When executed, the results of the auto-collection from the log method’s capture block is appended to a specified text
file. The log method can write to any text file that is accessible from Lasso. The capture block must be an auto-collect
block as the collected data from the capture block will be included in the appended data. If you don’t use an auto-collect
block then no data will be appended to the log file.

The following example outputs a single line containing the date and time with a return at the end to the file specified.
The methods are shown first with a Windows path, then with an OS X or Linux path.

log('C://Logs/LassoLog.txt') => {^
date->format('%Q %T')
'\r\n'

^}

log('//Logs/LassoLog.txt') => {^
date->format('%Q %T')
'\n'

^}

The path to the directory where the log will be stored should be specified according to the same rules as those for
the file methods. See the section Paths in the File System chapter for full details about relative, absolute, and fully
qualified paths on OS X, Linux, and Windows.

302 Chapter 28. Logging



LassoGuide, Release 9.3

28.2.1 Log Site Visits to a File

The following code will log the current date and time, the visitor’s IP address, the name of the server, the page they were
loading, and the GET and POST parameters that were specified:

log('//tmp/foo.bar') => {^
date->format('%Q %T') +
' ' + web_request->remoteAddr +
' ' + (web_request->isHttps ? 'https://' | 'http://') +
web_request->httpHost +
web_request->requestUri +
' ' + web_request->postParams + '\n'

^}

28.2.2 Automatically Roll Log Files by Date

Include a date component in the name of the log file. Since the date component will change every day, a new log file will be cre-
ated daily the first time an item is logged. The following example logs to a file named with the current date, e.g. “2013-05-31.txt”:

local(cur_date) = date->format('%Q')
log('//Logs/' + #cur_date + '.txt') => {^

date->format('%Q %T')
^}

28.3 Log Routing

Log preferences can be viewed or changed in the “Log Book” section of Lasso Server Admin. Use of the log_setDestination
method is only necessary to change the log settings programmatically.

log_setDestination(level::integer, dest1::integer=?, dest2::integer=?, dest3::integer=?)
The first parameter specifies a log message level. Subsequent parameters specify the destination to which that level of
messages should be logged. Both the log level and any destinations are specified with integer values. It is preferred that
you use the convenience methods described below as parameters rather than using literal integer values.

log_level_critical()
Returns the integer value for specifying the “Critical” message level in the log_setDestination method. Using this
method will help future-proof your code.

log_level_warning()
Returns the integer value for specifying the “Warning” message level in the log_setDestination method. Using this
method will help future-proof your code.

log_level_detail()
Returns the integer value for specifying the “Detail” message level in the log_setDestination method. Using this
method will help future-proof your code.

log_level_deprecated()
Returns the integer value for specifying the “Deprecated” message level in the log_setDestination method. Using
this method will help future-proof your code.

log_destination_console()
Returns the integer value for specifying the “Console” destination in the log_setDestination method. Using this
method will help future-proof your code.

28.3. Log Routing 303



LassoGuide, Release 9.3

log_destination_file()
Returns the integer value for specifying the “File” destination in the log_setDestinationmethod. Using this method
will help future-proof your code.

log_destination_database()
Returns the integer value for specifying the “Database” destination in the log_setDestination method. Using this
method will help future-proof your code.

28.3.1 Change Logging Preferences

Use the log_setDestination method to change the destination of a given log message level. In the following example,
detail messages are sent to the console and the errors table of the instance’s database:

log_setDestination(
log_level_detail,
log_destination_database,
log_destination_console

)

28.3.2 Reset Logging Preferences

The following four commands reset the log preferences to their default values. Critical errors are sent to all three destinations;
warnings, detail, and deprecation messages are sent only to the console.

log_setDestination(
log_level_critical,
log_destination_console,
log_destination_database,
log_destination_file

)
log_setDestination(log_level_warning, log_destination_console)
log_setDestination(log_level_detail, log_destination_console)
log_setDestination(log_level_deprecated, log_destination_console)

304 Chapter 28. Logging



Chapter 29

Shell Commands with sys_process

Lasso provides the ability to execute local processes or shell commands through the sys_process type. This type allows
local processes to be launched with an array of parameters and shell variables. Some processes will execute and return a result
immediately. Other processes can be left open for interactive read/write operations. The sys_process type enables Lasso
users to do tasks such as execute AppleScripts, print PDF files, and filter data through external applications.

The sys_process type works across all three platforms that Lasso supports. The UNIX underpinnings of OS X and Linux mean
that those two operating systems can run many of the same commands and shell scripts. Windows presents a very different
environment including DOS commands and batch files.

For more information on writing shell scripts with Lasso, see the Command-Line Tools chapter.

29.1 Using sys_process

type sys_process

sys_process()

sys_process(cmd::string, args=?, env=?, user::string=?)
The sys_process type allows a developer to create a new process on the machine and both read from and write data
to it. The process is usually closed after the sys_process object is destroyed, but can optionally be left running. The
sys_process type shares many of the same member methods and conventions as the file type.

There are two constructor methods for creating sys_process objects: the first allows for an empty object with no
information being passed to it. The second takes the same parameters as the sys_process->open method and calls
that method, thereby immediately running the command passed to it.

sys_process->open(command::string, arguments::staticarray=?, environment::staticarray=?, user::string=?)
Opens a new process. The command string should consist of the full path to the executable unless it is just a built-in
command that does not have a path; in that case just pass the name of the command. An optional staticarray of argu-
ments can be passed as the second parameter. Any arguments are converted to strings and passed to the new process.
An optional staticarray of environment strings may be specified as the third parameter, and these too will be passed
to the new process. By default, the new process is run as the current user. The fourth parameter allows for optionally
specifying a user to run the new process under. This option only works if the current user is the superuser.

sys_process->wait()→ integer
Calling this member method causes execution of your code to pause until the new process you have opened with
sys_process finishes its execution. It returns the exit code of the command you ran. If you have not yet opened up a
new process, it will return “-1”.

sys_process->read(count::integer=?, -timeout=?)→ bytes
Reads the specified number of bytes from the process’s standard out (STDOUT). Returns a bytes object. The number of
bytes of data actually returned from this method may be less than the specified number depending on the number of
bytes that are actually available to read. Calling this method without a byte count will read 1024 bytes. A timeout value
may also be specified which is the number of milliseconds to wait for the number of bytes being requested. The default
value for this is “0” which means that it will just read what is currently available.

305



LassoGuide, Release 9.3

sys_process->readError(count::integer=?, -timeout=?)→ bytes
Reads the specified number of bytes from the process’s standard error (STDERR) output. Returns a bytes object. Calling
this method without a byte count will read 1024 bytes. A timeout value may also be specified which is the number of
milliseconds to wait for the number of bytes being requested. The default value for this is “0” which means that it will
just read what is currently available.

sys_process->readString(count::integer=?, -timeout=?)→ string
Identical to sys_process->read but returns a string object instead of a bytes object.

sys_process->write(data::string)

sys_process->write(data::bytes)
Writes the specified data to the new process’s standard in (STDIN). If the data is a string, the current encoding is used to
convert the data before being sent. If the data is a byte stream, the data is sent unaltered.

sys_process->setEncoding(encoding::string)
Sets the encoding for the instance. The encoding controls how string data is written via sys_process->write and
how string data is returned via sys_process->readString. By default, UTF-8 is used.

sys_process->isOpen()→ boolean
Returns “true” for as long as the process is running. After the process is terminated, it will return “false”.

sys_process->detach()
Detaches the sys_process object from the process. This will prevent the process from terminating when the
sys_process object is destroyed.

sys_process->close()
Closes the connection to the process. This will cause the process to terminate unless it has previously been detached
from the sys_process object by calling sys_process->detach.

sys_process->closeWrite()
Closes the “write” portion of the connection to the process. This results in the process’s standard in (STDIN) being closed.

sys_process->exitCode()
Synonymous with sys_process->wait except that it does not return a value if no process has been opened.

sys_process->testExitCode()
Returns the exit code of the process if it has terminated, otherwise returns “void”.

Important: If you wish to run a command that you expect to run briefly and you want to inspect its output after it has run,
don’t forget to call either sys_process->wait or sys_process->exitCode before calling any of the sys_process->read
… methods. If you don’t wait, your code will more than likely call the read method before the new process fully starts up, and
you may miss anything written to STDOUT or STDERR. If the process may take a long time, or output a lot of data, you may
want to use either sys_process->isOpen or sys_process->testExitCode as test conditions in a while loop that does
the reading. (See examples below.)

29.2 OS X and Linux Examples

This section includes several examples of using sys_process on OS X. Except for the AppleScript example, all of these exam-
ples should also work on Linux installations.

29.2.1 Echo

This example uses the /bin/echo command to simply echo the input back to STDOUT, which is then read by Lasso:

306 Chapter 29. Shell Commands with sys_process



LassoGuide, Release 9.3

local(proc) = sys_process('/bin/echo', (: 'Hello World!'))
local(_) = #proc->wait
#proc->read->encodeHtml
#proc->close

// => Hello World!

29.2.2 List

This example uses the /bin/ls command to list the contents of a directory:

local(proc) = sys_process('/bin/ls', (: '/' + sys_homePath))
fail_if(#proc->exitCode != 0, 'Unknown error')
#proc->readString->encodeHtml(true, false)
#proc->close

// =>
// LassoApps
// LassoModules
// LassoStartup
// SQLiteDBs
// lasso.err.txt
// lasso.fastcgi.sock
// lasso.out.txt

29.2.3 Create File

This example uses the /usr/bin/tee command to create a file “test.txt” in the site folder. The code does not generate any
output, it just creates the file.

local(proc) = sys_process
handle => {

#proc->close
}
#proc->open('/usr/bin/tee', (: './test.txt'))
#proc->write('This is a test\n')
#proc->write('This is a test\n')
#proc->close

29.2.4 Print

This example uses the /usr/bin/lpr command to print some text on the default printer. The result in this case is a page that
contains the phrase “This is a test” at the top. This style of printing can output text data using the default font for the printer.
The lpr command can also be used with some common file formats such as PDF files.

local(proc) = sys_process('/usr/bin/lpr')
#proc->write('This is a test')
#proc->write(bytes->import8Bits(4)&)
#proc->closeWrite
#proc->close

29.2. OS X and Linux Examples 307



LassoGuide, Release 9.3

29.2.5 AppleScript

This example uses the /usr/bin/osascript command to run a simple AppleScript. AppleScript is a full scripting language
that provides access to the system and running applications in OS X. The script shown below returns the current date and
time:

local(proc) = sys_process('/usr/bin/osascript', (: '-'))
#proc->write('return current date')
local(_) = #proc->closeWrite&wait
#proc->readString->encodeHtml
#proc->close

// => Tuesday, March 21, 2006 11:52:34 AM

29.2.6 Web Request

This example uses the /usr/bin/curl command to fetch a web page and return the results. The curl type or include_url
method can be used for the same purpose. You’ll notice that we don’t just wait and then do a read; this is to show how to deal
with not knowing how large of a response there will be from STDOUT. Only the first part of the output is shown.

local(proc) = sys_process('/usr/bin/curl', (: 'http://www.apple.com/'))
local(data)
while(#proc->isOpen or #data := #proc->readString) => {^

#data->asString->encodeHtml
^}
#proc->close

// =>
// <!DOCTYPE html>
// <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US" lang="en-US">
// <head>
// <meta charset="utf-8" />
// <meta name="Author" content="Apple Inc." />
// ... rest of response ...

29.3 Windows Examples

This section includes several examples of using sys_process on Windows. Each of the examples uses the command-line
processor CMD with the option “/C” to interpret an individual command.

29.3.1 Echo

This example uses the CMD processor with an ECHO command to simply echo the input back to Lasso:

local(proc) = sys_process('cmd', (: '/C ECHO Hello World!'))
local(_) = #proc->wait
#proc->readString->encodeHtml
#proc->close

// => Hello World!

308 Chapter 29. Shell Commands with sys_process



LassoGuide, Release 9.3

29.3.2 List

This example uses the CMDprocessor with a DIR command to list the contents of a directory. The “/B” option instructs Windows
to only list the contents of the directory without extraneous header and footer information.

local(proc) = sys_process('cmd', (: '/C DIR /B .'))
local(_) = #proc->wait
#proc->readString->encodeHtml
#proc->close

// =>
// JavaLibraries
// JDBCDrivers
// LassoApps
// LassoModules
// LassoStartup
// SQLiteDBs
// JDBCLog.txt
// lasso.err.txt
// lasso.out.txt

29.3.3 Help

This example uses the CMD processor with a HELP command to show the help information for a command. The start of the
help file for CMD itself is shown. Running HELP without a parameter returns a list of all the built-in commands supported by
the command processor.

local(proc) = sys_process('cmd', (: '/C HELP cmd'))
local(_) = #proc->wait
#proc->readString->encodeHtml
#proc->close

// =>
// Starts a new instance of the Windows XP command interpreter
// CMD [/A | /U] [/Q] [/D] [/E:ON | /E:OFF] [/F:ON | /F:OFF] [/V:ON | /V:OFF] [[/S] [/C | /K] string]
// /C Carries out the command specified by string and then terminates
// /K Carries out the command specified by string but remains
// /Q Turns echo off
// /A Causes the output of internal commands to a pipe or file to be ANSI
// /U Causes the output of internal commands to a pipe or file to be Unicode

29.3.4 Multiple Commands

This example uses the CMD processor interactively to run several commands. The processor is started with a parameter of “/Q”
which suppresses the echoing of commands back to the output. The result is exactly the same as what would be provided if
these commands were entered directly into the command line shell. In order to process the results, it would be necessary to
strip off the header and the directory prefix from each line.

local(proc) = sys_process('cmd', (: '/Q'))
#proc->write('ECHO Line One\r\n')
#proc->write('ECHO Line Two\r\n')
local(_) = #proc->wait
#proc->read->encodeHtml
#proc->close

29.3. Windows Examples 309



LassoGuide, Release 9.3

// =>
// Microsoft Windows XP [Version 5.1.2600]
// (C) Copyright 1985-2001 Microsoft Corp.
// C:\Program Files\LassoSoft\Lasso Instance Manager\home>Line One
// C:\Program Files\LassoSoft\Lasso Instance Manager\home>Line Two

29.3.5 Batch File

This example uses the CMD processor to process a batch file. The contents of batch file “batch.bat” is shown below. The file is
assumed to be located in the folder for the current site in the Lasso Server application folder.

@ECHO OFF
CLS
ECHO This file demonstrates how to use a batch file.

The batch file is executed by calling its name as a command. The results of the batch file are then output. Using a batch file
makes executing a sequence of commands easy since all the code can be perfected using local testing before it is run through
Lasso.

local(proc) = sys_process('cmd', (: '/C batch.bat'))
local(_) = #proc->wait
#proc->readString->encodeHtml
#proc->close

// => This file demonstrates how to use a batch file.

310 Chapter 29. Shell Commands with sys_process



Part V

Application Development

311





Chapter 30

Web Requests and Responses

Lasso Server receives requests from whichever HTTP server it is connected to. Each request consists of the headers and body
data as sent by the requesting user agent, as well as data from the HTTP server such as the local web server root directory
and other metadata. The request data is parsed and made available for the code that is run to handle the request. Handling
a request entails creating the resulting headers and body data for the reply. This data is sent to the web server, which is then
sent to the connected user agent. The request is complete after the response data is sent.

The code that is chosen to handle a request is based on the path in the PATH_INFO or, if that is not present, the
SCRIPT_NAME variable, as sent from the web server. That value is appended to the value of the DOCUMENT_ROOT or the LAS-
SOSERVER_DOCUMENT_ROOT variable and the resulting file path is used as the response. That response may be a script file
located on the local file system or it may address a component of a LassoApp. Either way, the file is compiled if necessary and
executed.

If the specified file is not present or an unhandled failure occurs while processing the request, Lasso will look for a file named
error.lasso at the original file’s directory path. If an error.lasso file is not found, Lasso will look up one directory level for
the error file, and so on, until the web file root directory is reached or the error file is found. If no error file is found to handle
the situation, a standard error message and stack trace is printed.

Finally, Lasso provides a means for running code before or after a request. This enables interception of the standard request
processing flow at either point. This can be useful when using virtual URLs and serving dynamic, database-driven content or
when rewriting outgoing response data.

30.1 Web Requests

Lasso Server makes web request data available through a web_request object. An instance of this object is created for each re-
quest before processing begins. The request handling code can obtain its request object instance by calling the web_request
method.

The web_request object has the following purposes:

• Making available all variables sent by the web server

• Including all client header information

• Making available all data sent by the web client

• Including tokenized GET arguments

• Including processed POST body data

A web_request object will process the incoming data to make access to the various components of a web request more
convenient. For example, all HTTP cookies are found and separated made available through the web_request->cookies
or web_request->cookie(name) methods. Standard HTTP headers are made available through accessors such as
web_request->requestURI or web_request->httpHost.

The incoming GET arguments are tokenized and can be retrieved by name or iterated over in their entirety. The request’s
POST body is processed depending on the incoming Content-Type. Both multipart/form-data and application/
x-www-form-urlencoded content types are automatically handled. This includes the processing of file uploads, the results
of which are made available through the web_request->fileUploads method, described below.

313



LassoGuide, Release 9.3

30.1.1 Reading Request Headers

The incoming HTTP request headers are pre-processed by the web server and then further processed by Lasso. All header
names are normalized to uppercase by the web server and prepended withHTTP_ and all dashes (-) replaced with underscores
(_). Once received by Lasso, any leading HTTP_ prepended by the web server to each variable is stripped. All underscores (_)
are then converted to dashes (-).

The web_request object makes header data available through the following methods. All header names and values are
treated as strings.

type web_request

web_request->headers()→ trait_forEach

web_request->header(name::string)

web_request->rawHeader(name::string)
The headers method returns all of the headers as an object that can be iterated or used in a query expression. Each
header element is presented as a pair object containing the header name and value as the pair’s first and second ele-
ments, respectively. The header method returns the first header pair matching the name parameter, otherwise returns
“void” if the header is not found. The rawHeader method works the same, but fetches the raw unnormalized header
name/value as sent by the web server.

The next set of methods is presented in a table matching the method name to its corresponding raw web request variable
name. For headers that return a string value, an empty string is returned if the header has no value or is not present. A “0” or
“false” is returned for other non-existent value types.

Table 30.1: Web Request Variable Methods

Web Request Method Web Request Variable Return Type

web_request->contentLength CONTENT_LENGTH integer

web_request->contentType CONTENT_TYPE string

web_request->gatewayInterface GATEWAY_INTERFACE string

web_request->httpAccept HTTP_ACCEPT string

web_request->httpAcceptEncoding HTTP_ACCEPT_ENCODING string

web_request->httpAcceptLanguage HTTP_ACCEPT_LANGUAGE string

web_request->httpCacheControl HTTP_CACHE_CONTROL string

web_request->httpConnection HTTP_CONNECTION string

web_request->httpCookie HTTP_COOKIE string

web_request->httpHost HTTP_HOST string

web_request->httpReferer HTTP_REFERER string

web_request->httpReferrer HTTP_REFERER string

web_request->httpUserAgent HTTP_USER_AGENT string

web_request->isHttps HTTPS boolean

web_request->path PATH string

web_request->pathInfo SCRIPT_NAME string

web_request->pathTranslated PATH_TRANSLATED string

web_request->remoteAddr REMOTE_ADDR string

web_request->remotePort REMOTE_PORT integer

web_request->requestMethod REQUEST_METHOD string

web_request->requestURI REQUEST_URI string

Continued on next page

314 Chapter 30. Web Requests and Responses



LassoGuide, Release 9.3

Table 30.1 – continued from previous page

Web Request Method Web Request Variable Return Type

web_request->scriptFilename SCRIPT_FILENAME string

web_request->scriptName SCRIPT_NAME string

web_request->scriptURI SCRIPT_URI string

web_request->scriptURL SCRIPT_URL string

web_request->serverAddr SERVER_ADDR string

web_request->serverAdmin SERVER_ADMIN string

web_request->serverName SERVER_NAME string

web_request->serverPort SERVER_PORT integer

web_request->serverProtocol SERVER_PROTOCOL string

web_request->serverSignature SERVER_SIGNATURE string

web_request->serverSoftware SERVER_SOFTWARE string

30.1.2 Reading GET and POST Arguments

Lasso automatically tokenizes GET arguments and processes the POST body into a series of name/value pairs according to the
sent content type. These two sets of pairs can be retrieved separately or treated as a single series of elements. File uploads are
not included in the POST arguments, but are made available through the web_request->fileUploads method.

The value for any GET or POST argument is always a bytes object. The name is always a string.

web_request->param(name::string, joiner=?)

web_request->params()

web_request->queryParam(name::string)

web_request->queryParams()

web_request->postParam(name::string)

web_request->postParams()
This set of methods refers to the GET arguments as the “query” params and any POST arguments as the “post” params.
Both sets together are just the “params”. The methods that accept anameparameter return the first matching argument’s
string value. If no argument matches, a “void” value is returned.

The params method presents both argument sources as a single queriable tie object with the POST arguments oc-
curring first. The param(name::string, joiner) method presents an interface for accessing arguments that occur
more than once. The joiner parameter is used to determine the result of the method. If “void” is passed, the resulting
argument values are returned in a staticarray. If a string value is passed, the argument values are joined with that string
in between each value. The result of passing any other object type will depend on the behavior of its + operator.

The methods that accept no parameters return all of the GET, POST, or both argument pairs as an object which may be
iterated over or used in a query expression.

web_request->queryString()

web_request->postString()
Returns the respective arguments in a format similar to how they were received. In the case of queryString the GET
arguments are returned verbatim. The POST string is created by concatenating each POST argument together with “&”
in between each name/value, each of which are separated by “=”. This will vary from the exact given POST only in the
case of multipart/form-data input.

30.1. Web Requests 315



LassoGuide, Release 9.3

30.1.3 Reading Cookies

Cookie values are sent as HTTP header fields. As such, they can be read and parsed from the various header-related
web_request methods. The web_request object provides methods to directly access the pre-parsed cookie data.

web_request->cookie(named::string)

web_request->cookies()→ trait_forEach
The first method searches for the named cookie and returns its value if found. If the cookie is not found then “void”
is returned. The second method returns all the cookies as an object, which can be iterated over or used in a query
expression. The cookie elements are presented as pair objects containing the cookie names and values as the pairs’ first
and second members.

30.1.4 Uploading Files

Lasso can process and manage files uploaded to a web server by visitors to your website. To allow visitors to upload files to
your web server, use an HTML <form> tag along with an <input> tag for each file being uploaded. The form tag must have
an “enctype” attribute of multipart/form-data, and the “input” tags for file uploads need to have a “type” attribute of “file”.
The following HTML code could be used to upload a single file to the server:

<form action="upload_file.lasso" method="post" enctype="multipart/form-data">
<fieldset>

<legend>Upload a Photo</legend>
<input type="file" name="photo">
<input type="submit" name="submit" value="Upload">

</fieldset>
</form>

The “file” input tells the browser to show controls for selecting a file to be uploaded to the web server. Once a user selects the
file and then clicks “Upload”, the form will upload the data to the server and the files can be processed by “upload_file.lasso”,
the Lasso file specified as the action of the form submission.

Uploaded files processed by Lasso are initially stored in a temporary location. If you do nothing with them, they will be deleted.
If you wish to keep them, you should move them to a different directory. To inspect and process these uploaded files use the
web_request->fileUploads method.

web_request->fileUploads()
Returns an array in which each element holds information about an uploaded file. The size of this array will be equal to
the number of files uploaded. Each element of the array is a staticarray of pairs that houses the following information
about the files:

fieldname
The name of the “file” input type. (In our example, “photo”)

contenttype
The MIME content type of the file.

filename
The original name of the uploaded file.

tmpfilename
The path to which the file was temporarily uploaded.

filesize
The size of the file in bytes.

The following example code will loop through all uploaded files and display this information:

316 Chapter 30. Web Requests and Responses



LassoGuide, Release 9.3

<dl>
[with file_info in web_request->fileUploads do {^]

<dt>[#file_info->find('filename')->first->second]</dt>
<dd>

<ul>
<li>[#file_info->find('tmpfilename')->first->second]</li>
<li>[#file_info->find('contenttype')->first->second]</li>
<li>[#file_info->find('filesize')->first->second]</li>
<li>[#file_info->find('fieldname')->first->second]</li>

</ul>
</dd>

[^}]
</dl>

The preceding example produces HTML like this:

<dl>
<dt>MyAvatar.jpg</dt>
<dd>

<ul>
<li>//tmp/lassoqM9SFY37921967.uld</li>
<li>image/jpeg</li>
<li>851191</li>
<li>photo</li>

</ul>
</dd>

</dl>

The following example moves uploaded files out of their temporary location and into the “/assets/img/avatars/” directory in
the web root, overwriting any existing files with the same name:

local(path) = '/assets/img/avatars/'
with upload in web_request->fileUploads
do file(#upload->find('tmpfilename')->first->second)

->moveTo(#path + #upload->find('filename')->first->second, true)

Monitoring Uploads

If you expect the uploads to take a lot of time, either due to uploading many files or a few large ones, you may want to provide
feedback to your visitors that the browser and server are working on the uploads. Lasso comes with a method that will do just
that.

To track files, you first need an input named “_lasso_upload_tracker_id” with a unique value in your form. Use
lasso_uniqueid to generate a UUID which is essentially guaranteed to be unique each time you call it. With that in place,
while the thread that processes the form submission is working on uploading the files, the status of that process can be
checked in another thread. This is done by passing the unique ID to the upload_tracker->check method of the up-
load_tracker thread object. That method returns a staticarray whose first element is the amount of data uploaded, the
second is the total size of all the files being uploaded, and the third is the name of the current file being uploaded.

The following basic example has a form set up properly in “index.lasso”. When the submit button is pressed it opens another
window to display “progress.lasso” before submitting the form. This page calls upload_tracker->check with the unique ID
that gets passed to it. It also uses <meta http-equiv="refresh" content="1"> to refresh itself every second. The result
is that we get a progress bar that is updated every second.

30.1. Web Requests 317



LassoGuide, Release 9.3

index.lasso

<!DOCTYPE html>
<html>
<head>

<title>Upload A Photo</title>
<script type="text/javascript">

function trackProgress(id) {
window.open(

"/progress.lasso?id=" + id,
null,
"height=100,width=400,location=no,menubar=no,resizable=yes,scrollbars=yes,title=yes"

);
}

</script>
</head>
<body>

[local(id) = lasso_uniqueid]
<form action="upload_file.lasso" method="post" enctype="multipart/form-data">

<input type="hidden"
name="_lasso_upload_tracker_id" value="[#id]">

<fieldset>
<legend>Upload a Photo</legend>
<input type="file" name="photo">
<input type="submit"

value="Upload"
onclick="trackProgress('[#id->encodeUrl]')">

</fieldset>
</form>

</body>
</html>

progress.lasso

[local(info) = upload_tracker->check(web_request->param('id'))]
<!DOCTYPE html>
<html>
<head>
[if(#info->first > 0 and #info->first != #info->second)]

<meta http-equiv="refresh" content="1">
[/if]
</head>
<body>
[if(#info->first > 0 and #info->second > 0)]
[#info->last]
<div style="background-color: white;border: 1px solid black;width:380px;height: 20px;">

<div style="background-color: black;height: 20px;width: [
380 * (decimal(#info->first) / decimal(#info->second))

]px;"></div>
</div>
[/if]
</body>
</html>

318 Chapter 30. Web Requests and Responses



LassoGuide, Release 9.3

30.2 Web Responses

Sending a response to a web request is a simple as having “The Words” in the targeted “*.lasso” text file. Files requested through
a web request are assumed to begin as plain text. Lasso code can be inserted into the file between any of the following
delimiters: [ ... ], <?lasso ... ?>, or <?= ... ?>.

Because supporting the [ ... ] delimiters can be problematic for embedding with other technologies (i.e., JavaScript and
CSS), they can be disabled for the remainder of the file by having the literal [no_square_brackets] as the first line.

Any code between the delimiters will have the results of the expressions within its body converted to string objects and
included in the response output string. Code between auto-collecting captures is included as well. For example, values pro-
duced by code between inline(...) ... /inline or inline(...) => {^ ... ^} would be included in the output.
Such code is free to call any methods or types to formulate the response data.

The request is completed when the initial code has run to the end, when the abort method is called, or when an un-
handled failure occurs. Outgoing data is buffered for as long as possible, but can be forced out at any point using the
web_response->sendChunk method. Calling abort (either web_response->abort or the unbound method; both have
the same behavior) will complete the request by halting all processing and sending the existing response data as-is.

The web_response object automatically routes requests for LassoApps. Request paths that begin with “/lasso9/” are reserved
for LassoApp usage and will be routed there. Lasso Server ignores physical file paths beginning with “/lasso9/” during the
processing of a web request.

30.2.1 Including Files

It is often useful to split up large template files into smaller reusable components. For example, a header or footer could be
split out and reused on all pages. The web_response object provides a variety of methods for including other source code
files. Files included in this way behave just as a file accessed directly would. That is, they begin executing as plain text and any
Lasso code must be included between delimiters.

The path to an include file can be full or relative. Complete paths from the file system root are accepted as well. (See the File
System chapter for more details on how file paths are treated in Lasso.) Components of LassoApps can be included as well by
beginning the path with “/lasso9/”, then the app name and then the path to the component.

Any of the following methods can include file content.

type web_response

web_response->include(path::string)

web_response->includeOnce(path::string)

web_response->includeLibrary(path::string)

web_response->includeLibraryOnce(path::string)
Locates and runs the file specified by the path. The includeLibrary and includeLibraryOnce member methods
run the file but do not insert the result into the response. The includeOnce and includeLibraryOnce member
methods will only include the file if it has not already been included during the course of that request.

These will fail if the specified file does not exist.

web_response->includeBytes(path::string)→ bytes
Locates the file and includes the raw file data as bytes. The method will fail if the file does not exist.

web_response->includes()→ trait_forEach
Lasso keeps track of web files that are being executed. As execution of a file begins, the file’s name is pushed onto an
internally kept stack. As a file’s execution ends, that name is popped from the stack. This method provides access to that
stack. Returns the list of currently executing file names as an object that can be iterated or used in a query expression.

30.2. Web Responses 319



LassoGuide, Release 9.3

web_response->getInclude(path::string)
Locates the file and returns an object that can be invoked to execute the file. The method will fail if the file does not
exist.

For compatibility and simplicity, Lasso supports the following unbound methods which function in the same manner as the
web_response bound methods:

include(path::string)

library(path::string)
Includes the file specified by the path in the same manner as the web_response->include and
web_response->includeLibrary methods.

30.2.2 Writing Response Headers

The web_response object provides methods for setting the outgoing response’s HTTP headers. When a request is begun, a
few default HTTP headers are established. The request handler code can add, modify, or remove these headers as needed.
Headers can be set or removed freely during a request; however, once any data has been sent then headers can no longer be
effectively manipulated.

Note that the HTTP status code and message are not HTTP headers and so are not manipulated through these methods.

web_response->header(name::path)

web_response->headers()→ trait_ForEach
Returns existing outgoing headers. The first method finds the first occurrence of the specified header and returns its
value. The second method returns all the current headers as an object that can be iterated over or used in a query
expression. Each element is a pair object containing the header name/value in the pair’s first/second.

web_response->setHeaders(headers::trait_forEach)

web_response->replaceHeader(header::pair)

web_response->addHeader(header::pair)
Permits headers to be set or replaced. The first method sets all the headers for the response. These headers should be
given as a series of pairs containing the header names/values. The second method requires a header name/value pair
and replaces matching header with the new value. If the existing header isn’t found, the new header is simply added.
The third method requiers a new header name/value pair and adds it to the list of outgoing headers. This method does
not check for duplicate headers.

30.2.3 Setting Cookies

Outgoing cookies are added to the response HTTP headers by the web_response object. It provides a method for setting a
cookie and a method for enumerating all cookies being set.

Setting a cookie requires specifying a name and a value and optionally a domain, expiration, path, SSL secure flag, and HttpOnly
flag. These values are supplied as parameters when setting a cookie. Cookie headers are not created until the request process-
ing is completed and the response is to be sent to the client.

web_response->setCookie(nv::pair, -domain=?, -expires=?, -path=?, -secure=false, -httponly=false)
Sets the specified cookie. Any duplicate cookie would be replaced. The first parameter must be the cookie name=value
pair. If used, the -domain and -path keyword parameters must have string values. Setting -secure causes the cookie
to only be sent over HTTPS connections, and -httponly blocks client-side scripts from accessing the cookie.

The -expires parameter can be either a date object, a duration object, an integer, a string, or any object that will
produce a suitable value when converted into a string. A date specifies the absolute date at which the cookie will
expire. A duration specifies the time that the cookie should expire based on the time at which the cookie is being set.

320 Chapter 30. Web Requests and Responses



LassoGuide, Release 9.3

An integer or string specifies the number of minutes until the cookie expires. Any other object type is appended directly
to the outgoing cookie header string.

Changed in version 9.3.1: Added -httponly flag.

web_response->cookies()→ trait_forEach
Returns a list of all the cookies set for this response. The individual cookies are represented by map objects containing
keys for ‘name’, ‘value’, ‘domain’, ‘expiration’, ‘path’ and ‘secure’. Manipulating a cookie value in the list will alter its resulting
cookie header.

30.2.4 Setting the Response Body

Lasso allows programatically inspecting and setting the contents of the response body. This can be useful for code that needs
to clear any data that has been already added to the response body and insert something completely different, such as when
displaying an error message.

web_response->rawContent()

web_response->rawContent=(text)
The first method returns the current contents of the response body. Note that any plain text or auto-collected data in
the currently executing code file will not be part of the body until the code file finishes processing. The second method
allows for setting the contents of the response body to the value specified by the text parameter.

web_response->sendChunk()
For complex HTTP sessions, this allows for sending the HTTP response body in multiple chunks. Each time it is called, it
sends the current contents of the response in rawContent and then clears it for building the next chunk. If the headers
for the response have not yet been sent, it will first send them before sending the first chunk.

30.2.5 Sending Response Data

By default, the result of a request will have a text/html content type with a UTF-8 character set and the body data will be gen-
erated from a Lasso string object that always consists of Unicode character data. In order to output binary data, the bytes need
to be set directly and the response’sContent-Typeheader adjusted accordingly. The method web_response->rawContent
can get or set the outgoing content data.

It is advised to call web_response->abort soon after setting binary response data or at least to ensure that no stray character
data is inadvertently added into the outgoing data buffer as it will corrupt the output.

When manually setting the raw content, the Content-Type header should usually be adjusted to accommodate the change.
Use the web_response->replaceHeader method to replace the existing header with the new value.

The web_response object provides the sendFile method which packages together many of the steps required to send
binary data to the client to be viewed either inline or downloaded as an attachment.

web_response->sendFile(data::trait_each_sub, name=null, -type=null, -disposition=’attachment’, -charset=’‘,
-skipProbe=false, -noAbort=false, -chunkSize=fcgi_bodyChunkSize, -monitor=null)

Sets the raw content and headers for the response. It then optionally aborts, ending the request and delivering the data
to the client. This replaces all existing headers with new MIME-Version, Content-Type, Content-Disposition and
Content-Length headers.

The first parameter (“data”) can be any object that supportstrait_each_sub. This includes objects such as string, bytes,
and file. The second parameter (“name”) is optional, but if given it will trigger the addition of a “filename=” element to
the Content-Disposition header. This controls the file name that the user agent will use to save a downloaded file.

The subsequent keyword parameters control the following:

Parameters

30.2. Web Responses 321



LassoGuide, Release 9.3

• -type (string) – Specifies the value for the Content-Type header. If this is not specified and
-skipProbe is not set to “false”, the incoming data will be lightly probed to determine what type of
data it is. The following data types are automatically recognized: GIF, PDF, PNG, JPEG. Unrecognized data
types are set to have the application/octet-stream content type.

• -disposition (string) – Sets the value for the Content-Disposition header, defaulting to “attach-
ment”. The other possible value is “inline”.

• -charset (string) – If given, this string will be appended to the Content-Type header as a “;charset=”
component.

• -skipProbe (boolean) – Defaults to “false”. If set to “true”, no content type probe will occur.

• -noAbort (boolean) – Defaults to “false”. This means that sendFile will abort by default after the data
is delivered to the client. Set this parameter to “true” in order to prevent the abort.

• -chunkSize (integer) – Sets the size of the buffer with which the data is read and sent to the client. This
mainly has a benefit when sending physical file data as it controls the memory usage. This value defaults
to “65535”, the result of the fcgi_bodyChunkSize method.

• -monitor – An object can be given to monitor the send process. Whatever object is given here will have
its invoke method called for each chunk sent. The invoke will be passed the byte stream for the current
chunk as well as an integer indicating the overall size of the bytes being sent.

If the sendFile method succeeds and does not abort, no value is returned.

web_response->abort()
Stops Lasso from sending any further data. Same as calling abort.

30.2.6 HTTP Response Status

The HTTP response status line consists of a numeric code and a short textual message. When a request is first started it is given
a “200 OK” status line. If a file is requested that does not exist, Lasso will respond with a “404 Not Found” status. An unhandled
failure will generate a “500 Unhandled Failure” status.

The status can be set or reset multiple times. Its value is not used until the request data is sent to the client. However, once
any data has been sent then the status can no longer effectively be set.

The following methods get or set the HTTP response status:

web_response->setStatus(code::integer, msg::string)

web_response->getStatus()→ pair
The first method sets the HTTP status code and message. The second returns the status as a pair containing the
code/message as the pair’s first/second.

30.3 At Begin and End

Lasso permits arbitrary code to be run immediately before and immediately after a request with full access to theweb_request
and web_response objects. Code run before a request can manipulate the request data that will be used by the request
handler code. Code run after a request can manipulate the outgoing headers and content body, doing tasks such as rewriting
HTML links or compressing data for efficiency.

Code to be run after a request completes is added during the request itself through the web_response->addAtEndmethod.
Since code to be run before a request must be added outside of any request, the define_atBegin method is used. These
methods are described below.

322 Chapter 30. Web Requests and Responses



LassoGuide, Release 9.3

define_atBegin(code)
Installs code to be invoked at the beginning of each request. The code will have access to the web_request and
web_response objects that will be available during the request’s duration. At-begin code can set response headers and
data and complete the request if it chooses, thus fully intercepting the normal request URI file request and processing
routines. This is the recommended route for applications wanting to provide virtual URLs. Once an at-begin is in place it
cannot be removed. Multiple at-begins are supported and are run in the order in which they are installed. (The easiest
way to install an at-begin is to place it in the instance’s “LassoStartup” directory.)

The object installed as the at-begin code is copied to each request’s thread each time. This means that a capture’s local
variables or any object’s data members are deeply copied each time. The most efficient steps would be to define a
method as the at-begin handler and then pass a reference to that method as the at-begin code. For example, passing
\foo to define_atBeginwould pass the foomethod to define_atBegin. It would be invoked for each request and
use the web_request and web_response within it.

define_atEnd(code)

web_response->addAtEnd(code)
Sets the parameter to be run at the request’s end. (The define_atEnd method just calls web_response->addAtEnd.)
At-end code is normally run before data is sent to the client, but this may not be the case if data has been manually
pushed using the web_response->sendChunk method. At-begins are executed before the session link rewriter is run.
Multiple at-ends are supported and each are run in the order in which they were installed.

At-ends are added on a per-request basis, as opposed to at-begins which are added globally. At-end code is not copied
in any way. A capture passed to this method will be detached.

30.3. At Begin and End 323





Chapter 31

Authentication

Lasso Server provides a built-in users and groups system. Initially, this system is only used to secure access to the Lasso Server
Admin application. It can be used to provide authentication for your own web apps; however, Lasso is also flexible enough to
support custom security and authentication mechanisms.

Lasso’s security system data is stored in a SQLite database located in the instance’s “SQLiteDBs” directory. Passwords are not
stored in plain text, though other information such as usernames and group names are unencrypted.

Within the system, users are grouped into particular realms. A realm completely separates its users such that the same user-
name+password combination could exist in two different realms and they would be considered two unique users. A user only
ever belongs to one realm which it is assigned to when the user is created. When a Lasso Server instance is first initialized, a
“Lasso Security” realm is created. This is the default realm used in all the security-related methods and types. Alternate realms
can be specified when needed.

Users can be grouped together. Each group can contain zero or more users. Users can belong to multiple groups at the same
time. Users from different realms can belong to the same group. The special group “ANYUSER” always consists of all users.
The special group “ADMINISTRATORS” is used to control who can access the Lasso Server Admin application as well as other
system-related applications.

The built-in security system is accessed through two different interfaces: the set of auth_… methods and the secu-
rity_registry object.

31.1 Authenticating Users

Web apps use the auth_… methods to execute simple security checks. The checks acquire the username, password, and
realm information from the current web request and, therefore, require that a request be active. In all cases, if the check fails
or if no username and password are provided, the auth methods will generate an “HTTP 401 Unauthorized” response with a
WWW-Authenticate: Digest header. The request is then aborted, by default. If the security checks succeed, the methods
return nothing. If electing not to abort when the check fails, a caller can check web_response->getStatus to determine
the result.

auth_admin(-realm::string=’Lasso Security’, -noAbort=false, -errorResponse=’‘, -noResponse=false)
Checks that the current authenticated HTTP client user is in the “ADMINISTRATORS” group. An alternate realm can be
given and the default abort behavior can be altered. By default, a simple “Not Authorized” content body is generated;
this can be specified with the -errorResponse parameter or the body can be left empty by passing -noResponse.

auth_user(name::string, -realm::string=’Lasso Security’, -noAbort=false, -errorResponse=’‘, -noResponse=false)
Checks that the current authenticated HTTP client user matches the given name.

auth_group(group::string, -realm::string=’Lasso Security’, -noAbort=false, -errorResponse=’‘, -noResponse=false)
Checks that the current authenticated HTTP client user is in the specified group.

31.2 Managing Users

The security_registryobject provides a more complete interface to Lasso’s security system. It does not rely on an ongoing
web request and can be used freely once the system is initialized. The security_registry methods permit specifying a

325



LassoGuide, Release 9.3

realm, but the object otherwise defaults to using the “Lasso Security” realm.

Before the security system can be used, it must be initialized by calling the security_initializemethod. Lasso Server calls
this method as it starts up and so this step can be safely skipped by web applications. Command-line or other tools that want
to use the security system should call this method as early as possible when starting up.

A security_registry object can be created with no parameters. When created, it will open a connection to the security
database. The object must be closed once it is no longer required.

security_initialize()
Initializes Lasso’s ability to connect to the security SQLite database. Lasso Server calls this automatically, but you will
need to call it if you wish to use the security_registry type.

type security_registry

security_registry()
Creates a new security_registry object. Once created, it can:

• Add/remove groups

• Alter group metadata (name, enabled)

• Add/remove users

• Alter user metadata (password, comment, enabled)

• Assign/unassign users to groups

• Validate username/password/realm combinations

security_registry->close()
Closes the security_registry object’s connection to the security information database.

security_registry->addGroup(name::string, enabled::boolean=true, comment::string=’‘)
Attempts to add the specified group. A group is enabled by default, but it can be explicitly disabled. A comment can
be provided when the group is created and will be stored in the database for reference.

security_registry->getGroupID(name::string)
Returns the integer ID for the specified group. This ID can be passed to subsequent methods to identify the group.

security_registry->listGroups(-name::string)

security_registry->listGroupsByUser(userid::integer)

security_registry->listGroupsByUser(username::string)
Lists groups in a variety of ways. The first method will list all groups. A -name parameter can be specified to perform
wildcard searches. The wildcard character is “%”. The second and third methods return a list of groups that the specified
user belongs to.

Each group is represented by a map object containing the keys ‘id’, ‘name’, ‘enabled’, and ‘comment’.

security_registry->removeGroup(groupid::integer)

security_registry->removeGroup(name::string)
Removes the specified group. All users are disassociated from the group.

security_registry->updateGroup(groupid::integer, -name=null, -enabled=null, -comment=null)
Modifies the information for the group. Passing any of the -name, -enabled or -comment parameters will set the
appropriate data.

security_registry->addUser(username::string, password::string, enabled::boolean=true, comment::string=’‘,
-realm=’Lasso Security’)

Adds a new user to the system. A username and password must be supplied. An optional enabled and comment
parameter can be provided. The -realm parameter controls which realm the user is placed in. The default realm is

326 Chapter 31. Authentication



LassoGuide, Release 9.3

“Lasso Security”. The user’s information record is then returned as a map object containing the keys ‘id’, ‘name’, ‘enabled’,
‘comment’, ‘email’, ‘real_name’ and ‘realm’.

Note: The ‘email’ and ‘real_name’ fields are not used at this time.

security_registry->addUserToGroup(userid::integer, groupid::integer)
Adds a user to a group. Both user and group must be specified by their integer IDs.

security_registry->checkUser(username::string, password::string, -realm::string=’Lasso Security’)
Authenticates the given username and password and will return user’s record if it succeeds. The return value will be
a map object containing the keys ‘id’, ‘name’, ‘enabled’, ‘comment’, ‘email’, ‘real_name’ and ‘realm’. If the check fails, this
method will return “void”. The check will fail if the user account is not enabled.

security_registry->countUsersByGroup(groupid::integer)
Returns the number of users in the specified group.

security_registry->getUser(userid::integer)

security_registry->getUser(name::string, -realm::string=’Lasso Security’)
Returns the user record for the specified user.

security_registry->getUserID(name::string, -realm::string=’Lasso Security’)
Returns the ID of the specified user.

security_registry->listUsers(-name::string=’‘, -realm=null)

security_registry->listUsersByGroup(name::string)
Lists users and returns their user records. The first method permits a -name pattern to be specified as well as a realm.
Not specifying -realm will result in all realms being searched. The second method lists all of the users in the specified
group.

security_registry->removeUser(userid::integer)

security_registry->removeUserFromGroup(userid::integer, groupid::integer)

security_registry->removeUserFromAllGroups(userid::integer)
Removes a user from the system, remove a user from a group, or remove a user from all groups, respectively.

security_registry->userPassword=(password::string, userid::integer)

security_registry->userEnabled=(enabled::boolean, userid::integer)

security_registry->userComment=(comment::string, userid::integer)
Given a user ID, these setter methods will assign that user’s password, enabled state, or associated comment, respec-
tively. Call these by specifying the user ID as a parameter and the value as an assignment.

security_registry->userComment(1) = "I am the first user!"

31.2. Managing Users 327





Chapter 32

Sessions

Sessions allow creating variables that persist between requests within a website. Rather than passing data using HTML forms
or URLs, visitor-specific data can be stored in Lasso variables that are automatically saved and retrieved by Lasso for each page
a visitor loads.

Sessions can be used for a variety of purposes, including:

• Saving state – Sessions can store the current state of a website for a given visitor. They can retain what the last search
they performed was, how the data on a results page was sorted, or in what format the data should be presented.

• Storing references to database data – Key column values can be stored in a session for quick access. These might
include records in a user database or a shopping cart database.

• Storing authentication information – After a visitor has authenticated using a username and password, that authen-
tication information can be stored in a session and then checked to verify that the same visitor is accessing data from
page request to page request.

• Storing data without using a database – Any type that imports the trait_serializable trait can be stored in a
session variable. A website with multiple forms can have the data from each form stored in a session and only placed
in the database once the final form is submitted. Or, a shopping cart can be stored in a session and only placed in an
orders table upon checkout.

32.1 How Sessions Work

A session has three characteristics: a name, a list of variables that should be stored, and an ID string that identifies a particular
site visitor.

Name
The session name is defined when the session is created by the session_start method. The same session name must
be used for each request that wants to load the session. The name typically represents the type of data being stored in the
session, e.g. “Shopping_Cart” or “Site_Preferences”.

Variables
Each session maintains a list of variables that are being stored. Variables can be added to the session using ses-
sion_addVar. The values for all variables in the session are remembered at the end of each request that loads the session.
The value for each saved variable is restored when that session is next loaded.

ID
Lasso automatically creates an ID string for each site visitor when a session is created. The ID string is either stored in a
cookie or passed from page to page using the “-lassosession” GET or POST parameter. When a session is loaded, the ID
of the current visitor is combined with the name of the session to locate and load the particular set of variables for that
session and the current visitor.

Important: Only thread variables can be added to a session.

329



LassoGuide, Release 9.3

Sessions are created and loaded using the session_start method. This method should be used early for each request that
needs access to the session variables. The session_start method either creates a new session or loads an existing session
depending on whether there are existing variables currently stored for the site visitor.

Sessions can be set to expire after a specified amount of idle time. The default is 15 minutes. If the visitor has not loaded a page
that starts the session within the idle time limit, the session will be deleted automatically. Note that the idle timeout resets
each time a request loads the session.

Once a variable has been added to a session using the session_addVar method, its stored value will be set each time the
session_start method is called. The variable does not need to be added to the session on each request, though it is safe
to do so. A variable can be removed from a session using the session_removeVar method. This method does not alter a
variable’s current value, but does prevent the value of the variable from being saved for the session. This means the variable
will not be available on future session loads.

32.2 Session Methods

Below is a description of each of the session methods:

session_start(...)
Starts a new session or loads an existing session.

Parameters

• name (string) – The name of the session. This is the only required parameter. All other parameters are
optional and have default values that cover the majority of usages.

• -expires (integer=15) – The idle expiration time for the session in minutes.

• -id (string=null) – Optionally sets the ID for the current visitor. This permits the ID to be supplied
explicitly by the developer. If no ID is specified Lasso will automatically create an ID.

• -useCookie (boolean=true) – If “true”, sessions will be tracked by cookie. -useCookie defaults to “true”
unless -useLink, -useAuto, or -useNone is specified.

• -useLink (boolean=false) – If “true”, sessions will be tracked by modifying all the absolute and relative
links in the outgoing response data.

• -useNone (boolean=false) – If specified, no links on the current page will be modified and a cookie
will not be set. -useNone allows custom session tracking to be used, bypassing the automated methods
provided by Lasso.

• -useAuto (boolean=true) – This option automatically uses -useCookie if cookies are available on the
visitor’s browser or -useLink if they are not. Since Lasso has no way of knowing if cookies are enabled
when a session is first started, -useLink is implicitly “true” on that first request and links will be adjusted
to carry the session. If the session cookie is present on subsequent requests, -useLink will be implicitly
“false” and links will not be adjusted.

• -cookieExpires (integer=null) – Optionally sets the expiration in minutes for the session cookie. This
permits the cookie expiration to be set, regardless of the overall expiration for the session itself.

• -domain (string=null) – Optionally sets the domain for the session cookie.

• -path (string='/') – Optionally sets the path for the session cookie.

• -secure (boolean=false) – If “true”, the session cookie will only be sent back to the web server on
requests for HTTPS secure web pages. The session_end should also be specified with -secure if this
option is desired.

• -httponly (boolean=false) – If “true”, modern web browsers will block client-side scripts from access-
ing the cookie. The session_end should also be specified with -httponly if this option is desired.

330 Chapter 32. Sessions



LassoGuide, Release 9.3

• -rotate (boolean=false) – If “true”, the session will have a new ID generated for it on each request. This
is ignored if -id is specified.

Changed in version 9.3.1: Added -httponly flag.

session_id(sessionName::string)
Returns the current session ID. Requires a single parameter specifying the name of the session for which the session ID
should be returned.

session_addVar(sessionName::string, varName::string)
Adds a variable to a specified session. Requires two parameters: the name of the session and the name of the variable.

session_removeVar(sessionName::string, varName::string)
Removes a variable from a specified session. Requires two parameters: the name of the session and the name of the
variable.

session_end(sessionName::string, -secure=false::boolean, -httponly=false::boolean)
Deletes the stored information about a named session for the current visitor. Requires a string parameter specifying
the name of the session to be deleted, and two optional keyword parameters: -secure and -httponly. The -secure
parameter should be “true” if the -secure parameter was “true” when session_start was called. The same applies
to the -httponly parameter.

session_abort(sessionName::string)
Prevents the session from being stored at the end of the current request. This allows graceful recovery from an error
that would otherwise corrupt data stored in the session. Requires a single parameter specifying the name of the session
to be aborted.

session_result(sessionName::string)
When called immediately after the session_startmethod, it returns “new”, “load”, or “expire” depending on whether
a new session was created, an existing session loaded, or an expired session forced a new session to be created, re-
spectively. If session_start is called with the optional -rotate keyword parameter, the word “rotate” may also be
returned from this method.

session_deleteExpired()
Used internally by the session manager and does not normally need to be called directly. It triggers a cleanup routine
that deletes expired sessions from the current session storage location.

Tip: The -useCookie is the default for session_start unless -useLink or -useNone are specified. Use -useLink to track
a session using only links. Use both -useLink and -useCookie to track a session using both links and a cookie.

32.3 Starting a Session

The session_startmethod is used to start a new session or to load an existing session. When the session_startmethod
is called with a given name parameter it first checks to see whether an ID is defined for the current visitor. The ID is searched
for in the following three locations:

• Parameter – If the session_start method has an -id keyword parameter then it is used as the ID for the current
visitor.

• Cookie – If a session tracker cookie is found for the name of the session then the ID stored in the cookie is used.

• -lassosession – If a name for the session was specified with a GET or POST parameter named “-lassosession”, that value
is used as the session ID.

The name of the session and the ID are used to check whether a session has already been created for the current visitor. If it
has, the variables in the session are loaded, replacing the values for any variables of the same name that are already active on
the current page.

32.3. Starting a Session 331



LassoGuide, Release 9.3

If no ID can be found, the specified ID is invalid, or if the session identified by the name and ID has expired, a new session is
created.

After the session_start method has been called, the session_id method can retrieve the ID of the current session. It is
guaranteed that either a valid session will be loaded or a new session will be created when session_start is called.

Note: The session_start method must be used once for each request that will access session variables.

32.4 Session Tracking

The session ID for the current visitor can be tracked using two different methods, or a custom tracking system can be devised.
The tracking system to be used depends on which parameters are specified when the session_start method is called.

32.4.1 Using Cookies

The default session tracking method is to use a browser cookie. If no other method is specified when creating a session, the
-useCookie method is used by default. The cookie will be inspected automatically when the visitor makes another request
that includes a call to the session_start method. No additional programming is required.

The session tracking cookie is of the following form: the name of the cookie starts with “_LassoSessionTracker_” and is followed
by the name given to the session in session_start. The value for the cookie is the session ID as returned by session_id.

32.4.2 Using Links

If the -useLink parameter is specified in the session_start method, Lasso will automatically modify links contained on
the current page. No additional programming beyond specifying the -useLink parameter is required.

By default, links contained in the “href” attribute of anchor tags will be modified. Links are only modified if they reference a file
on the same machine as the current website. Any links that start with any of the following strings are not modified: “file://”,
“ftp://”, “http://”, “https://”, “javascript:”, “mailto:”, “telnet://”, “#”.

Links are modified by adding a -lassosession:SessionName parameter to the end of the link. The value of the parameter
is the session ID, as returned by the session_id method. For example, an <a> tag referencing the current file with a session
named “Cart” would have ?-lassosession:Cart= and the session ID appended after the URL path.

32.4.3 Using Cookies with a Link Fallback

If the -useAutoparameter is specified in the session_startmethod, Lasso will check for a cookie with an appropriate name
for the current session. If the cookie is found then -useCookie will be used to propagate the session. If the cookie cannot
be found, -useLink will be used to propagate the session. This allows a site to preferentially use cookies to propagate the
session but fall back on links if cookies are disabled in the visitor’s browser.

32.4.4 Using Custom Tracking

If the -useNone parameter is specified in the session_start method, Lasso will not attempt to propagate the session. The
techniques described later in this chapter for manually propagating the session must then be used.

332 Chapter 32. Sessions



LassoGuide, Release 9.3

32.5 Using Sessions

Use the session_… methods to work with sessions in Lasso.

32.5.1 Start a Session

The following example starts a session named “Site_Preferences” with an idle expiration of 24 hours (1440 minutes). The session
will be tracked using both cookies and links.

session_start('Site_Preferences', -expires=1440, -useLink, -useCookie)

32.5.2 Add Variables to a Session

Use the session_addVar method to add a variable to a session. Once a variable has been added to a session its value will be
restored when session_start is next called. In the following example, a variable named “real_name” is added to a session
named “Site_Preferences”:

session_addVar('Site_Preferences', 'real_name')

32.5.3 Remove Variables from a Session

Use the session_removeVar method to remove a variable from a session. The variable will no longer be stored with the
session, and its value will not be restored in subsequent requests. The value of the variable in the current request will not be
affected. In the following example, a variable named “real_name” is removed from a session named “Site_Preferences”:

session_removeVar('Site_Preferences', 'real_name')

32.5.4 Delete a Session

A session can be deleted using thesession_endmethod with the name of the session. The session will be ended immediately.
None of the variables in the session will be affected in the current request, but their values will not be restored in subsequent
requests. Before a session can be ended, it has to be loaded, so session_start must be called before calling session_end.
Sessions can also end automatically if the timeout specified by the -expires keyword parameter is reached. In the following
example the session “Site_Preferences” is ended:

session_start('Site_Preferences')
session_end('Site_Preferences')

32.5.5 Pass a Session in an HTML Form

Sessions can be added to URLs automatically using the -useLink keyword parameter in the session_start method. In
order to pass a session using a form, a hidden input must be added explicitly. The hidden input should have the name
“-lassosession:SessionName” and a value of session_id. In the following example, the ID for a session “Site_Preferences”
is returned using session_id and passed explicitly in an HTML form:

<form action="save.lasso" method="post">
<input type="hidden" name="-lassosession:Site_Preferences" value="[session_id('Site_Preferences')]" />
</form>

32.5. Using Sessions 333



LassoGuide, Release 9.3

32.5.6 Conditionally Track a Session Using Links

The following example shows how to start a session using links if cookies are disabled. The -useAuto parameter will first try
setting a cookie and decorate the links on the current page. If the session cookie is found on subsequent page loads, it will be
used and the links on the page will not be decorated. If the cookie cannot be found, the session will be propagated with links.

session_start('Site_Preferences', -useAuto)

32.5.7 Session Example

This example demonstrates how to use sessions to store user-specific values that are persistent from request to request. It
displays a form which the user can manipulate. The user’s selections are saved from one request to the next.

Sessions will be used to track the visitor’s name, email address, favorite color, and favorite forms of faster-than-light travel in
session variables.

<?lasso
local(

wr = web_request,
sessionName = 'sessions_example'

)
// Start the session
session_start(#sessionName)
if(session_result(#sessionName) != 'load') => {

// The session did not already exist,
// so set the variables we want to be saved
session_addVar(#sessionName, 'realName')
session_addVar(#sessionName, 'emailAddress')
session_addVar(#sessionName, 'favoriteColor')
session_addVar(#sessionName, 'hyperDrive')
session_addVar(#sessionName, 'warpDrive')
session_addVar(#sessionName, 'wormHole')
session_addVar(#sessionName, 'improbabilityDrive')
session_addVar(#sessionName, 'spaceFold')
session_addVar(#sessionName, 'jumpGate')

// Initialize our vars to empty values
var(realName, emailAddress, favoriteColor, hyperDrive, warpDrive,

wormHole, improbabilityDrive, spaceFold, jumpGate)

else(#wr->param('submit'))
// The session existed
var(realName) = #wr->param('realName')
var(emailAddress) = #wr->param('emailAddress')
var(favoriteColor) = #wr->param('favoriteColor')
var(hyperDrive) = #wr->param('hyperdrive')
var(warpDrive) = #wr->param('warpdrive')
var(wormHole) = #wr->param('wormhole')
var(improbabilityDrive) = #wr->param('improbabilitydrive')
var(spaceFold) = #wr->param('spacefold')
var(jumpGate) = #wr->param('jumpgate')

}
?>
<html>
<body>

<form action="[include_currentPath]" method="POST">
Your Name:

334 Chapter 32. Sessions



LassoGuide, Release 9.3

<input type="text" name="realName" value="[$realName]" />
<br />
Your Email Address:
<input type="text" name="emailAddress" value="[$emailAddress]" />
<br />
Your Favorite Color:
<select name="favoriteColor">

<option value="blue"[
$favoriteColor == 'blue' ? ' selected="yes"'

]> Blue </option>
<option value="red"[

$favoriteColor == 'red' ? ' selected="yes"'
]> Red </option>
<option value="green"[

$favoriteColor == 'green' ? ' selected="yes"'
]> Green </option>

</select>
<br />
Your Favorite Forms of Superluminal Travel:<br />
<input type="checkbox" name="hyperdrive" value="hyperdrive"

[$hyperDrive ? ' checked="yes"'] /> Hyper Drive<br />
<input type="checkbox" name="warpdrive" value="warpdrive"

[$warpDrive ? ' checked="yes"'] /> Warp Drive<br />
<input type="checkbox" name="wormhole" value="wormhole"

[$wormHole ? ' checked="yes"'] /> Worm Hole<br />
<input type="checkbox" name="improbabilitydrive" value="improbabilitydrive"

[$improbabilityDrive ? ' checked="yes"'] /> Improbability Drive<br />
<input type="checkbox" name="spacefold" value="spacefold"

[$spaceFold ? ' checked="yes"'] /> Space Fold<br />
<input type="checkbox" name="jumpgate" value="jumpgate"

[$jumpGate ? ' checked="yes"'] /> Jump Gate<br />
<br />
<input type="submit" name="submit" value="Submit" />
<a href="[include_currentPath]">Reload This Page</a>

</form>
</body>
</html>

32.5. Using Sessions 335





Chapter 33

LassoApps

Lasso Server provides a means for bundling source files, HTML, images, and other media types into a single deployable unit
called a LassoApp. LassoApps are served over the web using Lasso Server’s FastCGI interface. Lasso Server is required to run
LassoApps. A single server can run multiple LassoApps at the same time.

The LassoApp system provides a framework of features to make app development easier and to support a clean and maintain-
able design. This system also permits data in one app to be accessed and shared by another, allowing multiple apps to work
in concert.

33.1 LassoApp Concepts

LassoApps consist of regular files, logically structured into a tree of nodes and resources. This node tree is constructed to match
the file and directory structure inside the LassoApp bundle. Each node is associated with one or more resources. Resources
are generally either Lasso pages, CSS, JavaScript, HTML/XML, XHR, image, or other raw or binary file types.

This node/resource/content representation system permits the logic for producing a particular application object, such as a
“user” or a set of database result rows, to be isolated from logic for its display. It also allows application objects to be repre-
sented in a variety of manners, and for those representations to be modified, without having to extend the application objects
themselves.

Additionally, the system is unobtrusive, permitting the developer to use their own methodologies and frameworks while still
taking advantage of the LassoApp system in pieces or as a whole.

33.1.1 Nodes

Nodes represent the object structure behind a live LassoApp. This object structure is hierarchical, like a directory structure.
The node tree begins with the “root” node. That root node has a series of subnodes and those subnodes have zero or more
subnodes beneath them. In the case of the root node, each of its subnodes represent the currently installed and running
LassoApps.

Each node has a name and this name is used when locating a particular node within the tree. Nodes are addressed using
standard forward-slash path syntax. The root node is named “lasso9”, so it is accessed using the path /lasso9. The names of
subnodes are appended to the path following a “/”.

/lasso9/LassoAppName/resourceName
/lasso9/AddressBook/groups/userX

The default web server configuration for Lasso Server will direct all paths beginning with /lasso9 to Lasso Server. This is the
default method for accessing LassoApps over the web, though the configuration can be modified for other situations or server
requirements. See the section Server Configuration for more information.

33.1.2 Resources

Nodes not only serve as containers for subnodes, they also represent zero or more resources. These resources represent data
files, such as images, CSS, or Lasso source files. Resources are used to produce an object that the LassoApp system must then

337



LassoGuide, Release 9.3

transform into a format suitable for sending back to the client. Each resource is associated with a content type. This association
is done either explicitly using the resource file’s name, or by relying on the default content type, which is text/html.

LassoApp Node Hierarchy

Root Node
/lasso9

LassoApp Node
/lasso9/app1

LassoApp Node
/lasso9/app2

LassoApp Node
/lasso9/app3

... ... ...

Node
/lasso9/app2/abc

JPEG PDF

Node
/lasso9/app2/def

HTML XML JSON

Node
/lasso9/app2/xyz

HTML RSS

... ... ...

33.1.3 Content Representations

Each resource is associated with a content type which is used when handling, or representing, the object produced by a
resource. This handling occurs automatically when a node is requested via a web request and is formatted for output via HTTP.
This handling is performed by a variety of content representation objects, each tailored for specific file extension, like “.jpg” or “.js”,
and content types such as image/jpeg or application/javascript. New content representation objects can be added
and existing representations can be tailored for specific application objects.

If there exists a content representation object for a given node resource and content type, that resource can be invoked and
the resulting object given to the content representation object for transformation or special handling.

To illustrate, consider a resource such as a PNG image that comes from a static, unchanging PNG file within a LassoApp. After the
LassoApp is bundled for deployment, that image file may not actually exist on disk; instead it is contained within the LassoApp
in a specialized format. Given the resource’s PNG content type, the system chooses the appropriate content representation
object. In turn, that object sets an Expires header for that web request, improving application performance by preventing
future redundant image requests. The content representation object does not have to modify the object data, and in this case
with PNGs, sets an HTTP header but returns the unaltered binary image data.

Another example would be a node resource that produces a “user” object containing a first name, last name, etc. A content
representation can be added to handle that particular object type and formats it for display as HTML. Another content rep-
resentation can be added to format it for sending back as JSON data, while another can be added to convert it to the vCard
format.

33.2 Constructing a LassoApp

All LassoApps reside as either a file or a directory located within the “LassoApps” directory, which is located within the current
Lasso home. (See the section Instance Home Directory Contents in the Lasso InstanceManager chapter for more details.)

338 Chapter 33. LassoApps



LassoGuide, Release 9.3

LassoApps begin as a directory named according to the application. This directory contains all of the files for the application.
Before deployment, this directory can be precompiled into the LassoApp format. However, Lasso Server will happily serve a
plain LassoApp directory as long as it is placed in the proper location. This means that an application can be deployed as a
regular directory of files and also that a developer needn’t take any special steps transitioning between developing and testing
an application.

Important: While the above is generally true, it is currently required to restart Lasso Server when adding or removing files from
an in-development LassoApp. We aim to remove this restriction in a future release. (File content can be modified without any
such restrictions.)

33.2.1 Directory Organization

By using the concepts of nodes, resources, and content representation, a LassoApp can be organized logically and provide
clean, hierarchical, natural language URLs. For example, a simple “Contacts” LassoApp could have a structure similar to the
following:

LassoApps/
mycontacts/

contacts/
index.lasso

css/
appstyle.css

index.lasso
js/

scripts.js
other/

footer.lasso
header.lasso

This structure would provide the “root” of the LassoApp as http://example.com/lasso9/mycontacts which will serve the “in-
dex.lasso” file.

33.3 Serving Content

Serving simple content such as images or raw text and HTML is as simple as putting the file into the LassoApp root directory.
As long as the file has the appropriate file extension (e.g. “.jpg”, “.txt”, “.html”) then it will be served as expected. Files with a
extension other than “.lasso”, “.lasso9” or “.inc” will be served as plain data, meaning they will not be parsed, compiled and
executed by Lasso Server.

33.3.1 Serving Processed Content

Processed content is any data produced programmatically by executing Lasso source code files. Such data can be generated
wholly by Lasso code, or partially by embedding Lasso code in HTML or other types of templates. This type of content must
reside in a file with an extension of “.lasso”, “.lasso9” or “.inc”.

The outgoing content type of processed content is very important. The content type determines any modifications or special
handling that the data will receive before it is ultimately converted into a stream of bytes and sent to the client. By default,
the content type for a “*.lasso” file is text/html. Lasso Server will automatically set the outgoing content type accordingly. A
file will be given the default content type when accessed via a URL with either no extension, a “.html” extension or a “.lasso”
extension. For example, requests for the following URLs:

33.3. Serving Content 339



LassoGuide, Release 9.3

http://localhost/lasso9/AddressBook/users
http://localhost/lasso9/AddressBook/users.html
http://localhost/lasso9/AddressBook/users.lasso

will, assuming the standard Lasso Server web server configuration, be mapped to these files in the LassoApp and served with
the content type text/html:

/AddressBook/users.html
/AddressBook/users.html
/AddressBook/users.lasso

33.3.2 Explicit Content Types

The outgoing content type for a source file can be specified in the file’s name by placing the content type’s file extension
between square brackets. These files will be executed and the resulting value will be returned to the client using the specified
content type. The following shows some valid file names:

/AddressBook/users[html].lasso
/AddressBook/users[xml].lasso
/AddressBook/users[rss].lasso
/AddressBook/users[xhr].lasso

The files shown above will expose the following URLs:

http://localhost/lasso9/AddressBook/users.html
http://localhost/lasso9/AddressBook/users.xml
http://localhost/lasso9/AddressBook/users.rss
http://localhost/lasso9/AddressBook/users.xhr

Tip: A filename with an explicit content type overrides a file with a plain extension. For example, a request for
http://localhost/lasso9/AddressBook/users or http://localhost/lasso9/AddressBook/users.html will be mapped to /AddressBook/
users[html].lasso if it exists, and then fall back on /AddressBook/users.html.

33.3.3 Primary and Secondary Processing

Explicit content types can be used jointly with a similarly named regular “*.lasso” file. In this situation, first the primary file is
executed and then its value is made available to the secondary file as it is executed. The primary file is always executed. Only
then would the secondary file, which corresponds to the requested content type, be executed.

/AddressBook/users.lasso - primary content
/AddressBook/users[html].lasso - secondary
/AddressBook/users[xml].lasso - secondary
/AddressBook/users[rss].lasso - secondary
/AddressBook/users[xhr].lasso - secondary

Given the files shown above, if the URL http://example.com/lasso9/AddressBook/users.html was accessed, first the file
“users.lasso” would be executed, and then the file “users[html].lasso” would be executed. The value produced by the first
would be made available to the second. This technique is used to separate the object produced by the primary file from its
display, which is handled by the secondary file.

In this scenario, the file “users.lasso” could return an array of all the users in the address book. That list of users might need to
be presented to the client in a variety of formats, like HTML, XML, or RSS. The primary file “users.lasso” is concerned only with
producing the array of users. The secondary files each handle presenting that array in the desired format.

340 Chapter 33. LassoApps



LassoGuide, Release 9.3

Since primary files usually return structured data, it is generally required to return the value using a return statement. How-
ever, primary files that simply need to return string data can do so without a return statement by surrounding the code with
Lasso delimiters, which will cause the auto-collected value generated by executing that file to be returned. In such cases, the
delimiter must be first visible character in the file; otherwise Lasso Server will treat the entire file as executable code.

The following examples show a series of files that produce and format a list of users for both HTML and XML display. The list is
generated first by the “users.lasso” file, then that list is processed by the “users[html].lasso” and “users[xml].lasso” files.

users.lasso

// Note: Usually the type definition would be in an _init file
define user => type {

data
public firstname::string,
public middleName::string,
public lastname::string

public oncreate(firstname::string, lastname::string) => {
.firstname = #firstname
.lastname = #lastname

}
public oncreate(firstname::string, middle::string, lastname::string) => {

.firstname = #firstname

.middlename = #middle

.lastname = #lastname
}

}

// Return an array of users
return array(user('Stephen', 'J', 'Gould'),

user('Francis', 'Crick'),
user('Massimo', 'Pigliucci'))

users[html].lasso

<html>
<title>Users List</title>
<body>
<table>

<tr><th>First Name</th><th>Middle Name</th><th>Last Name</th></tr>
<?lasso

// The primary value is given to us as the first parameter
local(users) = #1

// Start outputting HTML for each user
with user in #users
do {^

'<tr><td>' + #user->firstName + '</td>
<td>' + #user->middleName + '</td>
<td>' + #user->lastName + '</td>

</tr>'
^}

?>
</table>

33.3. Serving Content 341



LassoGuide, Release 9.3

</body>
</html>

users[xml].lasso

<userslist>
<?lasso

// The primary value is given to us as the first parameter
local(users) = #1

// Start outputting XML for each user
with user in #users
do {^

'<user><firstname>' + #user->firstName + '</firstname>
<middlename>' + #user->middleName + '</middlename>
<lastname>' + #user->lastName + '</lastname>

</user>'
^}

?>
</userslist>

Pass Multiple Values from Primary to Secondary

To pass multiple values from primary to secondary processors, use a staticarray as a return from the primary:

// Return from primary processor
return (:

'hello world',
array(

user('Stephen', 'J', 'Gould'),
user('Francis', 'Crick'),
user('Massimo', 'Pigliucci')

)
)

The following sets local variables to the returned values from the primary processor, in the order they are specified. The number
of local variables being set must match the number of elements in the returned staticarray. (See the section Decompositional
Assignment in the Variables chapter.)

local(txt, users) = #1

33.4 Special Files

Using the naming conventions below, a LassoApp can be made to install or load files as needed.

33.4.1 Customizing Installation

One or more specially named files can be placed in the root level of a LassoApp directory to be executed the first time a
LassoApp is loaded into Lasso Server. These files are named beginning with “_install.” followed by any additional naming

342 Chapter 33. LassoApps



LassoGuide, Release 9.3

characters and ending with a “.lasso” extension. The simplest install file could be named “_install.lasso”. For example, an install
file for performing a specific task, such as creating database required by the app, could be named “_install.create_dbs.lasso”.

Lasso Server will record the first time a particular install file is run. That file will not be executed again, even when the instance
restarts. Only install files at the root of the LassoApp are executed.

33.4.2 Customizing Initialization

LassoApps can contain a special set of files that are executed every time the LassoApp is loaded. This loading occurs whenever
Lasso Server starts up. These files are named beginning with “_init.” followed by any additional naming characters and ending
with “.lasso”. The file “_init.lasso” is the simplest valid init file name. Only initialization files at the root of the LassoApp are
executed.

Initialization files are used to define types, traits, and methods used within the application. This includes the definition of a
thread object that can synchronize aspects of the application, hold globally shared data, or perform periodic tasks.

During the normal operation of an application, definitions should be avoided. Redefining a method can have an impact on
performance and memory usage, potentially leading to bottlenecks in your application. However, during application develop-
ment redefining a method is a common occurrence while source code is frequently modified. In this case, definitions can be
placed in non-init files (i.e., a regular file) and included in the _init files using lassoApp_include. This allows the definition
be loaded at startup while also letting the developer execute the file “manually” as it is updated during development.

33.4.3 Ignored Files

When serving a LassoApp, Lasso Server will ignore certain file paths based on their names. Although they can be included
in a LassoApp, Lasso will not serve or process files or directories whose names begin with a period (.), hyphen (-), or two
underscores (__). All other file names are permitted without restriction.

33.5 LassoApp Links

Use the lassoApp_link or lassoApp_include methods to link between resources in a LassoApp.

33.5.1 Internal Links

When creating a LassoApp, it is important not to hard-code paths to files within the app. Because the files within a LassoApp
are not real files, Lasso Server will alter paths used in HTML links to be able to access the file data. The lassoApp_linkmethod
must be used for all intra-app file links.

lassoApp_link(path::string)
Use this method to make links to files that are internal to a LassoApp. A LassoApp is compiled out of all the files within a
folder. Any links between files within that code must be made using lassoApp_link, including links in HTML anchor
tags (<a>), image tags (<img src="...">), and form actions.

To illustrate, consider a LassoApp that contains an image file called “icon.png” within an “images” subdirectory. In order to
display the image, the lassoApp_link method would alter the path, at runtime, to point to the true location of the file data.
The following shows how lassoApp_link would be used to display the image. This example assumes that the link is being
embedded in an HTML <img> tag:

<img src="<?= lassoApp_link('/images/icon.png') ?>" />

The path that gets inserted into the HTML document will vary depending on the system’s configuration, but the end result
would be the same: the image would be displayed.

33.5. LassoApp Links 343



LassoGuide, Release 9.3

In the context of our “AddressBook” LassoApp from earlier in the chapter, using a default server configuration, the link above
would be “/lasso9/AddressBook/images/icon.png”.

ThelassoApp_linkmethod must be used whenever a path to a file within the app is needed. Behind the scenes, Lasso Server
will alter the path so that it points to the right location. However, lassoApp_link only operates on paths to files within the
current LassoApp. That is, lassoApp_link does not work with paths to files in other LassoApps running on the same system.

33.5.2 LassoApp Includes

It is possible to directly access, or include, a LassoApp node given its path. This can pull in file data within the current LassoApp
as well as other LassoApps running on the system. This technique can be used to assemble a result page based on multiple
files working together.

lassoApp_include(path::string)

lassoApp_include(path::string, as::string, extra=?)

lassoApp_include_current(path::string, extra=?)
Includes content from the LassoApp node specified in the path parameter. The default is to determine the content
type by the extension of the node, but the second method allows specifying the extension to use.

The first two methods allow specifying a node in any LassoApp, where the root of their path is the top level for all
LassoApps. The last method lassoApp_include_current has its root set to the current LassoApp.

To include a LassoApp file from a Lasso file external to the LassoApp, the lassoApp_include method is used. This method
requires one string parameter for the path to the file to include. This path does not need to be altered via the lassoApp_link
method. However, the path should be a full path to the file starting with the name of the LassoApp that contains the file.
Additionally, lassoApp_include takes content representations into account. Therefore, if the HTML representation of a file
is desired, the file path should include the “.html” extension.

For example, a LassoApp result page could consist of pulling in two other LassoApp files. Earlier in this chapter, several files
were described representing a users list. These files represented the users list in several formats, particularly XML and HTML.
Combined with a groups list, an opening page from the hypothetical AddressBook LassoApp could look as follows:

<html>
<head><title>Title</title></head>
<body>

Users list:
<?= lassoApp_include('/AddressBook/users.html') ?>
Groups list:
<?= lassoApp_include('/AddressBook/groups.html') ?>

</body>
</html>

A lassoApp_include can pull in any of the content representations for a file, including the primary content. If the raw user
list (as shown earlier in this chapter) were desired, the lassoApp_include method would be used, but the “.lasso” extension
would be given in the file path instead of the “.html” extension. Because of this, the return type of the lassoApp_include
method may vary. It may be plain string data, bytes data from such as an image, or any other type of object.

The following example includes the users list and assigns it to a variable. It then prints a message pertaining to how many
users exist. This illustrates how the result of lassoApp_include is not just character data, but is whatever type of data the
LassoApp file represents. In this case, it is an array.

local(usersList) = lassoApp_include('/AddressBook/users.lasso')
'There are: ' + #usersList->size + ' users'

344 Chapter 33. LassoApps



LassoGuide, Release 9.3

33.6 Packaging and Deploying LassoApps

A LassoApp can be packaged in one of three ways: as a directory of files, as a zipped directory, and as a compiled
platform-specific binary. Each method has its own benefits. Developers can choose the packaging mechanism most suitable
to their needs.

33.6.1 As a Directory

The first method is as a directory containing the application’s files. This is the simplest method, requiring no extra work by
the developer. The same directory used during development of the LassoApp can be moved to another machine running
Lasso Server and run as-is. Of course, when using this method, the user has access to all the source code for the application.
Generally, this packaging method would be used by an in-house application where source code availability is not a concern
and the LassoApp is installed manually on a server by copying the LassoApp directory.

33.6.2 As a Zip File

The second method is to zip the LassoApp directory. This produces a single zip file that can be installed on a Lasso Server
instance. Lasso Server will handle unzipping the file in-memory and serving its contents. LassoApps zipped in this manner
provide easy downloading and distribution while still making the source code for the application accessible. Zipped LassoApps
must have a “.zip” file extension.

Developers should verify that a LassoApp directory is zipped properly. Specifically, Lasso requires that all of the files and folders
inside the LassoApp directory be zipped and not the LassoApp directory itself. On UNIX-based platforms (OS X or Linux) the
zip command-line tool can create zipped LassoApps. To accomplish this, a developer would cd into the LassoApp directory
and issue the zip command. Assuming a LassoApp name of “AddressBook”, the following command would be used.

$> zip -qr ../AddressBook.zip *

The above would zip the files and folders within the AddressBook directory and create a file named “AddressBook.zip” at the
same level as the “AddressBook” directory. The “r” option instructs zip to recursively compress all subdirectories, while the “q”
option simply causes zip to do its job quietly (by default, zip outputs verbose information on its activities).

33.6.3 As a Compiled Binary

Using the lassoc tool, included with Lasso Server, a developer can compile a LassoApp directory into a single distributable
file. LassoApps packaged in this manner will have the file extension “.lassoapp”. Packaging in this manner provides the greatest
security for one’s source code because the source code is not included in the package and is not recoverable by the end user.

Compiled binary LassoApps are platform-specific. Because these LassoApps are compiled to native OS-specific executable
code, a binary compiled for OS X, for example, will not run on Linux.

Both lassoc and the freely available gcc compiler tools are required to compile a binary LassoApp. Several steps are involved
in this task. However, a “makefile” can be used which simplifies this process on Linux and OS X. To use this example makefile51 ,
copy the file into the same location as the LassoApp directory. Then, on the command line, type:

$> make DirectoryName.lassoapp

Replace “DirectoryName” with the name of the LassoApp directory in the above command. The resulting file will have a “.las-
soapp” extension and can be placed in the “LassoApps” directory. Lasso Server will load the LassoApp once it is restarted.

For information on compiling without using a makefile or on Windows, see the section Compiling Lasso Code in the
Command-Line Tools chapter.

51 http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/makefile

33.6. Packaging and Deploying LassoApps 345

http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/makefile


LassoGuide, Release 9.3

Installing the GCC compiler

On OS X, either:

• Install and open Xcode, then go to Preferences → Downloads → Components → Command Line Tools, and click Install.

• Or, install the Command Line Tools package directly from https://developer.apple.com/download/more/ (Apple ID re-
quired).

On CentOS:

• run sudo yum install make on the command line. This will install all required dependencies including gcc.

On Ubuntu:

• run sudo apt-get install make on the command line. As with CentOS this will install all required dependencies.

33.6.4 Platform-Specific Considerations

It is important to note that the target for each compiled LassoApp is specific to that which it is compiled on. If your develop-
ment platform is OS X and you wish to deploy your compiled LassoApp on 64-bit CentOS, you must compile the LassoApp
on a 64-bit CentOS machine. The same issue exists for 32-bit vs. 64-bit architectures on the same distribution. A LassoApp
compiled for 32-bit Ubuntu will not run on 64-bit Ubuntu.

33.7 Server Configuration

Although LassoApps are available through the path /lasso9/AppName/, it is often desirable to dedicate a site to serving a
single LassoApp. This can be accomplished by having the web server set an environment variable for Lasso to indicate which
LassoApp the website is serving. The environment variable is named LASSOSERVER_APP_PREFIX. Its value should be the
path to the root of the LassoApp. For example, if a site were dedicated to serving the Lasso Server Admin app, the value for
the LASSOSERVER_APP_PREFIX variable would be “/lasso9/admin”. Having the variable set in this manner would cause all
lassoApp_link paths to be prefixed with “/lasso9/admin”.

The LASSOSERVER_APP_PREFIX variable is used along with other web server configuration directives to provide transparent
serving of a LassoApp. The following example for the Apache 2 web server illustrates how the Lasso Server Admin app would
be served out of a virtual host named “admin.local”.

<VirtualHost *:80>
ServerName admin.local
ScriptAliasMatch ^(.*)$ /lasso9/admin$1
RewriteEngine on
RewriteRule ^ - [E=LASSOSERVER_APP_PREFIX:/lasso9/admin]

</VirtualHost>

Consult your web server’s documentation for further information.

33.8 LassoApp Tips

33.8.1 Loading Required Types/Traits/Methods at Initialization

It is a good habit to load all types and methods required by the LassoApp at the time Lasso Server loads it. This can be achieved
by using “_init.lasso”:

346 Chapter 33. LassoApps

https://developer.apple.com/download/more/


LassoGuide, Release 9.3

_init.lasso

// Load traits
lassoApp_include('core/traits/mytrait.lasso')
lassoApp_include('core/traits/anothertrait.lasso')

// Load types
local(coretypes) = array('my_usertype', 'my_addresstype', 'my_companytype')
with i in #coretypes
do lassoApp_include('core/types-methods/' + #i + '.lasso')

This will load the specified traits and types at the time the LassoApp is loaded. All documents in the LassoApp can then
assume these types exist. Note that these types can later be redefined individually by accessing the URL directly; in this case,
at http://example.com/lasso9/myLassoApp/core/types-methods/my_usertype.lasso.

33.8.2 Creating Required SQLite Database on Installation

It is often desirable to keep configuration data for your LassoApp in a database rather than a local config file. One method of
storing this is to leverage Lasso Server’s embedded SQLite data source.

The following code demonstrates automatically creating a SQLite database whenever the LassoApp is installed on a new
instance:

_install.lasso

define myLassoApp_sqlite_dbname => 'myLassoApp_db'
define myLassoApp_sqlite_db => sys_databasesPath + myLassoApp_sqlite_dbname
define myLassoApp_config_table => 'config'

local(sql) = sqlite_db(myLassoApp_sqlite_db)

#sql->doWithClose => {
#sql->executeNow(

"CREATE TABLE IF NOT EXISTS " + myLassoApp_config_table +
" (host PRIMARY KEY, dbname, username, pwd, status INTEGER, registerkey);"

)
}

The code within “_install.lasso” will only ever be executed when this LassoApp is first placed in the “LassoApps” directory of an
instance and the instance is restarted.

33.8.3 Serving JSON and XHR Files

Content Representation can be leveraged to provide a range of data formats. One of these is XHR (XMLHttpRequest), also
known as AJAX (Asynchronous JavaScript and XML), which in most cases will use a GET request to send data to the server,
e.g. http://example.com/lasso9/myLassoapp/userdata.xhr?id=123.

While discussions directly regarding AJAX, jQuery, XHR, REST, XML, and JSON are outside the scope of this chapter, XHR re-
sponse data can be in various forms, including JSON, which we will use for this example.

Consider the following JavaScript (using jQuery):

33.8. LassoApp Tips 347



LassoGuide, Release 9.3

var dataObj = new Object;
dataObj.id = $('#userid').val();
$.ajax({

url: '/lasso9/myLassoapp/userdata.xhr',
data: dataObj,
async: true,
type: 'post',
cache: false,
dataType: 'json',
success: function(xhr) {

alert('User name: ' + xhr.firstname + ' ' + xhr.lastname);
}

});

The XHR request is for “userdata.xhr”, which Lasso Server will interpret as a request for “userdata[xhr].lasso” and serve as an XHR
file with the correct MIME type.

userdata[xhr].lasso

local(id) = integer(web_request->param('id')->asString)
local(mydata) = map
inline(

-database='example',
-sql="SELECT firstname, lastname FROM mytable WHERE id = " + #id + " LIMIT 1;"

) => {
records => {

#mydata->insert('firstname' = field('firstname')->asString)
#mydata->insert('lastname' = field('lastname')->asString)

}
}
local(xout) = json_serialize(#mydata)
#xout

348 Chapter 33. LassoApps



Chapter 34

Command-Line Tools

The Lasso platform comes with various command-line tools to assist you. Lasso uses some of these tools to create and start
the instances of Lasso that run on the web server. This chapter will contain an overview of those tools and describe how to
run them yourself.

34.1 lassoserver

The lassoserver executable is installed at /usr/sbin/lassoserver on Linux operating systems, at /
usr/local/lasso/lassoserver on OS X, and at C:\Program Files\LassoSoft\Lasso Instance Man-
ager\home\LassoExecutables\lassoserver on Windows. This program creates a FastCGI server that interfaces
with web servers to process Lasso files in response to web requests. Each instance of Lasso has its own lassoserver process
running a FastCGI server. Additionally, the lassoserver executable can start up an HTTP server instead of a FastCGI server. As
an HTTP server, it can serve both static files and Lasso files. This is useful for local development, though you should run a
production web server (such as Apache) on any production servers.

The following is the list of options for running lassoserver:

-p <tcp_listen_port>
Set the port that either the FastCGI or HTTP server binds on. This option is ignored if you choose to create a FastCGI
socket.

Default is 8999.

-addr <tcp_bind_address>
Set the IP address to bind to when running as either a FastCGI or HTTP server. This option is ignored if you choose to
create a FastCGI socket.

Default is 0.0.0.0, which will bind to all IPs associated with your machine.

-fproxy <fcgi_proxy_socket>
Specify the path to create a socket for FastCGI proxy requests to be sent to. This path will be relative to LASSO9_HOME
unless you start the path with two slashes.

Default is to not create this socket.

-flisten <fcgi_listen_socket>
Specify the path to create a socket for FastCGI requests to be sent to. This path is always relative to LASSO9_HOME.

Default is to not create this socket.

-user <user>
Specifies the OS user to run lassoserver as. In order for this to be effective, you must be running lassoserver with root
privileges.

Default is to run as the user invoking lassoserver.

-group <group>
Specify the OS group to run lassoserver as. In order for this to be effective, you must be running lassoserver with root
privileges.

349



LassoGuide, Release 9.3

Default is to run as the primary group of the user invoking lassoserver.

-httproot <path>
This option tells lassoserver to start an HTTP server instead of a FastCGI server and to use the path specified as the web
root. This option will be ignored if either -fproxy or -flisten is specified.

Default is to not start up as an HTTP server.

-scriptextensions <ext1[;ext2] ... >
Identify which file extensions should be considered Lasso files. This option is used in conjunction with -httproot to
tell the HTTP server which files should be processed as Lasso code. Note that multiple extensions are delimited by
semicolons.

Default is to not treat any files as Lasso code.

-addapp <path>
This option specifies a path to a LassoApp that is to be installed when lassoserver starts up. This allows including Las-
soApps that are outside the LassoApp directory in your instance home directory. This option can be specified multiple
times with different paths and all specified LassoApps will be installed.

Default is to not install any additional LassoApps.

34.1.1 Starting lassoserver

To start lassoserver as a FastCGI server listening on port 9000:

$> lassoserver -p 9000

To start lassoserver as a FastCGI server listening on a socket at “$LASSO9_HOME/lasso.sock”:

$> lassoserver -flisten lasso.sock

To start lassoserver as a FastCGI proxy server listening on a socket at “/tmp/lasso.sock”:

$> lassoserver -fproxy //tmp/lasso.sock

To start lassoserver as an HTTP server that processes “*.lasso” and “*.inc” files as Lasso code:

$> lassoserver -httproot /path/to/webroot -scriptextensions "lasso;inc"

34.2 lassoim(d)

The lassoim(d) executable is installed at /usr/sbin/lassoimd on Linux operating systems, at /
usr/local/lasso/lassoim on OS X, and at C:\Program Files\LassoSoft\Lasso Instance Man-
ager\home\LassoExecutables\lassoim on Windows. This program creates the FastCGI server that runs Lasso’s
Instance Manager web application. It also makes sure that all enabled instances are running.

To manually start lassoim(d), just call it from the command line. (It ignores any arguments passed to it.)

$> lassoim

When running this executable, it is important to set the LASSO9_HOME environment variable to a path of a directory containing
all the built-in Lasso libraries. By default, this should be /var/lasso/home on OS X and Linux operating systems.

350 Chapter 34. Command-Line Tools



LassoGuide, Release 9.3

34.3 lasso9

The lasso9 executable is installed at /usr/bin/lasso9 on Linux operating systems, at /usr/local/lasso/lasso9 on OS
X, and at C:\Program Files\LassoSoft\Lasso Instance Manager\home\LassoExecutables\lasso9on Windows.
This program can execute Lasso code from a file, piped from STDIN, passed in as a string, or inside an interactive interpreter.
This executable doesn’t load and start up everything that lassoserver does. See the section Loading Libraries in Shell Scripts
for what isn’t loaded and how to load the extra components if you need them.

To execute a file of Lasso code, pass the path to the file as the argument to lasso9. For example:

$> lasso9 /path/to/code.lasso

-s <code>
Use -s to execute the string passed to lasso9 as Lasso code:

$> lasso9 -s "lasso_version"

--
Use -- to execute Lasso code from STDIN:

$> echo 'lasso_version' | lasso9 --

-i
Use -i to execute Lasso code interactively. When you do this a new prompt will appear (>:), and what you type there
will be processed as Lasso code when you hit return. You can also paste small amounts of multi-line code into the
prompt; just be sure to hit return right after pasting so that the last line of code will be included. When finished, type
Control-C to exit.

$> lasso9 -i
>: lasso_version
Mac OS X 9.3
>: loop(3) => { stdoutnl(loop_count) }
1
2
3

Note: Each chunk of code is processed as if it were a separate file, so local variables processed in one chunk are unavailable to
future chunks. You’ll either need to copy and paste multi-line code, or use thread variables.

For more details, see the section Calling Lasso from the CLI in the Calling Lasso chapter.

34.4 lassoc

The lassoc executable is installed at /usr/bin/lassoc on Linux operating systems, at /usr/local/lasso/lassoc on OS
X, and at C:\Program Files\LassoSoft\Lasso Instance Manager\home\LassoExecutables\lassocon Windows.
This program is used to compile LassoApps, Lasso libraries, and Lasso executables. See the sectionCompilingLassoCodebelow
for more information.

34.3. lasso9 351



LassoGuide, Release 9.3

34.5 Special Environment Variables

There are several environment variables that have various effects on running lasso9, lassoserver, or custom Lasso exe-
cutables. The following lists the variables and a description of their function:

LASSO9_HOME
This variable is set to the path of a directory containing either the instance-specific libraries and startup items, or to a
path containing all of the Lasso built-in libraries. If set to an instance-specific home directory, be sure to also set the
LASSO9_MASTER_HOME variable.

Default is /var/lasso/home for OS X and Linux.

LASSO9_MASTER_HOME
This variable must be set to a directory containing all the built-in Lasso libraries if the LASSO9_HOME variable is set to an
instance-specific home directory.

Default is not set.

LASSO9_PRINT_FAILURES
This variable can be set to an integer specifying how verbose a Lasso executable should be in its error reporting. Setting
it to “1” outputs the most information, with larger integer values making it less verbose.

Default is not set, which is the least verbose.

LASSO9_RETAIN_COMMENTS
If this variable is set to “1”, Lasso will retain any doc comments in the code it loads, allowing you to programmatically
view and process these comments.

Default is not set.

LASSO9_PRINT_LIB_LOADS
If this variable is set to “1”, Lasso will print diagnostic information to STDOUT regarding the on-demand libraries that it
loads. This can be useful when debugging your own on-demand Lasso libraries.

Default is not set.

LASSOSERVER_APP_PREFIX
If this variable is set by the web server, lassoserver will assume the host is dedicated to serving a single LassoApp, and
will prepend this path to all lassoApp_link paths. For details and an example, see the section Server Configuration in
the LassoApps chapter.

Default is not set.

LASSOSERVER_DOCUMENT_ROOT
If this variable is set by the web server, lassoserver will use this path instead of the standard DOCUMENT_ROOT to serve
files from. This can be useful when using Apache’s VirtualDocumentRoot or UserDir features. In the example be-
low, Apache will serve any of the folder names in “/srv/lasso/sites/” as virtual hosts, and Lasso will use the value of
LASSOSERVER_DOCUMENT_ROOT as each host’s document root.

<VirtualHost *:80>
ServerName admin.local
VirtualDocumentRoot "/srv/lasso/sites/%1"
RewriteEngine on
RewriteRule ^ - [E=LASSOSERVER_DOCUMENT_ROOT:/srv/lasso/sites/%{HTTP_HOST}]

</VirtualHost>

Default is not set.

LASSOSERVER_FASTCGIPORT
Set the port that the FastCGI server binds on. Same as specifying the -p option.

352 Chapter 34. Command-Line Tools



LassoGuide, Release 9.3

LASSOSERVER_USER
Specifies the OS user to run lassoserver as. Same as specifying the -user option.

LASSOSERVER_GROUP
Specifies the OS group to run lassoserver as. Same as specifying the -group option.

34.6 Lasso Shell Scripts on OS X and Linux

While most developers use Lasso to create dynamic websites, you can also write Lasso code that can be run from the command
line to assist you in administrative or repetitive tasks. These files that run from the command line are often called shell scripts
since you run them from your terminal’s shell.

34.6.1 Running Scripts

There are two ways to run a file containing Lasso code from the command line:

• Pass the path of the file to the lasso9 executable:

$> lasso9 /path/to/code.lasso

• Make sure the file has execute permissions turned on and that it starts with the proper hashbang, then call the file
directly:

$> /path/to/code.lasso

This second option requires having the file’s executable permissions set. You can do this in OS X or Linux with the chmod
command:

$> chmod +x /path/to/code.lasso

Calling the file directly also requires that the file contain the proper hashbang, which tells your shell which interpreter to use
when executing the file. It must be the first line of the file and it starts with the pound sign and an exclamation mark followed
by the path to the interpreter. For Lasso code, it should look like this:

#!/usr/bin/env lasso9

If you have a custom installation of Lasso, adjust the path to the lasso9 executable accordingly.

34.6.2 Reading Command-Line Arguments

When running Lasso shell scripts, Lasso provides two special thread variables for inspecting the command that was run and
the arguments that were passed to it: “argc” and “argv”. The “argc” variable returns the number of arguments, including the
command. The “argv” variable returns a staticarray in which the first element is the command and the remaining elements are
the arguments passed to the command.

The following example outputs the values of $argc and $argv when the script is run using the lasso9 tool. The contents of
the file “/path/to/code.lasso” are:

stdoutnl($argc)
stdoutnl($argv)

Here’s what happens when you run the code:

34.6. Lasso Shell Scripts on OS X and Linux 353



LassoGuide, Release 9.3

$> lasso9 /path/to/code.lasso -moose hair
3
staticarray(/path/to/code.lasso, -moose, hair)

The following example shows the values of $argc and $argv when the script is run directly. The contents of the file
“/path/to/code.lasso” are:

#!/usr/bin/env lasso9
stdoutnl($argc)
stdoutnl($argv)

Here’s what happens when you run the script directly:

$> /path/to/code.lasso -moose hair
3
staticarray(/path/to/code.lasso, -moose, hair)

As you can see, calling the script with lasso9 produces the same result as calling the script directly, so you don’t ever need to
worry about the first element in $argv being “lasso9”.

Using these two thread variables, you can create scripts whose behavior changes when different arguments are passed to
them. In fact, the lasso9 executable itself is a Lasso shell script (source52), written in Lasso and compiled into a binary.

34.7 Loading Libraries in Shell Scripts

Lasso shell scripts are not run in the lassoserver context. This means that various libraries and tools that lassoserver loads
are not loaded or available by default when your script runs. Although all the core libraries are available, the LCAPI modules,
LJAPI modules, logging system, email queue, security registry, web request and response environment, LassoApps, and files in
“LassoStartup” are not loaded. This is actually beneficial since your script would otherwise take as long as lassoserver to start
up before getting to running your code. If you find you need something that isn’t loaded, you can load it yourself. The sections
below will show you how.

34.7.1 Load All Database and LCAPI Modules

If you want to have access to all database connectors and to all the LCAPI modules such as the ImageMagick methods or the
os_process type, you can load them all with the database_initialize method:

#!/usr/bin/env lasso9
database_initialize

34.7.2 Load Specific LCAPI Modules

If you want, you can just load individual LCAPI modules. The following example loads just the MySQL database connector:

#!/usr/bin/env lasso9
// If LASSO9_MASTER_HOME is specified, find module there
// Otherwise, find it in the LASSO9_HOME path
lcapi_loadModule((sys_masterHomePath || sys_homePath) + '/LassoModules/MySQLConnector.' + sys_dll_ext)

52 http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/lasso9.lasso

354 Chapter 34. Command-Line Tools

http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/lasso9.lasso


LassoGuide, Release 9.3

34.7.3 Set Up the LJAPI Environment

To create the JVM and set up the LJAPI environment, you must first load the LJAPI9 LCAPI module and then call the
ljapi_initialize method:

#!/usr/bin/env lasso9
match(lasso_version(-lassoplatform)) => {

case('Linux')
lcapi_loadModule((sys_masterHomePath || sys_homePath) + '/LassoModules/LJAPI9.so')

case('Mac OS X')
lcapi_loadModule((sys_masterHomePath || sys_homePath) + '/LassoModules/LJAPI9.dylib')

// Fail if unknown OS
case

fail('Unknown platform')
}

ljapi_initialize

34.7.4 Load a LassoApp

LassoApps have the ability to run or load code when they are initialized. Often this code adds methods, types, or traits that
you may want available in your Lasso shell scripts. The code below contains three examples of loading up LassoApps: one for
compiled LassoApps, one for zipped LassoApps, and one for a LassoApp directory.

#!/usr/bin/env lasso9
// Load a compiled LassoApp from LASSO9_MASTER_HOME if specified
// Otherwise, load it from LASSO9_HOME
lassoapp_installer->install(

lassoapp_compiledsrc_appsource(
(sys_masterHomePath || sys_homePath) +
'/LassoApps/example.lassoapp'

)
)

// Load a zipped LassoApp from LASSO9_HOME
lassoapp_installer->install(

lassoapp_zipsrc_appsource(sys_appsPath + 'example.zip')
)

// Load a LassoApp from the specified directory
lassoapp_installer->install(

lassoapp_dirsrc_appsource('//path/to/example/')
)

34.7.5 Include Another File with Lasso Code

To run Lasso code in another file from your script, include that file using the sourcefile type. The following example has
“/path/to/code.lasso” running the code from “/path/to/doc.lasso”:

// Contents of /path/to/code.lasso
local(doc) = sourcefile(file('//path/to/doc.lasso'))
stdoutnl("Calling " + #doc->filename + "...")
#doc->invoke
stdoutnl("This is heavy.")

34.7. Loading Libraries in Shell Scripts 355



LassoGuide, Release 9.3

// Contents of /path/to/doc.lasso
stdoutnl("Great Scott!")

Here’s what happens when you run “/path/to/code.lasso”:

$> lasso9 /path/to/code.lasso
Calling //path/to/doc.lasso...
Great Scott!
This is heavy.

34.7.6 Include Another File Relative to the Script

Sometimes it’s helpful to have the script you are running able to include a file that is relative to the script. If you pass a relative
path to the file type, it will expect the file you are trying to reference to be included relative from your shell’s current working
directory. To get around this, you must have the current script figure out the absolute path to its parent directory so you can
append the relative path. The following code does just that:

#!/usr/bin/env lasso9
// Contents of /path/to/project/sub1/code.lasso

// This should let us run this file anywhere and still properly import relative files
local(path_here) = currentCapture->callsite_file->stripLastComponent
not #path_here->beginsWith('/') ?

#path_here = io_file_getcwd + '/' + #path_here
not #path_here->endsWith('/') ?

#path_here->append('/')
local(f) = file(#path_here + '../sub2/code.lasso')

stdoutnl("Loading ../sub2/code.lasso")
sourcefile(#f)->invoke
stdoutnl("Done.")

// Contents of /path/to/project/sub2/code.lasso
stdoutnl("I am a relative include.")

Here’s what happens when you run “/path/to/project/sub1/code.lasso”:

$> /path/to/project/sub1/code.lasso
Loading ../sub2/code.lasso
I am a relative include.
Done

34.7.7 Change the Working Directory

Occasionally you may find it helpful to change the directory context your script is running in. You can use the dir->setcwd
method to do so:

#!/usr/bin/env lasso9
// Contents of /path/to/code.lasso

stdoutnl("We are here: " + io_file_getcwd)
dir('/etc/')->setcwd
stdoutnl("Now we are here: " + io_file_getcwd)

356 Chapter 34. Command-Line Tools



LassoGuide, Release 9.3

Here’s what happens when you run this file:

$> cd /path/to/
$> lasso9 ./code.lasso
We are here: /path/to
Now we are here: /etc

34.7.8 Read and Set Environment Variables

Lasso can read and set shell environment variables using sys_getEnv and sys_setEnv respectively. The following example
adds a directory to the “PATH” environment variable for the script:

#!/usr/bin/env lasso9
// Contents of /path/to/code.lasso

// Ignore the return value of sys_setEnv
local(_) = sys_setEnv(`PATH`, `/var/lasso/home/bin:` + sys_getEnv(`PATH`))
stdoutnl(sys_getEnv(`PATH`))

Here’s what happens when you run this script:

$> /path/to/code.lasso
/var/lasso/home/bin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

34.8 Compiling Lasso Code

All Lasso code is compiled before it is executed. Whether the code is a Lasso page being served by Lasso Server or a script
being run by the lasso9 command-line tool, behind the scenes Lasso compiles the code and then executes the compiled
code. (Lasso does cache the compiled code for re-use, but that is beyond the scope of this section.)

There are certain cases where it is advantageous to compile the Lasso code ahead of time. The Lasso platform comes with the
lassoc command-line tool which aids in compiling LassoApps, Lasso libraries, and Lasso executables. Compilation can result
in faster startup times, lower memory usage, and obfuscation of the source code.

Libraries help keep memory usage down because only objects that are actually used are loaded. They also improve startup
time. Lasso can start up by only loading the very basic built-in functions and objects and then let the rest of the system load
in over time.

A special type of library called a bitcode file can also be produced, which has a “.bc” file extension. Bitcode is an LLVM-specific
format that Lasso knows how to load. Bitcode files can be shared across platforms on the same processor. For example, the
same bitcode file could be used on OS X x86 and CentOS x86. Bitcode files don’t load as fast, have about 80% larger file size and
consume more memory than library files compiled into a shared library, but they don’t require GCC and are cross-platform.

34.8.1 Prerequisites

The following must be installed to compile Lasso code:

• Lasso Server installed on a supported OS

• Your operating systems’s developer command-line tools. (Consult the documentation for your OS on how to install a
compiler, linker, etc.)

34.8. Compiling Lasso Code 357



LassoGuide, Release 9.3

• For OS X, you will also need the 10.5 SDK libraries in order to create binaries that are compatible with all supported
versions of OS X. See this link for unsupported help with installing older SDKs53 .

The examples below are shown running from a command-line prompt. For Windows, make sure you are running these com-
mands from the Visual Studio command prompt.

34.8.2 Compiling Executables

You can compile shell scripts into executable files. This decreases the overhead of running the script through the lasso9 tool,
and allows you to distribute your own command-line tools without distributing the source code. The examples below take a
shell script named “myscript.lasso” and compile it into the executable “myscript”.

OS X

$> lassoc -O -app -n -obj -o myscript.a.o myscript.lasso
$> gcc -o myscript myscript.a.o -isysroot /Developer/SDKs/MacOSX10.5.sdk \
-Wl,-syslibroot,/Developer/SDKs/MacOSX10.5.sdk -mmacosx-version-min=10.5 \
-macosx_version_min=10.5 -F/Library/Frameworks -framework Lasso9

Linux

$> lassoc -O -app -n -obj -o myscript.a.o myscript.lasso
$> gcc -o myscript myscript.a.o -llasso9_runtime

Windows

$> lassoc -O -app -n -obj -o myscript.obj myscript.lasso
$> link myscript.obj \
> /LIBPATH:"C:\Program Files\LassoSoft\Lasso Instance Manager\home\LassoExecutables" \
> lasso9_runtime.lib -defaultlib:libcmt

34.8.3 Compiling Libraries

You can create your own library of methods and types and then compile it into one library file for distribution. Libraries com-
piled this way go into the “LassoLibraries” directory of an instance’s LASSO9_HOME or LASSO9_MASTER_HOME directory. The
advantages of doing this instead of placing the source code in the “LassoStartup” directory are that Lasso starts faster and
consumes less memory. This is because Lasso only loads the methods and types in libraries when they are first used instead
of at startup. This makes starting an instance of Lasso Server faster as the code will be loaded when first needed, and it helps
keep memory down as only those methods and types that are actually used by the instance get loaded.

The examples below take a file named “mylibs.inc” and compile it into a dynamically loaded Lasso library.

OS X

53 http://hints.macworld.com/article.php?story=20110318050811544

358 Chapter 34. Command-Line Tools

http://hints.macworld.com/article.php?story=20110318050811544


LassoGuide, Release 9.3

$> lassoc -O -dll -n -obj -o mylibs.d.o mylibs.inc
$> gcc -dynamiclib -o mylibs.dylib mylibs.d.o -isysroot /Developer/SDKs/MacOSX10.5.sdk \
-Wl,-syslibroot,/Developer/SDKs/MacOSX10.5.sdk -mmacosx-version-min=10.5 \
-macosx_version_min=10.5 -F/Library/Frameworks -framework Lasso9

Linux

$> lassoc -O -dll -n -obj -o mylibs.d.o mylibs.inc
$> gcc -shared -o mylibs.so mylibs.d.o -llasso9_runtime

Windows

$> lassoc -O -dll -n -obj -o mylibs.obj mylibs.inc
$> link /DLL mylibs.obj /OUT:mylibs.dll \
/LIBPATH:"C:\Program Files\LassoSoft\Lasso Instance Manager\home\LassoExecutables" \
lasso9_runtime.lib -defaultlib:libcmt

34.8.4 Compiling LassoApps

LassoApps allow creation of easily deployable and distributable web applications. They are installed into the “LassoApps” di-
rectory of an instance’s LASSO9_HOME or LASSO9_MASTER_HOME directory. (See the LassoApps chapter for more information.)
Compiling them allows Lasso to start up faster and allows for distributing closed-sourced solutions.

The examples below take a folder named “myapp” and compile it into a LassoApp named “myapp.lassoapp”.

OS X

$> lassoc -O -dll -n -obj -lassoapp -o myapp.ap.o myapp/
$> gcc -dynamiclib -o myapp.lassoapp myapp.ap.o -isysroot /Developer/SDKs/MacOSX10.5.sdk \
-Wl,-syslibroot,/Developer/SDKs/MacOSX10.5.sdk -mmacosx-version-min=10.5 \
-macosx_version_min=10.5 -F/Library/Frameworks -framework Lasso9

Linux

$> lassoc -O -dll -n -obj -lassoapp -o myapp.ap.o myapp/
$> gcc -shared -o myapp.lassoapp myapp.ap.o -llasso9_runtime

Windows

$> lassoc -O -dll -n -obj -lassoapp -o myapp.lassoapp.obj myapp
$> link /DLL myapp.lassoapp.obj /OUT:myapp.lassoapp \
/LIBPATH:"C:\Program Files\LassoSoft\Lasso Instance Manager\home\LassoExecutables" \
lasso9_runtime.lib -defaultlib:libcmt

34.8. Compiling Lasso Code 359



LassoGuide, Release 9.3

34.8.5 Using Build Utilities

Instead of manually executing those commands each time you want to compile your code, it is recommended you use a build
utility like make for OS X and Linux or nmake for Windows. Both of these utilities are very powerful and you should explore their
documentation. The Lasso source tree has an example of both a make file54 and an nmake file55 which you can download and
modify to fit your solutions.

54 http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/makefile
55 http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/makefile.nmake

360 Chapter 34. Command-Line Tools

http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/makefile
http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/makefile.nmake


Part VI

External Communication

361





Chapter 35

Network Requests with Curl

Lasso provides a complete interface to the open source curl library56 . Curl transfers data with URL syntax, supporting a wide
variety of protocols such as “DICT”, “FILE”, “FTP”, “FTPS”, “Gopher”, “HTTP”, “HTTPS”, “IMAP”, “IMAPS”, “LDAP”, “LDAPS”, “POP3”,
POP3S, “RTMP”, “RTSP”, “SCP”, “SFTP”, “SMTP”, “SMTPS”, “Telnet” and “TFTP”.

Curl has built-in support for SSL certificates, HTTP POST, HTTP PUT, FTP uploading, proxies, cookies, user+password authenti-
cation, proxy tunnelling, and more.

35.1 Lasso Curl API

type curl

curl()

curl(url::string, -username::string=?, -password::string=?)
There are two curl creator methods. The first creates an empty curl object. The second takes a string representing the
URL to be eventually called, and it optionally takes a username and password to be used for authentication.

curl->url()
Returns the current URL set for the curl object.

curl->url=(s::string)
Sets the URL for the current curl object.

curl->postFields=(s::string)

curl->postFields=(b::bytes)
Sets the full data to post in an HTTP POST operation. You must make sure that the data is formatted the way you want
the server to receive it. The curl object will not convert or encode it. Most web servers will assume this data will be URL
encoded.

Use the method taking a byte stream in order to have control over the encoding of the data to be sent to the destination
server. An example of this would be sending a binary image file.

curl->contentType=(s::string)
Override the default HTTP Content-Type header by setting this value.

curl->close()
Close the current curl object.

curl->asString()
Returns the result of performing the current curl object’s action as a string. If no URL is set, it will just return an empty
string.

curl->asBytes()
Returns the result of performing the current curl object’s action as bytes.

curl->done()
Returns “true” or “false”, indicating the completion state of the current curl operation.

56 https://curl.haxx.se/

363

https://curl.haxx.se/


LassoGuide, Release 9.3

curl->get(key)
Request internal information from the curl session. The key should be one of the CURLINFO_… methods.

curl->set(key, value)
Used to set specific curl option behavior. The key should be one of the CURLOPT_… methods. These options and
appropriate values can be reviewed in the curl documentation57 .

curl->header()
Returns the header data as a bytes object for the current curl request.

curl->result()
Returns the result of performing the current curl object’s action as bytes. (For HTTP requests, it just returns the body
portion, not the headers.)

curl->statusCode()
Returns the last received HTTP, FTP, or SMTP response code. The value will be “0” if no server response code has been
received.

curl->raw()
Returns the result of performing the current curl object request as a staticarray containing the ready state (boolean),
the header response (bytes), and the body response (bytes).

curl->reset()
Resets the current curl object to an empty curl object.

curl->version(info=?)
Returns a string of the version of curl currently deployed on the host system. If an optional info parameter is supplied
as “true”, more detailed information will be returned as a staticarray.

curl->readSomeBytes()
This is a low-level function and is not recommended to be for casual use. If a request is still in progress, it will return the
current response as a bytes object and clear the internal mechanism that is buffering those bytes.

curl->download(f::string=?, -asBytes::boolean=?)
Triggers the download of the file specified by the URL. The default is to download the file to the path specified in the
first optional parameter. If the -asBytes option is passed or set to “true”, it will just return a bytes object representing
the file’s data. Refer to the detailed documentation later in this chapter for example usage.

curl->upload(f::string)

curl->upload(f::file)

curl->upload(f::bytes)
Triggers the uploading of a specified file to the file location specified by the URL. The file to be uploaded can be specified
as either a string of the file path and name, a file object, or a bytes object of the data. Refer to the detailed documentation
later in this chapter for example usage.

curl->ftpDeleteFile()
Deletes the file specified by the URL from the FTP server.

curl->ftpGetListing(-listOnly::boolean=?, -options::array=?)
Retrieves the directory listing from the FTP server and directory path specified by the URL. If the -listOnly option is
specified, the result will just be returned as a staticarray while the default is to return an array of maps with each map
having the following data about the files: “filetype”, “filesize”, “filemoddate”, and “filename”.

There is an optional -options parameter that can take an array of pairs specifying additional curl options. The first
item in the pair should be one of the CURLOPT_… methods and the second should be the corresponding value you
wish to set.

57 https://curl.haxx.se/libcurl/c/curl_easy_setopt.html

364 Chapter 35. Network Requests with Curl

https://curl.haxx.se/libcurl/c/curl_easy_setopt.html


LassoGuide, Release 9.3

35.2 Curl Options

A myriad of curl options can be set for the current curl object to customize its behavior. This can be done by using the
curl->set method, passing it the CURLOPT_… macro methods representing the option you wish to set and the value you
wish to set it to as the second parameter. What follows is a list of options that can be set on Lasso’s curl object. It has been
adapted from the curl documentation58 , with the options grouped in a similar manner as is found there. This should allow the
desired option to be easily found if you need more detail.

35.2.1 Behavior Options

CURLOPT_VERBOSE()
Used with curl->set. If set to “1”, it directs curl to output a lot of verbose information about its operations. This is very
useful for debugging. The verbose information will be sent to STDERR which gets logged to lasso.err.txt in your
instance’s home directory for Lasso Server. You will almost never want to set this in production, but you will want to use
it to help you debug and report problems.

CURLOPT_HEADER()
Used with curl->set. If set to “1”, it directs curl to include the header in the body output. This is only relevant for
protocols that actually have headers preceding the data (like HTTP).

CURLOPT_NOPROGRESS()
Used with curl->set. If set to “1”, it directs curl to shut off the progress meter completely. It will also prevent CUR-
LOPT_PROGRESSFUNCTION from being called. Future versions of libcurl are likely not to have any built-in progress meter
at all.

35.2.2 Callback Options

CURLOPT_WRITEDATA()
Used with curl->set. This option expects a filedesc object which curl will use when calling its file writing function.

CURLOPT_READDATA()
Used with curl->set. This option expects either a filedesc or byte stream to be used when curl calls its file reading
function.

35.2.3 Error Options

CURLOPT_FAILONERROR()
Used with curl->set. If set to a value of “1”, curl should fail silently if the HTTP status code is equal to or larger than
400. The default action would be to return the page normally, ignoring that code. This method is not fail-safe, and there
are scenarios where unsuccessful response codes will slip through.

35.2.4 Network Options

CURLOPT_URL()
Used with curl->set. Use this instead of curl->url= to change the URL for the curl object. All URLs should be in the
general form of “scheme://host:port/path” as detailed in RFC 398659 .

CURLOPT_PROXY()
Used with curl->set. Sets the HTTP proxy to use for the current curl object’s request. This value should be passed as
a string.

58 https://curl.haxx.se/libcurl/c/curl_easy_setopt.html
59 https://tools.ietf.org/html/rfc3986.html

35.2. Curl Options 365

https://curl.haxx.se/libcurl/c/curl_easy_setopt.html
https://tools.ietf.org/html/rfc3986.html


LassoGuide, Release 9.3

CURLOPT_PROXYPORT()
Used with curl->set. Sets the proxy port to connect to unless it is specified in the proxy string set with CUR-
LOPT_PROXY. This value should be an integer.

CURLOPT_PROXYTYPE()
Used with curl->set. Sets type of the proxy. The value passed should be one of the following methods:

CURLPROXY_HTTP()

CURLPROXY_SOCKS4()

CURLPROXY_SOCKS5()

CURLOPT_HTTPPROXYTUNNEL()
Used with curl->set. If set to a value of “1”, curl will tunnel all operations through a given HTTP proxy. This is different
from simply using a proxy.

CURLOPT_INTERFACE()
Used with curl->set. Sets the interface name to use as the outgoing network interface. The name can be an interface
name, an IP address, or a host name. This value should be passed as a string.

CURLOPT_BUFFERSIZE()
Used with curl->set. Specifies the preferred size (in bytes) for the receive buffer used by curl. This is just a request to
the library; the actual buffer size used may be different than your request.

CURLOPT_PORT()
Used with curl->set. Specifies which remote port number to connect to instead of the one specified in the URL, or
specifies the default port for the protocol used. This value should be an integer.

CURLOPT_TCP_NODELAY()
Used with curl->set. Specifies whether the TCP_NODELAY option is to be set or cleared (1 = set, 0 = clear). The option
is cleared by default. Setting this option after the connection has been established will have no effect.

35.2.5 Authentication Options

CURLOPT_NETRC()
Used with curl->set. This option controls the preference of curl between using usernames and passwords from your
~/.netrc file, relative to usernames and passwords in the URL. The value passed should be one of the following meth-
ods:

CURL_NETRC_OPTIONAL()
The use of your ~/.netrc file is optional, and information in the URL is to be preferred.

CURL_NETRC_IGNORED()
Curl will ignore the ~/.netrc file and use only the information in the URL.

CURL_NETRC_REQUIRED()
The use of your ~/.netrc file is required, and curl should ignore the information in the URL.

CURLOPT_NETRC_FILE()
Used with curl->set. Set to a string containing the full path name to the file you want libcurl to use as the .netrc
file. If this option is omitted and CURLOPT_NETRC is set to use a .netrc file then curl will attempt to find a .netrc file
in the current user’s home directory.

CURLOPT_USERPWD()
Used with curl->set. The option expects a string that will be used to authenticate with the remote server. The string
should be formatted to include both username and password in the following manner: 'myname:mypassword'.

CURLOPT_PROXYUSERPWD()
Used with curl->set. This option expects a string specifying the authentication for the HTTP proxy in the format of
'username:password'. Use CURLOPT_PROXYAUTH to specify the authentication method.

366 Chapter 35. Network Requests with Curl



LassoGuide, Release 9.3

CURLOPT_HTTPAUTH()
Used with curl->set. Use this option to specify which HTTP authentication method(s) you want curl to use. If you
specify more than one method, curl will first query the server to see which methods it supports and pick the best
among the ones you allow it to use.

The value passed can be either of the following methods:

CURLAUTH_ANY()
Allows any authentication method.

CURLAUTH_ANYSAFE()
Allows any authentication method except CURLAUTH_BASIC.

Or, one or more of the following methods added together can be specified:

CURLAUTH_BASIC()

CURLAUTH_DIGEST()

CURLAUTH_GSSNEGOTIATE()

CURLAUTH_NTLM()

CURLOPT_PROXYAUTH()
Used with curl->set. Use this option to specify which HTTP authentication method(s) you want curl to use. See
CURLOPT_HTTPAUTH for a list of values for this option.

35.2.6 HTTP Options

CURLOPT_ENCODING()
Used with curl->set. This option takes a string value specifying the Accept-Encoding header which also enables
decoding of a response when a Content-Encoding header is received. The string value passed should be one of the
following: “identity”, which does nothing; “deflate”, which requests the server to compress its response using the zlib
algorithm; or “gzip”, which requests the gzip algorithm.

CURLOPT_AUTOREFERER()
Used with curl->set. If set to “1”, curl will set the Referer header when it follows a Location redirect.

CURLOPT_FOLLOWLOCATION()
Used with curl->set. If set to “1”, curl will follow any Location header the server sends as part of its HTTP response.
This means that curl will send the same request to the new location and follow any new Location headers all the way
until no more such headers are returned. CURLOPT_MAXREDIRS can be used to limit the number of redirects curl will
follow.

CURLOPT_UNRESTRICTED_AUTH()
Used with curl->set. If set to “1”, curl will continue to send authentication (username+password) when following
locations, even if the hostname changes. (This option is meaningful only when setting CURLOPT_FOLLOWLOCATION.)

CURLOPT_MAXREDIRS()
Used with curl->set. Expects an integer value specifying the number of times curl will repeat the recursive following
of the Location header. A value of “0” will mean that no redirects will be followed while a value of “-1” (the default)
means that an infinite number of redirects will be followed.

CURLOPT_PUT()
Deprecated since version 7.12.1: This option is deprecated in curl in favor of using CURLOPT_UPLOAD.

Used with curl->set. If set to “1”, curl will use the HTTP PUT method to transfer data. The data should be set with
CURLOPT_READDATA and CURLOPT_INFILESIZE.

CURLOPT_POST()
Used withcurl->set. If set to “1”, curl will use the HTTP POST method for its request. This will also have the request use a

35.2. Curl Options 367



LassoGuide, Release 9.3

Content-Type: application/x-www-form-urlencoded header (by far the most commonly used Content-Type
for the POST method). Override this header by setting your own with CURLOPT_HTTPHEADER.

Use CURLOPT_POSTFIELDS to specify what data to post in the request and CURLOPT_POSTFIELDSIZE or CUR-
LOPT_POSTFIELDSIZE_LARGE to set the data size.

CURLOPT_POSTFIELDS()
Used with curl->set. Use this instead of curl->postFields= to specify the data to post in an HTTP POST operation.
The value can be either bytes or a string. Make sure that the data is formatted the way you want the server to receive it;
curl will not convert or encode it for you. Most web servers will assume this data will be URL encoded.

Using CURLOPT_POSTFIELDS implies CURLOPT_POST; that option will be automatically set along with all of its other
side effects.

If you want to do a zero-byte POST, set CURLOPT_POSTFIELDSIZE explicitly to “0”. Simply setting CUR-
LOPT_POSTFIELDS to “null” or an empty string effectively disables the sending of the specified string, and curl will
instead assume that you’ll send the POST data using the read callback.

CURLOPT_POSTFIELDSIZE()
Used with curl->set. By default, curl will use strlen() (the C function for getting a string’s length) to measure the
size of the post data field being sent. This option allows passing an integer value that specifies the size of the post field
data. Generally speaking, posting binary data will require setting this option.

CURLOPT_POSTFIELDSIZE_LARGE()
Used with curl->set. This is the large file version of CURLOPT_POSTFIELDSIZE.

CURLOPT_REFERER()
Used with curl->set. This option takes a string value specifying the value for the Referer header in the HTTP request
sent to the remote server.

CURLOPT_USERAGENT()
Used with curl->set. This option takes a string value specifying the value for the User-Agent header in the HTTP
request sent to the remote server.

CURLOPT_HTTPHEADER()
Used with curl->set. This option allows for adding new headers, replacing automatically generated internal headers,
and removing automatically generated internal headers. The value passed should be an array of pairs with the first
element in the pair being the string value of the header and the second value being the data to set it to. Header values
specified here will override any automatically generated headers of the same name. Setting the value to an empty string
will remove the header from the request.

CURLOPT_HTTP200ALIASES()
Used with curl->set. Some server responses use a custom response status line. For example, IceCast servers respond
with “ICY 200 OK”. This option allows specifying that such a response is equivalent to “HTTP/1.0 200 OK”. The value
passed should be an array of strings, each string specifying another alias for the success status.

CURLOPT_COOKIE()
Used with curl->set. This option expects a string value that sets the cookie value for the HTTP header. The for-
mat of the string should be NAME=CONTENTS, where “NAME” is the cookie name and “CONTENTS” is what the cookie
should contain. To send multiple cookies, separate each cookie in the string with a semicolon and a space like this:
'name1=content1; name2=content2;'. Using this option multiple times will only make the latest string override
the previous ones.

CURLOPT_COOKIEFILE()
Used with curl->set. This option takes a string value for the path to and name of a file holding cookie data to read
and send with the request. The cookie data may be in Netscape/Mozilla cookie data format or just regular HTTP-style
headers dumped to a file.

CURLOPT_COOKIEJAR()
Used with curl->set. This option takes a string value specifying the path and file name for curl to store cookies in. If

368 Chapter 35. Network Requests with Curl



LassoGuide, Release 9.3

the file can’t be created, no error will be reported. (Using CURLOPT_VERBOSE will have a warning printed, but this is the
only way to get this feedback.)

CURLOPT_COOKIESESSION()
Used with curl->set. If set to “1”, curl will not use any session cookies that had been previously set by requests in the
session. (Session cookies are cookies without expiry date and they are meant to be alive and existing for this “session”
only.)

CURLOPT_HTTPGET()
Used with curl->set. If set to “1”, it will force the curl request to use the HTTP GET method. Useful if an HTTP POST,
PUT, or HEAD request had been set.

CURLOPT_HTTP_VERSION()
Used with curl->set. This option forces curl to use a specific HTTP version. (This is not recommended unless you have
a good reason.) The value passed should be one of the following methods:

CURL_HTTP_VERSION_NONE()
Let curl use whichever version it wants.

CURL_HTTP_VERSION_1_0()
Force HTTP 1.0 requests.

CURL_HTTP_VERSION_1_1()
Force HTTP 1.1 requests.

35.2.7 FTP Options

CURLOPT_FTPPORT()
Used with curl->set. This option expects a string value specifying the address to use for the FTP PORT instruction.
The string may be an IP address, a host name, a network interface name (under Unix) or just a dash character (-) to let
curl use your system’s default IP address. The address can then be followed by a colon and a port number or port range
separated by a dash.

CURLOPT_QUOTE()
Used with curl->set. The value for this option should be an array of strings specifying FTP commands to run on
the server prior to the FTP request. These will be done before any other commands are issued (even before the CWD
command for FTP).

CURLOPT_POSTQUOTE()
Used with curl->set. The value for this option should be an array of strings specifying FTP commands to run on the
server after the FTP transfer request has been completed. The commands will only be run if no error occurred in the
request.

CURLOPT_PREQUOTE()
Used with curl->set. The value for this option should be an array of strings specifying FTP commands to run on the
server after the transfer type is set.

CURLOPT_FTPLISTONLY()
Used with curl->set. If set to “1”, curl will just list the file names in a folder instead of doing a full listing of names, sizes,
dates, and so on.

CURLOPT_FTPAPPEND()
Used with curl->set. If set to “1”, curl will append to the remote file the data it’s uploading instead of overwriting it.

CURLOPT_FTP_USE_EPRT()
Used with curl->set. If set to “1”, curl will use EPRT and LPRT command for active FTP downloads.

CURLOPT_FTP_USE_EPSV()
Used with curl->set. If set to “1”, curl will use the EPSV command for passive FTP downloads. (This is actually the
default; turn it off by setting it to “0”.)

35.2. Curl Options 369



LassoGuide, Release 9.3

CURLOPT_FTP_CREATE_MISSING_DIRS()
Used with curl->set. If set to “1”, curl will try to create directories that don’t exist for it to CWD into.

CURLOPT_FTP_RESPONSE_TIMEOUT()
Used with curl->set. This option takes an integer value specifying the number of seconds to wait for the server to
respond to a command before considering the session hung.

CURLOPT_FTPSSLAUTH()
Used with curl->set. When doing FTP over SSL, this option specifies which authentication method to use. The value
passed should be one of the following methods:

CURLFTPAUTH_DEFAULT()
Let curl decide.

CURLFTPAUTH_SSL()
Try “AUTH SSL” first, but if it fails try “AUTH TLS”.

CURLFTPAUTH_TLS()
Try “AUTH TLS” first, but if it fails try “AUTH SSL”.

CURLOPT_FTP_ACCOUNT()
Used with curl->set. This option takes a string specifying the data sent in an ACCT command when an FTP server
asks for “account data” after a username and password have been provided.

35.2.8 Protocol Options

CURLOPT_TRANSFERTEXT()
Used with curl->set. If set to “1”, curl will use ASCII mode for FTP transfers instead of binary.

CURLOPT_CRLF()
Used with curl->set. If set to “1”, curl will convert Unix newlines to CRLF.

CURLOPT_RANGE()
Used with curl->set. This option takes a string for its value specifying the range you want in the form of X-Y where
either “X” or “Y” may be omitted. Ranges work for HTTP, FTP, and FILE transfers only. HTTP transfers also support intervals
separated by commas, such as “X-Y,N-M”.

CURLOPT_RESUME_FROM()
Used with curl->set. This option takes an integer value specifying the offset in number of bytes to start the transfer
from.

CURLOPT_RESUME_FROM_LARGE()
Used with curl->set. This is the large file version of CURLOPT_RESUME_FROM and also takes an integer for its value.

CURLOPT_CUSTOMREQUEST()
Used with curl->set. This option takes a string value specifying a custom HTTP, FTP, or POP3 request. This is particularly
useful, for example, for performing an HTTP DELETE request.

CURLOPT_FILETIME()
Used with curl->set. If set to “1”, curl will try to get the modification date for the document in the transfer.

CURLOPT_NOBODY()
Used with curl->set. If set to “1”, curl will only output the header portion of the received response. (Only relevant for
protocols such as HTTP that have separate header and body parts.)

CURLOPT_INFILESIZE()
Used with curl->set. This option takes an integer specifying the expected size of the input file for an upload. It does
not limit how much data curl actually sends.

CURLOPT_INFILESIZE_LARGE()
Used with curl->set. This is the large file version of CURLOPT_INFILESIZE.

370 Chapter 35. Network Requests with Curl



LassoGuide, Release 9.3

CURLOPT_UPLOAD()
Used with curl->set. Set this option to “1” to tell curl to prepare for an upload.

CURLOPT_MAXFILESIZE()
Used with curl->set. This option takes an integer value specifying the maximum size of the file to download in bytes.
If the requested file is larger then this size, nothing will be transferred and an error of CURLE_FILESIZE_EXCEEDED will
be produced.

CURLOPT_MAXFILESIZE_LARGE()
Used with curl->set. This is the large file version of CURLOPT_MAXFILESIZE.

35.2.9 Connection Options

CURLOPT_TIMEOUT()
Used with curl->set. This option takes an integer value specifying the maximum time in seconds to wait for the curl
transfer.

CURLOPT_LOW_SPEED_LIMIT()
Used with curl->set. This option takes an integer value specifying the number of bytes per second the transfer should
be below for the duration of CURLOPT_LOW_SPEED_TIME for curl to consider too slow and abort.

CURLOPT_LOW_SPEED_TIME()
Used with curl->set. This option takes an integer value specifying the number of seconds a curl transfer must be
below the rate set by CURLOPT_LOW_SPEED_LIMIT for curl to abort due to bad connection.

CURLOPT_MAXCONNECTS()
Used with curl->set. This option takes an integer value specifying the maximum number of persistent cached con-
nections this curl operation can have simultaneously opened. The default is 5.

CURLOPT_FRESH_CONNECT()
Used with curl->set. Set this to “1” to force the next operation to use a new connection. (This option should be used
with caution and only if you understand what it does.)

CURLOPT_FORBID_REUSE()
Used with curl->set. If set to “1”, curl will close the connection for the next operation after it finishes. (This option
should be used with caution and only if you understand what it does.)

CURLOPT_CONNECTTIMEOUT()
Used with curl->set. This option takes an integer value specifying the number of seconds to wait before timing out
during the connection phase. (Once connected, this option is of no value.) The default is 300 seconds.

CURLOPT_IPRESOLVE()
Used with curl->set. This option specifies which type of IP address to use if a host name resolves to more than one
kind of IP address. The value passed should be one of the following methods:

CURL_IPRESOLVE_WHATEVER()
This is the default, and it will resolve to all that your system allows.

CURL_IPRESOLVE_V4()
Specifies using IPv4 addresses.

CURL_IPRESOLVE_V6()
Specifies using IPv6 addresses.

CURLOPT_FTP_SSL()

CURLOPT_USE_SSL()
Used with curl->set. This option specifies your SSL connection preferences to curl. The value passed should be one
of the following methods:

35.2. Curl Options 371



LassoGuide, Release 9.3

CURLFTPSSL_NONE()
Don’t attempt to use SSL.

CURLFTPSSL_TRY()
Try using SSL, but proceed as normal otherwise.

CURLFTPSSL_CONTROL()
Require SSL for the control part of the connection or fail with CURLE_USE_SSL_FAILED.

CURLFTPSSL_ALL()
Require SSL for all communication or fail with CURLE_USE_SSL_FAILED.

35.2.10 SSL and Security Options

CURLOPT_SSLCERT()
Used with curl->set. This option expects a string value specifying the path to and file name of your certificate, or,
with NSS, the nickname of the certificate you want to use. (If you want to use a file from the current directory, precede
it with a “./” prefix in order to avoid confusion with a nickname.)

CURLOPT_SSLCERTTYPE()
Used with curl->set. This option expects a string value of either 'PEM' (the default) or 'DER'. It is used to tell curl
the format of your certificate.

CURLOPT_SSLKEY()
Used with curl->set. This option expects a string value specifying the path to and file name of your private key.

CURLOPT_SSLKEYTYPE()
Used with curl->set. This option expects a string value of either 'PEM' (the default), 'DER', or 'ENG'. It is used to
tell curl the format of your private key.

CURLOPT_SSLKEYPASSWD()
Used with curl->set. If your private key needs a password to be used, pass a string value of the password with this
option.

CURLOPT_SSLENGINE()
Used with curl->set. This option expects a string value specifying which crypto engine to use. If the crypto device
cannot be loaded, a CURLE_SSL_ENGINE_NOTFOUND error is returned.

CURLOPT_SSLENGINE_DEFAULT()
Used with curl->set. If set to any value (recommended you set it to “1”), this option will set the crypto engine to
curl’s default asymmetric crypto engine. If the crypto engine cannot be set, a CURLE_SSL_ENGINE_SETFAILED error is
returned.

CURLOPT_SSLVERSION()
Used with curl->set. This option is used to control which version(s) of SSL/TLS can be used. The value passed should
be one of the following methods to force using the version specified by the method name:

CURL_SSLVERSION_TLSv1()

CURL_SSLVERSION_SSLv2()

CURL_SSLVERSION_SSLv3()

CURL_SSLVERSION_DEFAULT()
Can be passed instead to tell curl to figure out the protocol used by the remote server, though it won’t use
CURL_SSLVERSION_SSLv2.

CURLOPT_SSL_VERIFYPEER()
Used with curl->set. This option expects an integer value of either “1” or “0”, and it defaults to “1”. It is used to specify
whether or not curl verifies the authenticity of the peer’s certificate with a value of “1” meaning it does the verification
and “0” meaning it does not.

372 Chapter 35. Network Requests with Curl



LassoGuide, Release 9.3

CURLOPT_CAINFO()
Used with curl->set. This option expects a string value specifying the path to and name of a file containing one or
more certificates needed to do peer verification. By default, this option is set to the path curl believes your system keeps
its CA cert bundle.

CURLOPT_CAPATH()
Used with curl->set. This option expects a string value specifying the path to a directory containing multiple CA
certificates to be used for peer verification.

CURLOPT_SSL_VERIFYHOST()
Used with curl->set. This option expects an integer value of either “0”, “1”, or “2”. When the value is “0”, the connection
to the remote server will succeed regardless of the SSL credentials. When the value is “1”, curl will return a failure if the
authenticity of the server’s SSL credentials cannot be verified, and when the value is “2”, the connection will fail without
verification. The default for this option is “2”.

CURLOPT_RANDOM_FILE()
Used with curl->set. This option expects a string value specifying the path to and file name of a file whose contents
will be used in seeding the random engine for SSL.

CURLOPT_EGDSOCKET()
Used with curl->set. This option expects a string value specifying the path to and file name of the Entropy Gathering
Daemon socket that will be used when seeding the random engine for SSL.

CURLOPT_SSL_CIPHER_LIST()
Used with curl->set. This option expects a string value specifying the list of ciphers that can be used in the SSL
connection. See the curl documentation for CURLOPT_SSL_CIPHER_LIST60 for a discussion of the proper syntax needed.

CURLOPT_KRB4LEVEL()
Used with curl->set. This option expects a string value of either 'clear', 'safe', 'confidential', or 'private'.
It is used to set the Kerberos security level for FTP and enable Kerberos awareness. Set the option to “null” to disable
Kerberos.

35.3 Using the Curl Type

The curl type is meant to be a low-level implementation, which means that it is usually not necessary to use it directly. For
the most part, the include_url method is all that is needed for HTTP requests and the ftp_… methods handle your FTP
needs. In fact, the examples below could have easily been done using one of those methods, but are provided to give you an
understanding of how to use the curl type in case you find yourself needing more control.

35.3.1 Make an HTTP HEAD Request

The following example uses the curl type to make a HEAD request to an HTTP server:

local(req) = curl('http://www.example.com')
handle => { #req->close }

// Not verifying the return status of setting the option
local(_) = #req->set(CURLOPT_NOBODY, 1)

#req->raw
#req->close

// =>
// staticarray(true, HTTP/1.1 200 OK

60 https://curl.haxx.se/libcurl/c/curl_easy_setopt.html#CURLOPTSSLCIPHERLIST

35.3. Using the Curl Type 373

https://curl.haxx.se/libcurl/c/curl_easy_setopt.html#CURLOPTSSLCIPHERLIST


LassoGuide, Release 9.3

// Accept-Ranges: bytes
// Cache-Control: max-age=604800
// Content-Type: text/html
// Date: Wed, 28 Aug 2013 13:42:53 GMT
// Etag: "3012602696"
// Expires: Wed, 04 Sep 2013 13:42:53 GMT
// Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
// Server: ECS (atl/5834)
// X-Cache: HIT
// x-ec-custom-error: 1
// Content-Length: 1270
//
// , )

35.3.2 List an FTP Directory

The following example lists the file and folder names at the specified FTP location:

local(req) = curl(
"ftp://ftp.example.com/",
-username=`MyUsername`,
-password=`Shh...Secret`

)
handle => { #req->close }

#req->set(CURLOPT_FTPLISTONLY, 1)

#req->result

// =>
// .
// ..
// file1
// file2
// folder1

35.4 include_url

The include_url method is a wrapper around the curl type for requesting data via HTTP. We strongly recommend using
this method for your HTTP request needs if possible.

include_url(url::string, ...)
Requires a string representing a URL in the form of http://www.example.com (https:// can also be used). By default, this
method returns the HTML body result of performing an HTTP GET request at the specified URL.

This method has several optional parameters that modify its behavior:

Parameters

• -getParams – Pass this parameter a staticarray or array of key/value pairs. This data is then converted into
a query string and appended to the URL when making the HTTP request.

• -postParams – This option can take either a string, bytes, or trait_forEach object. For string and bytes
objects, the data is set as the POST field (CURLOPT_POSTFIELDS) for the request without modification.

374 Chapter 35. Network Requests with Curl



LassoGuide, Release 9.3

If passed a trait_forEach object, each value should be a key/value pair object that will then first be
converted into the query string format before being set as the POST field.

• -sendMimeHeaders – This option can take either a string, bytes, or trait_forEachobject. For string and
bytes objects, the data is set as additional HTTP headers for the request without modification. If passed
a trait_forEach object, each value should be a key/value pair object whose first value is the header
name and the second value is the value. These will then first be converted into the form “Header: Value”
and joined with "\r\n" before being set as additional HTTP headers.

• -username – This option allows specifying the username for connections that require authentication.

• -password – This option allows specifying the password for connections that require authentication.

• -noData – Passing this option does not change any aspect of the curl HTTP request, but tells in-
clude_url not to return any data.

• -verifyPeer – Use this option to specify whether or not Lasso should verify the SSL certificate of the
HTTP peer being connected to. The default is “true”.

• -sslCert – This parameter is used to set the CURLOPT_SSLCERT option.

• -sslCertType – This parameter is used to set the CURLOPT_SSLCERTTYPE option.

• -sslKey – This parameter is used to set the CURLOPT_SSLKEY option.

• -sslKeyType – This parameter is used to set the CURLOPT_SSLKEYTYPE option.

• -sslKeyPasswd – This parameter is used to set the CURLOPT_SSLKEYPASSWD option.

• -timeout – This parameter is used to set the CURLOPT_TIMEOUT option.

• -connectTimeout – This parameter is used to set the CURLOPT_CONNECTTIMEOUT option.

• -retrieveMimeHeaders – This parameter expect a string specifying the name of a thread variable to
store the HTTP response header data in.

• -options – Pass this parameter a staticarray or array of pairs, the first value of the pair should be one of
the CURLOPT_… methods and the second value should be the appropriate setting for that curl option.

• -string – The default is for include_url to return a bytes object, but if this parameter is set, it will return
a string object. Pass a string to this parameter to specify the character set to use. Setting the parameter
to “true” causes include_url to first check the curl headers for the character set to use, otherwise Lasso
will try to determine the character set itself from the body of the response. If that fails, the default is to use
UTF-8 encoding.

• -basicAuthOnly – Setting this option to “true” causes include_url to only use HTTP Basic authentica-
tion.

35.4.1 Make an HTTP GET Request

The following example issues a basic HTTP GET request for the specified URL:

include_url('http://www.example.com/')

// =>
// <!doctype html>
// <html>
// <head>
// <title>Example Domain</title>
// (... rest of response ...)

35.4. include_url 375



LassoGuide, Release 9.3

35.4.2 Send Data with an HTTP PUT Request

The following example issues an HTTP PUT request, passing data in the body of the request. The example result is a
JSON-formatted string, but would be the body of the HTTP response given by the server.

include_url(
'http://www.example.com/',
-postParams=(: 'id'=5, 'animal'='rhino'),
-options=(: CURLOPT_CUSTOMREQUEST='PUT')

)

// => {"status": "Success"}

35.4.3 Specify HTTP Headers

The following example adds a User-Agent header to the HTTP request:

include_url(
'http://www.example.com/',
-sendMimeHeaders=(: 'User-Agent'='LassoBrowse/1.0')

)

// =>
// <!doctype html>
// <html>
// <head>
// <title>Example Domain</title>
// ... rest of response ...

35.4.4 Read Response Headers

The following example gets the response headers for the request stored in a variable named “my_headers” and then displays
them:

local(my_body) = include_url(
'http://www.example.com/',
-retrieveMimeHeaders='my_headers'

)
$my_headers

// =>
// HTTP/1.1 200 OK
// Accept-Ranges: bytes
// Cache-Control: max-age=604800
// Content-Type: text/html
// Date: Wed, 28 Aug 2013 20:00:21 GMT
// Etag: "3012602696"
// Expires: Wed, 04 Sep 2013 20:00:21 GMT
// Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
// Server: ECS (atl/FCAA)
// X-Cache: HIT
// x-ec-custom-error: 1
// Content-Length: 1270

376 Chapter 35. Network Requests with Curl



LassoGuide, Release 9.3

35.5 FTP Methods

The ftp_… methods are simple wrappers around the curl type for requesting and sending data via FTP. We strongly recom-
mend using these methods for your FTP needs if possible.

ftp_getData(url::string, -username::string=?, -password::string=?, -options::array=?)
Returns a bytes object representing the remote file’s contents at the specified FTP URL. It can also optionally take a
username and password to be used for authentication to the FTP server. Also, the -options parameter can be passed
an array of pairs, the first value of the pair should be one of the CURLOPT_… methods and the second value should be
the appropriate setting for that curl option.

ftp_getFile(url::string, -file::string, -username::string=?, -password::string=?, -options::array=?)
Downloads the remote file specified by the FTP URL in the first parameter to the location specified by the -file pa-
rameter. It can also optionally take a username and password to be used for authentication to the FTP server. Also,
the -options parameter can be passed an array of pairs, the first value of the pair should be one of the CURLOPT_…
methods and the second value should be the appropriate setting for that curl option.

ftp_getListing(url::string, -username=?, -password=?, -listOnly::boolean=?, -options::array=?)
Acquires a directory listing of the remote directory specified by the FTP URL. If you only want the names of the files
and folders in the specified remote directory, pass the -listOnly parameter. A username and password can also be
specified for authentication to the FTP server. The method can also take the -options parameter which expects an
array of pairs; the first value of the pair should be one of the CURLOPT_… methods and the second value should be the
appropriate setting for that curl option.

ftp_putData(url::string, -data::bytes, -username=?, -password=?, -options::array=?)
Requires an FTP URL and a byte stream representing file data. If a file doesn’t exist at the location specified by the URL,
one will be created with the data specified by the -data parameter. If a file does exist at the path specified by the
URL then its contents will be overwritten with the new data. (See the example below for how to change the method’s
behavior to append the data instead.)

Can optionally take a username and password to be used for authentication to the FTP server. Also, the -options
parameter can be passed an array of pairs, the first value of the pair should be one of the CURLOPT_… methods and
the second value should be the appropriate setting for that curl option.

ftp_putFile(url::string, -file, -username=?, -password=?, -options::array=?)
Uploads the local file specified by the -file parameter to the remote location specified by the FTP URL passed as the
first parameter. If a file doesn’t exist at the location specified by the URL, one will be created, otherwise the contents of
the existing remote file will be overwritten with the new data from the local file.

Can optionally take a username and password to be used for authentication to the FTP server. Also, the -options
parameter can be passed an array of pairs, the first value of the pair should be one of the CURLOPT_… methods and
the second value should be the appropriate setting for that curl option.

ftp_deleteFile(url::string, -username=?, -password=?, -options::array=?)
Deletes the remote file specified by the FTP URL in the first parameter. It can optionally take a username and password
to be used for authentication to the FTP server. Also, the -options parameter can be passed an array of pairs, the first
value of the pair should be one of the CURLOPT_… methods and the second value should be the appropriate setting
for that curl option.

35.5.1 Retrieve Contents of a Remote File

The following example downloads the data in a file named “test.txt” from the remote server, and then displays it:

ftp_getData(
'ftp://example.com/test.txt',
-username=`MyUsername`,
-password=`Shh...Secret`

35.5. FTP Methods 377



LassoGuide, Release 9.3

)

// => "Hello, world."

35.5.2 Download a Remote File

The following example downloads the remote file “test.txt” to “/tmp/file.txt” from the root of the file system:

ftp_getFile(
'ftp://example.com/test.txt',
-file='//tmp/file.txt',
-username=`MyUsername`,
-password=`Shh...Secret`

)

35.5.3 List Contents of a Remote Directory

The following example gets a list of all the files and folders at the FTP root of the “example.com” server and displays its size and
then its name (with a trailing slash if it is a directory):

local(listing) = ftp_getListing(
'ftp://example.com/test.txt',
-username=`MyUsername`,
-password=`Shh...Secret`

)
with item in #listing

let item_type = #item->find('filetype')
let item_size = #item->find('filesize')
let item_name = #item->find('filename') + (#item_type == 'directory' ? '/' | '')

do {^
#item_size + 'B ' + #item_name + '\n'

^}

// =>
// 170B ./
// 170B ../
// 387B directory/
// 15B test.txt

35.5.4 Update an Existing Remote File

The following example takes the data “\nAs You Wish” and appends it to the remote “test.txt” file. (The CURLOPT_FTPAPPEND
option changes the behavior to append the data.)

ftp_putData(
'ftp://example.com/test.txt',
-data=bytes('\nAs You Wish'),
-username=`MyUsername`,
-password=`Shh...Secret`,
-options=array(CURLOPT_FTPAPPEND=1)

)

378 Chapter 35. Network Requests with Curl



LassoGuide, Release 9.3

35.5.5 Upload a Local File to the Remote Server

The following example takes the local file “test.txt” at the current web root and uploads it as “file.txt” to the specified path in the
URL. (The CURLOPT_FTP_CREATE_MISSING_DIRS option specifies that any missing intermediary directories on the remote
server will be created.)

ftp_putFile(
'ftp://example.com/new_dir/test.txt',
-file='/test.txt',
-username=`MyUsername`,
-password=`Shh...Secret`,
-options=array(CURLOPT_FTP_CREATE_MISSING_DIRS=1)

)

35.5.6 Delete a Remote File

The following example deletes the “test.txt” file at the FTP root of the remote server:

ftp_deleteFile(
'ftp://example.com/test.txt',
-username=`MyUsername`,
-password=`Shh...Secret`

)

35.5. FTP Methods 379





Chapter 36

Sending Email

Lasso includes a built-in system for queuing and sending email to SMTP servers. Email messages can be sent to site visitors to
notify them when they create a new account or to remind them of their login information, or to administrators when various
errors or other conditions occur. Email messages can even be sent in bulk to many email addresses to notify site visitors of
updates to the website or other news.

36.1 SMTP Email Basics

Email messages are queued using the email_send method. All outgoing messages are stored in tables of the Site database.
The queue can be examined and messages removed in the Email Queue section of Lasso Server Admin.

Lasso’s email system checks the queue periodically and sends any waiting messages. If the email system encounters an error
when sending an email then it stores the error in the database and requeues the message. If too many errors are encountered
then the message send will be cancelled.

By default, Lasso sends queued messages directly to the SMTP server that corresponds to each recipient address. This means
that a single message may end up being sent to multiple SMTP servers in order to deliver it to each recipient. It is also possible
to specify SMTP hosts directly within the email_send method.

Note: If a local SMTP server is being used, Lasso must either have valid SMTP AUTH credentials or otherwise be allowed to
send messages through the SMTP server unrestricted. Consult the SMTP server documentation for details about how to set
up SMTP AUTH security or how to allow specific IP addresses to relay messages.

By default Lasso will send up to 100 messages to each SMTP server with every connection. Lasso will open up to five outgoing
SMTP connections at a time. Lasso selects messages to send in order of priority, but once it connects to an SMTP server it
delivers as many messages as possible. This means that a batch send to an SMTP server will contain high-priority messages as
well as medium- and low-priority messages.

Note: The maximum size of an email message including all attachments must be less than 8 MB when using the email_send
method. If necessary, larger messages can be sent using the -immediate parameter or the email_immediate method de-
scribed in the section Composing and Queueing Email below.

36.1.1 Email Composition

The structure of a composed email message will depend on what type of message is being sent. Lasso supports the following
structure variations depending on which parameters are specified in the email_send or email_compose methods.

Plain Text
Simple messages specified with a -body parameter are sent as a single text/plain part with no boundaries.

HTML
Simple HTML messages with an -html parameter are sent as a single text/html part with no boundaries.

381



LassoGuide, Release 9.3

HTML with Plain Text
Messages that have both an -html parameter and a -body parameter are sent as multipart/alternative messages
with both text/plain and text/html parts.

HTML with Embedded Images
Messages that use -htmlImages replace the text/html part with a multipart/related part with enclosed text/
html and inline attachment parts.

Attachments
Messages with attachments are sent as multipart/mixed and include the text/plain, text/html, multipart/
alternative, or multipart/related part that is appropriate based on the type of message and the attachment parts.

See each of the following sections for details about how other email_send and email_compose parameters affect the com-
position of each part.

36.2 Composing and Sending Email

The email_sendmethod is used to send email from Lasso. This method supports the most common types of email including
plain text, HTML, HTML with a plain text alternative, embedded HTML images, and attachments.

email_send(-subject, -from, ...)
Adds a message to the email queue. The method requires a -subject parameter, a -from parameter, and one of either
-to, -cc, or -bcc parameters. Also required is one of either -body or -html parameters. Below is a description of each
of the parameters.

Parameters

• -subject – The subject of the message. Required.

• -from – The sender of the message. Required.

• -to – The recipient of the message. Multiple recipients can be specified by separating their email ad-
dresses with commas.

• -cc – Carbon copy recipients of the message.

• -bcc – Blind carbon copy recipients of the message.

• -body – The body of the message. Either a -body or -html part (or both) is required. See the section Send
HTMLMessages for details about how to create HTML and mixed messages.

• -html – The HTML part of the message. Either a -body or -html part (or both) is required.

• -htmlImages – Specifies a list of files that will be used as images for the HTML part of an outgoing mes-
sage. Accepts either an array of file paths or an array of pairs containing a file name as the first part and
the data for the file as the second part.

• -attachments – Specifies a list of files that will be attached to the outgoing message. Accepts either an
array of file paths or an array of pairs containing a file name as the first part and the data for the file as the
second part.

• -tokens – Specifies a map of token names and values that will be merged into the email message. The
same tokens will be used on every message.

• -merge – Specifies a map of email addresses. Each email address should have as its value a map of token
names and values. The values in this merge map will override those in the tokens map if both are specified.

• -priority – Specifies the priority of the message. Valid values include “High” or “Low”. Default is
“Medium”.

• -replyTo – The email address that should be used for replies to this message.

382 Chapter 36. Sending Email



LassoGuide, Release 9.3

• -sender – The email address that should be reported as the sender of this message.

• -transferEncoding – The value for the Transfer-Encoding header of the message.

• -contentType – The value for the Content-Type header of the message.

• -characterSet – The character set in which the message should be encoded.

• -extraMIMEHeaders – A pair array defining extra MIME headers that should be added to the email mes-
sage.

• -immediate – If specified then the email is sent immediately without using the outgoing message queue.
This option can be used for messages that have very large attachments.

• -host – SMTP host through which to send messages.

• -port – SMTP port. Defaults to “25”.

• -username – Specifies the username for SMTP AUTH if required by the SMTP server. If specified a
-password is also required.

• -password – Specifies the password for SMTP AUTH if required by the SMTP server. If specified a
-username is also required.

• -timeout – Specifies the timeout for the SMTP server in seconds.

• -ssl – If specified then SSL is used when connecting to the SMTP server.

• -simpleform – If specified then the message is sent without a body.

• -date – A date object specifying a time in the future to send the message.

36.2.1 Send a Plain Text Message

An email can be sent with a hard-coded body by specifying the message directly within the email_send method. The follow-
ing example shows an email sent to “example@example.com” with a hard-coded message body:

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An Email',
-body = 'This is the body of the email.'

)

The body of an email message can be assembled in a variable in the current Lasso page and then sent using the email_send
method. The following example shows a variable “email_body” which has several items added to it before the message is
finally sent:

local(email_body) = 'This is the body of the email'
#email_body += '\nSent on: ' + server_date + ' at ' + server_time
#email_body += '\nCurrent visitor: ' + client_username + ' at ' + client_ip

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An Email',
-body = #email_body

)

A Lasso page on the web server can be used as the message body for an email message using the include method. A
Lasso page created to be a message body should contain no extra whitespace. The following example shows a Lasso page

36.2. Composing and Sending Email 383



LassoGuide, Release 9.3

“format.lasso”, which is in the same folder as the current Lasso page being used as the message body for an email. Any Lasso
code within “format.lasso” will be executed before the email is sent.

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An Email',
-body = include('format.lasso')

)

36.2.2 Send an Email to Multiple Recipients

Email can be sent to multiple recipients by including their addresses as a comma-delimited list in the -to parameter, the -cc
parameter, or the -bcc parameter.

The following example shows an email_send method with two recipients in the -to parameter. The recipients’ email ad-
dresses are specified with a comma between them: 'example@example.com, someone@example.com'. No extraneous
information such as the recipients’ real names needs to be included.

email_send(
-to = 'example@example.com, someone@example.com',
-from = 'example@example.com',
-subject = 'An Email',
-body = include('format.lasso')

)

The following example shows an email_send method with one recipient in the -to parameter and two recipients in the -cc
parameter. The carbon copy parameter is generally used to include recipients who are not the primary recipient of the email,
but need to be informed of the correspondence. The addresses for the carbon-copied recipients are stored in variables and
concatenated together with a comma between them.

local(president) = 'president@example.com'
local(someone) = 'someone@example.com'

email_send(
-to = 'example@example.com',
-cc = #president + ',' + #someone,
-from = 'example@example.com',
-subject = 'An Email',
-body = include('format.lasso')

)

The following example shows an email_send method with one recipient in the -to parameter and two recipients in the
-bcc parameter. The Blind Carbon Copy parameter can be used to send email to many recipients without disclosing the full
list of recipients to everyone who receives the email. Each recipient will receive an email that contains only the address in the
-to parameter; in this case, “announce@example.com”.

email_send(
-to = 'announce@example.com',
-bcc = 'example@example.com, someone@example.com',
-from = 'example@example.com',
-subject = 'An Email',
-body = include('format.lasso')

)

384 Chapter 36. Sending Email



LassoGuide, Release 9.3

36.2.3 Send HTML Messages

HTML messages can be sent from Lasso by specifying the HTML body for the message using the -html parameter. Images can
be embedded in the email message using the -htmlImages parameter. If a message includes both an -html parameter and
a -body parameter then it will be sent as a multipart/alternative message so mail clients that do not recognize HTML
messages will see only the plain text part.

An HTML page can be sent as the body of the message by using an includemethod call as the value to the -html parameter.
Image references or URLs in the HTML page should be specified including the http:// prefix and server name. (Alternatively,
images can be embedded within the email using the -htmlImages parameter as shown in a later example.)

For example, the following HTML would reference an example web page and an image showing a coupon graphic. Both
addresses are fully specified since they will need to be loaded from within the email client without any other information
about the web server.

<h2>Money Saving Coupon</h2>
<p>Print out the money saving coupon below or click on it to order directly from our website.<br />

<a href="http://www.example.com/couponoffer.html">
<img src="http://www.example.com/couponoffer.gif" border="0" width="288" height="288" />

</a>
</p>

If this HTML were in a file named “email_body.html”, a Lasso page in the same folder could contain the following code to email
it out:

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An HTML Email',
-html = include('email_body.html')

)

An HTML/plain text alternative email can be sent by specifying both a -bodyparameter and an -htmlparameter. The message
of both parts should be equivalent. (If equivalent text and HTML parts can’t be generated then it is preferable to send just
an HTML part. Email clients that don’t render HTML will display the raw HTML to the user, but this is preferable to seeing a
message that simply says that the message was sent as HTML.) Recipients with text-based email clients will see the text part
while recipients with HTML-based email clients will see the HTML part.

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'A Multi-Part Email',
-body = include('format.lasso'),
-html = include('email_body.html')

)

HTML messages can include embedded images using the -htmlImages parameter. This parameter can be specified with
either a single file name or an array of file names. Within the email message the images can be referenced in two ways.

1. If the email_send method contains the parameter -htmlImages=array('/apache_pb.gif') then Lasso will auto-
matically update any HTML <img> tags that have that same image referenced in their "src" parameter. Note that the
path must be exactly the same for Lasso to be able to make this replacement.

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An HTML Email With Embedded Image',
-html = '<h2>Embedded Image</h2><br /><img src="/apache_pb.gif" />',

36.2. Composing and Sending Email 385



LassoGuide, Release 9.3

-htmlImages = array('/apache_pb.gif')
)

2. Alternatively, the “Content-ID” of the embedded image could be referenced in the <img> tag following a “cid:” prefix.
Lasso automatically uses the image file name as the “Content-ID” without any path information so the same image
referenced above can also be referenced like this: <img src="cid:apache_pb.gif" />.

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An HTML Email With Embedded Image',
-html = '<h2>Embedded Image</h2><br /><img src="cid:apache_pb.gif" />',
-htmlImages = array('/apache_pb.gif')

)

Images that are generated programatically can be embedded in an HTML message by specifying a pair consisting of the
name and data of the image. In the example below the image data comes from the include_raw method, but it could also
be generated using the image methods or retrieved from a database field. Note that the name of the image does not have to
match, but the name that is specified in the first part of the pair should be used within the HTML body.

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An HTML Email With Embedded Image',
-html = '<h2>Embedded Image</h2><br /><img src="myimage.jpg" />',
-htmlImages = array('myimage.jpg'=include_raw('/apache_pb.jpg'))

)

36.2.4 Send Attachments with an Email

Files can be included as attachments to email messages using the -attachments parameter. This parameter takes an array
of file paths as a value. When the email is sent, each file is read from disk and encoded using Base64 encoding. The recipient’s
email client will automatically decode the attached files and make them available.

Note: The maximum size of an email message including all attachments must be less than 8 MB when using the email_send
method. If necessary, larger messages can be sent using the -immediate parameter or the email_immediate method de-
scribed in the section Composing and Queueing Email below.

The following example shows a pair of files being sent with an email message. The attachments are named “MyAttachment.txt”
and “MyAttachment2.txt”. They are located in the same folder as the Lasso page that is sending the email. These text files will
not be processed by Lasso before they are sent.

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An Email with Two Attachments',
-body = 'This is the body of the Email.',
-attachments = array('MyAttachment.txt', 'MyAttachment2.txt')

)

Files can be generated programmatically and attached to an email message by specifying a pair with the name and contents
of the file. For example, the following email_send example uses the pdf_doc type to create a PDF file. The generated PDF
file is sent as an attachment without it ever being written to disk.

386 Chapter 36. Sending Email



LassoGuide, Release 9.3

local(my_file) = pdf_doc(-size='A4', -margin=(: 144.0, 144.0, 72.0, 72.0))
#my_file->add(

pdf_text("I'm a PDF document", -font=pdf_font(-face='Helvetica', -size=36))
)

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An Email with a PDF',
-body = 'This is the body of the Email.',
-attachments = array('MyPDF.pdf'=string(#my_file))

)

36.2.5 Change the Priority of a Message

Most messages should be sent at the default priority. Sending bulk messages like a newsletter at “Low” priority will ensure
that normal email from the site is sent as soon as possible rather than waiting for the entire newsletter to be sent first. The
“High” priority should be reserved for time-dependent messages such as confirmation emails that a site visitor will be looking
for immediately within their email client.

To specify the priority, use the -priority parameter:

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'Password Reset Instructions',
-body = include('password_reset.lasso'),
-priority = 'High'

)

36.2.6 Send a Message with a “Reply-To” and “Sender” Header

The -replyTo parameter specifies an address different from the -from address that should be used for replies. Most email
clients will use this address when composing a response to a message. The -sender parameter allows an alternate sender
from the -from address to be specified. This can be useful if a message is forwarded by Lasso, but the original sender should
still be recorded.

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-replyTo = 'repsonses@example.com',
-sender = 'otheruser@example.com',
-subject = 'An Email',
-body = include('format.lasso')

)

36.2.7 Send a Message with Extra Headers

The -extraMIMEHeaders parameter can specify additional required header parameters to be sent. The value should be an
array of name/value pairs. Each of the pairs will be inserted into the email as an additional header.

36.2. Composing and Sending Email 387



LassoGuide, Release 9.3

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An Email',
-body = include('format.lasso'),
-extraMIMEHeaders = array('Header'='Value', 'Header'='Value')

)

36.2.8 Use an Alternate SMTP Server

Specify the -host parameter in the email_send method directly. If required the port of the SMTP server can be changed
with the -port parameter. An SMTP AUTH username and password can be provided with the -username and -password
parameters. And the -timeout parameter sets the timeout for the SMTP server in seconds.

email_send(
-host = 'mail.example.com',
-username = 'SMTP_USER',
-password = 'USER_PASS',
-timeout = 120,
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An Email',
-body = include('format.lasso')

)

36.3 Email Merge

Lasso can merge values into email messages just before sending them. This allows a single email message to be composed
and then customized for several recipients. The -tokens and -merge parameters make this possible.

In order to use the -tokens and -merge parameters the email message must contain one or more email tokens. The preferred
method for specifying tokens is to use the email_token method. In plain text messages or messages that can’t be processed
through Lasso the #TOKEN# marker can be used instead. For example, the method call email_token('FirstName') corre-
sponds to the marker #FirstName#.

email_token(name::string)
Email tokens are created using this method. It requires a single value containing the name of the email token.

For example, an email message can be marked up with email tokens for the first name and last name of the recipient. The start
of the message, stored in a file called “body.lasso” could be:

<p>Dear [email_token('FirstName')] [email_token('LastName')],</p>

The email message is going to be sent to two recipients: “John Doe” at “john@example.com” and “Jane Doe” at
“jane@example.com”. Each element of the merge map includes an email address as the key and a map of token values as
its value, constructed as follows:

local(myMergeTokens) = map(
'john@example.com' = map('FirstName'="John", 'LastName'="Doe"),
'jane@example.com' = map('FirstName'="Jane", 'LastName'="Doe"),

)

A default token map can also be constructed. The values from this map would be used if any tokens are missing from the
specified email address maps shown above.

388 Chapter 36. Sending Email



LassoGuide, Release 9.3

local(myDefaultTokens) = map('FirstName'="Lasso User", 'LastName'="")

The email_send method call would be written as follows. The email message is being sent to two recipients. The method
references “body.lasso” as the -body of the email message that has the included email_token methods, -merge specifies
#myMergeTokens, and -tokens specifies #myDefaultTokens.

email_send(
-to = 'john@example.com, jane@example.com',
-from = 'example@example.com',
-subject = 'Mail Merge',
-body = include('body.lasso'),
-merge = #myMergeTokens,
-tokens = #myDefaultTokens

The message to John Doe would contain this text:

Dear John Doe,

email_merge(data, tokens, charset=?, transferEncoding=?)
Allows the email merge operation to be performed on any text. Requires two parameters: the text that is to be modified
and a map of tokens to be replaced in the text. The optional charset and transferEncoding parameters can specify
what type of encoding should be applied to the merged tokens.

36.4 Email Sending Status

Email messages that are sent using the email_send method are stored in an outgoing email queue temporarily and then
sent by a background process. Any errors encountered when sending a message can be viewed in the Email Queue section
of Lasso Server Admin.

However, it is often desirable to get information about a message that was sent programatically without examining the queue
table. The following documented methods allow examining the status of a recently sent message.

email_result()
Can be called immediately after calling email_send to get a unique ID string for the queued message.

email_status(id)
Requires an ID from the email_result method and returns the status of the queued message: “sent”, “queued”, or
“error”.

Important: The email sender may take a few seconds or longer to send a message. Checking the status immediately after
calling email_send will always return “queued”, so be sure to add delay before checking the status.

The following example shows an email_send method call that sends a message. The email_result method is called im-
mediately after to store the unique ID of the sent message. After a delay of 30 seconds the email_status method is called
to see if the message was successfully sent.

email_send(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'An Email',
-body = 'This is the body of the email.'

)
local(my_email) = email_result

36.4. Email Sending Status 389



LassoGuide, Release 9.3

sleep(30000)
email_status(#my_email)

In a practical solution the unique ID returned by email_result would be stored in a session variable or in a database table
and then would be checked sometime later using email_status to see if the email message was sent or if the address it was
sent to was invalid.

36.5 Composing and Queueing Email

The email_send method handles all of the most common types of email that can be sent through Lasso including plain text
messages, HTML messages, HTML messages with a plain text alternative messages, and messages with attachments.

For more complex messages structures the email_compose type can be used directly to create the MIME text of the message.
The message can then be sent with the email_queue method. Both of these methods are used internally by email_send.

The email_compose type accepts the same parameters as email_send except those which specify the SMTP server and
priority of the outgoing message. After creating an object with email_compose, member methods can add additional text
parts, HTML parts, attachments, or generic MIME parts. This allows very complex email structures to be created with much
more control than email_send provides.

The email_compose type can also create email parts. When the creator method is called without a -to, -from, or
-subject parameter, a MIME part is created rather than a complete email message. This part can then be fed into the
email_compose->addPartmethod or into the -attachments or -htmlImages parameters to place the part within a com-
plex email message.

The email_queue method is designed to be fed an email_compose object. It requires three parameters: the -data, -from,
and -recipients parameters as attributes of an email_compose object. Additionally, SMTP server parameters and the send-
ing priority can be specified just like in email_send. Queued emails must be less than 8 MB in size including all encoded
attachments.

The email_immediate method takes the same parameters as the email_queue method, but sends the message imme-
diately rather than adding it to the email queue. This method can send messages larger than 8 MB if required. Use of the
email_immediate method is not recommended since it bypasses the priority, error-handling, and connection-handling fea-
tures of the email sending system.

type email_compose

email_compose(-to=?, -from=?, -cc=?, -bcc=?, -subject=?, -sender=?, -replyTo=?, -body=?, -html=?, -date=?,
-contentType=?, -characterSet=?, -transferEncoding=?, -contentDisposition=?, -headerType=?,
-extraMIMEHeaders=?, -attachments=?, -attachment=?, -htmlImages=?, -parts=?)

Creates an email_compose object, accepting similar parameters as email_send. If the -to, -from, and -subject
parameters are not specified then a MIME part is created, otherwise a full MIME email is created.

email_compose->addAttachment(-data=?, -name=?, -path=?, -type=?)
Adds an attachment to an email_compose object. The data of the attachment can be specified directly in the -data
parameter or the path to a file can be specified in the -path parameter. The name of the attachment can be specified
in the -name parameter. The MIME type can be specified with the -type parameter.

email_compose->addHTMLPart(-data=?, -path=?, -images=?)
Adds an HTML part to an email_compose object. The text of the HTML part can be specified directly in the -data
parameter or the path to a file can be specified in the -path parameter. Additionally, the -images parameter can take
the same values as the -htmlImages parameter of the email_send method.

email_compose->addTextPart(-data=?, -path=?)
Adds a text part to an email_compose object. The text of the part can be specified directly in the -data parameter or
the path to a file can be specified in the -path parameter.

390 Chapter 36. Sending Email



LassoGuide, Release 9.3

email_compose->addPart(-data=?)
Adds a generic part to an email_compose object. Requires a parameter -data specifying the data for the part. The
part must be properly formatted as a MIME part. No formatting or encoding will be performed by Lasso.

email_compose->data(-prefix::boolean=?, -force::boolean=?)
Returns the MIME text of the composed email.

email_compose->from()
Returns the from address of the composed email.

email_compose->recipients()
Returns a list of recipients of the composed email.

email_batch()
When passed a capture block of code, it temporarily suspends some back-end operations of the email queue so that
a batch of email messages can be queued quickly. Any messages that are already queued will continue to send while
the code in the specified block is running.

email_queue(-data=?, -recipients=?, -from=?, -host=?, -username=?, -password=?, -port=?, -timeout=?, -priority=?,
-tokens=?, -merge=?, -date=?, -ssl=?)

Queues a message for sending. Requires a -data parameter with the MIME text of the email to send, -from specifying
the from address for the email, and -recipients an array of recipients for the email. Can also accept -priority and
SMTP server -host, -port, -timeout, ``-username, and -password parameters. A different -tokens parameter
can be specified for each queued message to perform an email merge.

email_immediate(-data, -recipients=?, -from=?, -host=?, -username=?, -password=?, -port=?, -timeout=?, -ssl=?)
The same as email_queue, but sends the message immediately without storing it in the database.

36.5.1 Compose an Email Message

The email_compose method can compose an email message. In this example a simple email message is created in a variable
“message”:

local(message) = email_compose(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'Example Message',
-body = 'Example Message'

)

The text of the composed email message can be viewed by outputting the variable “message” to the page. Note that
string->encodeHtml should always be used since certain headers of the email message use angle brackets to surround
values. Also, HTML <pre> tags make it much easier to see the formatting of the email message.

<pre>[#message->asString->encodeHtml]</pre>

Additional text or HTML parts or attachments can be added using the appropriate member methods on the object in the
“message” variable. For example, an attachment can be added using the email_compose->addAttachment method as fol-
lows:

#message->addAttachment(-path='ExampleFile.txt')

36.5.2 Queue an Email Message

An email message created using the email_compose type can be queued for sending using the email_queue method. The
following example shows how to send the email message created above. The three required parameters -data, -from, and
-recipients are all fetched from the email_compose object.

36.5. Composing and Queueing Email 391



LassoGuide, Release 9.3

email_queue(
-data = #message->data,
-from = #message->from,
-recipients = #message->recipients

)

36.5.3 Send a Batch of Messages

The email_batch method can be used when a number of messages need to be queued all at once. The method temporarily
suspends some back-end operations of the email queue so that the messages can be queued faster. Once the capture block
is processed the queue is allowed to resume sending the queue messages.

The example below shows how an inline could be used to find a collection of email addresses. The email_batch method
ensures that the messages are queued as quickly as possible.

email_batch => {
inline(-search, ...) => {

records => {
email_send(-from='sender@example.com', -to=field('email_address'), ...)

}
}

}

Tip: The email_merge method discussed earlier in this chapter can also send an email message to a collection of recipients
quickly.

36.6 Sending SMTP Commands

All communication with remote SMTP servers is handled by a type called email_smtp. These connections are normally han-
dled automatically by the email_send, email_queue, email_immediate, and background email sending processes.

The email_smtp type can be used directly for low-level access to remote SMTP servers, but this is not generally necessary.

type email_smtp

email_smtp(-host::string=?, -port::integer=?, -timeout::integer=?, -username=?, -password=?, -ssl::boolean=?, -clientIp=?)
Creates a new SMTP connection object. Can optionally pass in the SMTP server parameters.

email_smtp->open(-host=?, -port=?, -timeout=?, -username=?, -password=?, -ssl=?, -clientIp=?)
Requires a -host specifying the SMTP host to connect to. Also accepts optional -port, -username, -password, and
-timeout parameters.

email_smtp->command(-send=?, -expect=?, -multi=?, -read=?, -timeout=?)
Sends a raw command to the SMTP server. The -send parameter specifies the command to send. The -expect pa-
rameter specifies the numeric result code that is expected as a result. Returns “true” or “false” depending on whether
the expected result code was found. The -read parameter can be specified to have it return the result from the SMTP
server.

email_smtp->send(-from::string, -recipients::array, -message::string)
Sends a single message to the SMTP server. Requires a -message parameter with the MIME data for the message,
-recipients with an array of recipient email address, and -from with the email address of the sender.

email_smtp->close()
Closes the connection to the remote server.

392 Chapter 36. Sending Email



LassoGuide, Release 9.3

email_mxlookup(domain, -refresh=?, -hostname=?)
Requires a domain as a string parameter and returns a map that describes the MX server for the domain. The map
includes the ‘domain’, ‘host’, ‘username’, ‘password’, ‘timeout’, and ‘SSL’ preference for the MX server.

36.6.1 Look Up an SMTP Server

Use the email_mxlookup method. This returns a map that describes the preferred MX server for the domain. An example
lookup for Gmail is shown below. The first time an MX record is looked up its result is cached and the same information will
be returned on subsequent lookups.

email_mxlookup('gmail.com')
// => map(domain = gmail.com, host = gmail-smtp-in.l.google.com, priority = 5)

36.6.2 Communicate with an SMTP Server

The email_smtp type can send one or more messages directly to an SMTP server. In the following example a message is
created using the email_compose type. That message is then sent to an example SMTP server “smtp.example.com” using an
SMTP AUTH username and password. Once the message is sent the connection is closed.

This example does not perform any error checking and only sends one message. The actual source code for the built-in email
sender background process presents a good example of how this code looks in a full working solution:

local(message) = email_compose(
-to = 'example@example.com',
-from = 'example@example.com',
-subject = 'Example Message',
-body = 'Example Message'

)
local(smtp) = email_smtp

#smtp->open(
-host = 'smtp.example.com',
-port = 25,
-username = 'SMTPUSER',
-password = 'mysecretpassword',
-timeout = 60

)
#smtp->send(

-from = #message->from,
-recipients = #message->recipients,
-message = #message->data + '\r\n'

)
#smtp->close

36.6. Sending SMTP Commands 393





Chapter 37

Retrieving Email

Lasso allows messages to be downloaded from an account on a POP email server. This enables developers to create solutions
such as:

• A list archive for a mailing list

• A webmail interface allowing users to check POP accounts

• An auto-responder that can reply to incoming messages with information

Lasso’s flexible POP implementation allows messages to be easily retrieved from a POP server with a minimal amount of coding.
Additionally, Lasso allows the messages available on the POP server to be inspected without downloading or deleting them.
Mail can be downloaded but left on the server so it can be checked by other clients (and deleted at a later point if necessary).

All messages are downloaded as raw MIME text. The email_parse type can extract the different parts of the downloaded
messages, inspect their headers, or extract attachments from them.

Note: Lasso does not support downloading email via the IMAP protocol.

37.1 Sending POP Commands

The email_pop type is used to establish a connection to a POP email server, inspect the available messages, download one
or more messages, and mark messages for deletion.

37.1.1 POP Methods

The following describes the email_pop type and some of its member methods:

type email_pop

email_pop(-server=?, -port=?, -username=?, -password=?, -APOP=?, -timeout=?, -log=?, -debug=?, -get=?, -host=?, -ssl=?,
...)

Creates a new POP connection object. Requires a -hostparameter. Accepts optional -port and -timeoutparameters.
The -APOP parameter selects authentication method. If -username and -password are specified then a connection
is opened to the server with authentication. The -get parameter specifies which command to perform when calling
email_pop->get.

email_pop->size()
Returns the number of messages available for download.

email_pop->get(command::string=?)
Performs the command specified when the object was created. “UniqueID” by default, or can be set to “Retrieve”, “Head-
ers”, or “Delete”.

email_pop->retrieve(position::integer=?)

395



LassoGuide, Release 9.3

email_pop->retrieve(position::integer, maxLines::integer)
Retrieves the current message from the server. Optionally accepts a position to retrieve a specific message. An optional
second parameter specifies the maximum number of lines to fetch for each email.

email_pop->headers(position::integer=?)
Retrieves the headers of the current message from the server. Optionally accepts a position to get the headers of a
specific message.

email_pop->uniqueID(position::integer=?)
Retrieves the unique ID of the current message from the server. Optionally accepts a position to get the unique ID of a
specific message.

email_pop->delete(position::integer=?)
Marks the current message for deletion. Optionally accepts a position to mark a specific message.

email_pop->close()
Closes the POP connection, performing any specified deletes.

email_pop->cancel()
Closes the POP connection, but does not perform any deletes.

email_pop->noOp()
Sends a ping to the server. Allows the connection to be kept open without timing out.

email_pop->authorize(-username::string, -password::string, -APOP::boolean=true)
Requires a -username and -password parameter. An optional -APOP parameter specifies whether APOP authentica-
tion should be used or not. Opens a connection to the server if one is not already established.

37.1.2 Message Retrieval

The email_pop type is intended to be used with the iterate method to quickly loop through all available messages on the
server. The email_pop->size method returns the number of available messages. The email_pop->get method fetches
the “UniqueID” of the current message by default or can be set to “Retrieve” the current message, the “Headers” of the current
message, or even to “Delete” the current message.

The -host, -username, and -password should be passed to the email_pop object when it is created. The -get parameter
specifies what command the email_pop->get method will perform. In this case it is set to “UniqueID” (the default).

local(myPOP) = email_pop(
-host = 'mail.example.com',
-username = 'POPUSER',
-password = 'MySecretPassword',
-get = 'UniqueID'

)

The iterate method can then be used on the “myPOP” variable. For example, this code will download and delete every mes-
sage from the target server. The variable “myID” is set to the unique ID of each message in turn. The email_pop->retrieve
method fetches the current message and the email_pop->delete method marks it for deletion.

iterate(#myPOP, local(myID)) => {^
#myID
'<br />'
#myPOP->retrieve
#myPOP->delete
'<hr />'

^}

// =>
// 000000025280dd26

396 Chapter 37. Retrieving Email



LassoGuide, Release 9.3

// <br />
// Return-Path: <joe@example.com>
// X-Original-To: jane@example.com
// Delivered-To: jane@example.com
// Received: from mail.example.com (mail.example.com [127.0.0.1])
// by mail.example.com (Postfix) with ESMTP id 1B11410A37
// for <jane@example.com>; Mon, 11 Nov 2013 08:33:59 -0500 (EST)
// Received: (qmail 4313 invoked from network); 11 Nov 2013 08:36:28 -0500
// Message-ID: <5280DCC0.6070809@example.com>
// Date: Mon, 11 Nov 2013 08:33:52 -0500
// From: joe@example.com
// MIME-Version: 1.0
// To: jane@example.com
// Subject: Test
// Content-Type: text/plain; charset=ISO-8859-1; format=flowed
// Content-Transfer-Encoding: 7bit
//
// Testing
// <hr />

Both email_pop->retrieve and email_pop->delete could be specified with the current loop_count as a parameter,
but it is unnecessary since they pick up the loop count from the surrounding iterate method. This example only downloads
and displays the text of each message. Most solutions will use the email_parse type defined below to parse and process the
downloaded :messages.

None of the deletes will actually be performed until the connection to the remote server is closed. The email_pop->close
method performs all deletes and closes the connection. The email_pop->cancelmethod closes the connection, but cancels
all of the marked deletes.

#myPOP->close

37.1.3 Using Email_Pop

This section includes examples of the most common tasks that are performed using the email_pop type. See the section
Parsing Email for examples of downloading messages and parsing them for storage in a database.

Download and Delete All Emails from a POP Server

Open a connection to the POP server using email_pop with the appropriate host, username, and password. The following
example shows how to use email_pop->retrieve and email_pop->delete to download and delete each message from
the server:

local(myPOP) = email_pop(
-host = 'mail.example.com',
-username = 'POPUSER',
-password = 'MySecretPassword'

)

iterate(#myPOP, local(myID)) => {
local(myMsg) = #myPOP->retrieve

// ... process message ...

#myPOP->delete

37.1. Sending POP Commands 397



LassoGuide, Release 9.3

}
#myPOP->close

Each downloaded message can be processed using the techniques described in the section Parsing Email or can be stored
in a database.

Leave Mail on Server and Only Download New Messages

In order to download only new messages it is necessary to store a list of all the unique IDs of messages that have already
been downloaded from the server. This is usually done by storing the unique ID of each message in a database. As messages
are inspected the unique ID is compared to see if the message is new or not. No deletion of messages is performed in this
example.

For the purposes of this example, it is assumed that unique IDs are being stored in a variable array called “myUniqueIDs”. For
each waiting message this variable is checked to see if it contains the unique ID of the current message. If it does not then the
message is downloaded and the unique ID is inserted into “myUniqueIDs”.

local(myPOP) = email_pop(
-host = 'mail.example.com',
-username = 'POPUSER',
-password = 'MySecretPassword'

)
iterate(#myPOP, local(myID)) => {

#myUniqueIDs->contains(#myID) ? loop_continue

#myUniqueIDs->insert(#myID)

// ... process message ...

}
#myPOP->close

Inspect Message Headers

The email_pop->headers method can fetch the headers of each waiting email message. This allows the headers to be
inspected prior to deciding which emails to actually download. In the following example the headers are fetched with
email_pop->headers and two variables, “needDownload” and “needDelete”, are set to determine whether either action
should take place.

local(myPOP) = email_pop(
-host = 'mail.example.com',
-username = 'POPUSER',
-password = 'MySecretPassword',
-get = 'UniqueID'

)
iterate(#myPOP, local(myID)) => {

local(needDownload) = false
local(needDelete) = false
local(myHeaders) = #myPOP->headers

// ... process headers and set #needDownload or #needDelete to true ...

#needDownload ? #myPOP->retrieve
#needDelete ? #myPOP->delete

398 Chapter 37. Retrieving Email



LassoGuide, Release 9.3

}
#myPOP->close

The downloaded headers can be processed using the techniques described in the section Parsing Email.

37.2 Parsing Email

Each of the messages that are downloaded from a POP server is returned in raw MIME text form. This section describes the
basic structure of email messages, the email_parse type that can parse them into headers and parts, and finally gives some
examples of parsing messages.

37.2.1 Email Structure

The basic structure of a simple email message is shown below. The message starts with a series of headers. The headers of the
message are followed by a blank line, then the body of the message.

Each server that handles the message adds its own Received headers, so there may be many of them. The Mime-Version,
Content-Type, and Content-Transfer-Encoding headers specify what type of email message it is and how it is encoded.
The Message-ID is a unique ID given to the message by the email server. The To, From, Subject, and Date headers are all
specified by the sending user in their email client (or in Lasso using email_send).

Received: From [127.0.0.1] BY example.com ([127.0.0.1]) WITH ESMTP;
Thu, 08 Jul 2004 08:07:42 -0700

Mime-Version: 1.0
Content-Type: text/plain; charset=US-ASCII;
Message-Id: <8F6A8289-D0F0-11D8-B21D-0003936AD948@example.com>
Content-Transfer-Encoding: 7bit
From: Example Sender <example@example.com>
Subject: Test Message
Date: Thu, 8 Jul 2004 08:07:42 -0700
To: Example Recipient <example@example.com>

This is the email message!

The order of headers is unimportant and each header is usually specified only once (except for the Received headers which
are in reverse chronological order). A header can be continued on the following line by starting the second line with a space or
tab. Beyond those standard headers shown here, email messages can also contain many other headers identifying the sending
software, logging spam and virus filtering actions, or even adding meta information like a picture of the sender.

A more complex email message is shown below. This message has a Content-Type of multipart/alternative. The body
of the message is divided into two parts, one text part and one HTML part. The parts are divided using the boundary specified
in the Content-Type header (---=_NEXT_fda4fcaab6).

Each of the parts is formatted similarly to an email message. They have several headers followed by a blank line and the body
of the part. Each part has a Content-Type and a Content-Transfer-Encoding which specify the type part (either text/
plain or text/html) and encoding.

Received: From [127.0.0.1] BY example.com ([127.0.0.1]) WITH ESMTP;
Thu, 08 Jul 2004 08:07:42 -0700
Mime-Version: 1.0
Message-Id: <14501276655.1089394748105@example.com>
From: Example Sender <example@example.com>
Subject: Test Message
Date: Thu, 8 Jul 2004 08:07:42 -0700

37.2. Parsing Email 399



LassoGuide, Release 9.3

To: Example Recipient <example@example.com>
Content-Type: multipart/alternative; boundary="---=_NEXT_fda4fcaab6";

-----=_NEXT_fda4fcaab6
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 8bit

This is the text part of the email message!

-----=_NEXT_fda4fcaab6
Content-Type: text/html; charset=ISO-8859-1
Content-Transfer-Encoding: 8bit

<html>
<body>
<h3>This is the HTML part of the email message!</h3>
</body>
</html>
-----=_NEXT_fda4fcaab6--

Attachments to an email message are included as additional parts. Typically, the file that is attached is encoded using Base64
encoding so it appears as a block of random letters and numbers. It is possible for one part of an email to itself have a Con-
tent-Type of multipart/alternative and its own boundary. In this way, very complex recursive email structures can be
created.

Lasso allows access to the headers and each part (including recursive parts) of downloaded email messages through the
email_parse type.

37.2.2 Parsing Methods

The email_parse type requires the raw MIME text of an email message as a parameter when it is created. It returns an object
whose member methods can inspect the headers and parts of the email message. Outputting an email_parse object to the
page will result in a message formatted with the most common headers and the default body part. An email_parse object
can be used with the iterate method to inspect each part of the message in turn.

type email_parse

email_parse(mime::string)
Parses the raw MIME text of an email. Requires a single string parameter. Outputs the raw data of the email if displayed
on the page or converted to a string.

email_parse->headers()
Returns an array of pairs containing all the headers of the message.

email_parse->header(name::string, ...)
Returns a single specified header. Requires one parameter, the name of the header to be returned. See also the shortcuts
for specific headers listed below. If -extract is specified then any comments in the header will be stripped. If -comment
is specified then only the comments will be returned. If-safeEmail is specified then the email address will be obscured
for display on the web. If -noDecode is specified then the raw header is returned without Quoted-Printable or BinHex
decoding. It will return an array if multiple headers with the same name are found. Optionally, -join can specify a
character to be used to combine the values in the array into a string.

email_parse->mode()
Returns the mode from the Content-Type for the message. Usually either text or multipart.

email_parse->body(-type=void, -preamble=void, -array=void, ...)
Returns the body of the message. An optional parameter specifies the preferred type of body to return (e.g.text/plain

400 Chapter 37. Retrieving Email



LassoGuide, Release 9.3

or text/html). If the body is encoded using Quoted-Printable or Base64 encoding then it is automatically decoded
before being returned by this method.

email_parse->size()→ integer
Returns the number of parts in the message.

email_parse->get(position::integer)
Returns the specified part of the message. Requires an integer parameter. The part is returned as an email_parse
object that can be further inspected.

email_parse->data()
Returns the raw data of the message.

email_parse->rawHeaders()
Returns the raw data of the headers.

email_parse->recipients()
Returns an array containing all of the email addresses in the To, Cc, and Bcc headers.

email_parse->to(...)

email_parse->from(...)

email_parse->cc(...)

email_parse->bcc(...)

email_parse->subject()

email_parse->date()

email_parse->content_type()

email_parse->boundary()

email_parse->charset()

email_parse->content_disposition()

email_parse->content_transfer_encoding()
These are shortcuts that return the value for the corresponding header from the email message. The table below maps
the method to the header. (The Bcc header will always be empty for received emails.)

Table 37.1: Email Header Methods

Email Header Method Email Header

email_parse->to To

email_parse->from From

email_parse->cc Cc

email_parse->bcc Bcc

email_parse->subject Subject

email_parse->date Date

email_parse->content_type Content-Type (MIME Type)

email_parse->boundary Content-Type (boundary)

email_parse->charset Content-Type (charset)

email_parse->content_disposition Content-Disposition

email_parse->content_transfer_encoding Con-
tent-Transfer-Encoding

37.2. Parsing Email 401



LassoGuide, Release 9.3

The methods to, from, cc, and bcc also accept -extract, -comment, and -safeEmail parameters like the
email_parse->header method. These methods join multiple parameters by default, but -join=null can be speci-
fied to return an array instead.

37.2.3 Using Email_Parse

This section includes examples of the most common tasks that are performed using the email_parse type. See the preceding
section on the email_pop type for examples of downloading messages from a POP email server.

Display a Downloaded Message

Simply use the email_parse type on the downloaded message and display it on the page. The email_parse object will
output a formatted version of the email message including a plain text body if one exists.

The following example shows how to download and display all the waiting messages on an example POP mail server. The
unique ID of each downloaded message is shown as well as the output of email_parse in a set of <pre> tags.

<?lasso
local(myPOP) = email_pop(

-host = 'mail.example.com',
-username = 'POPUSER',
-password = 'MySecretPassword'

)
iterate(#myPOP, local(myID))

local(myMsg) = #myPOP->retrieve
?>
<h3>Message: [#myID]</h3>
<pre>[email_parse(#myMsg)]</pre>
<hr />
<?lasso

/iterate
#myPOP->close

?>

// =>
// <h3>Message: 000000045280dd26</h3>
// <pre>Date: Mon 11 Nov 2008 9:0:0 -0500
// From: joe@example.com
// To: jane@example.com
// Subject: Test
// Content-Type: text/plain; charset=ISO-8859-1; format=flowed
// Content-Transfer-Encoding: 7bit
//
// Just Testing
// </pre>
// <hr />

Inspect Headers of a Downloaded Message

There are three ways to inspect the headers of a downloaded message.

1. The basic headers of a message can be inspected using the shortcut methods such as email_parse->from,
email_parse->to, email_parse->subject, etc. The following example shows how to display the basic headers
for a message, where the variable “myMsg” is assumed to be the output from an email_pop->retrieve method:

402 Chapter 37. Retrieving Email



LassoGuide, Release 9.3

local(myParse) = email_parse(#myMsg)
'<br />To: ' + #myParse->to->encodeHtml + '\n'
'<br />From: ' + #myParse->from->encodeHtml + '\n'
'<br />Subject: ' + #myParse->subject->encodeHtml + '\n'
'<br />Date: ' + #myParse->date->asString->encodeHtml + '\n'

// =>
// <br />To: Example Recipient
// <br />From: Example Sender
// <br />Subject: Test Message
// <br />Date: Thu 8 Jul 2004 08:07:42 -0700

These headers can be used in conditionals or other code as well. For example, this conditional would perform different
tasks based on whether the message is to one address or another:

local(myParse) = email_parse(#myMsg)
if(#myParse->to >> 'mailinglist@example.com') => {

// ... store the message in the mailing list database ...
else(#myParse->to >> 'help@example.com')

// ... forward the message to technical support ...
else

// ... unknown recipient ...
}

2. The value for any header, including application-specific headers, headers added by mail processing gateways, etc. can be
inspected using theemail_parse->headermethod. For example, the following code can check whether the message
has SpamAssassin headers:

local(myParse) = email_parse(#myMsg)
local(spam_version) = string(#myParse->header('X-Spam-Checker-Version'))
local(spam_level) = string(#myParse->header('X-Spam-Level'))
local(spam_status) = string(#myParse->header('X-Spam-Status'))
'<br />Spam Version: ' + #spam_version->encodeHtml + '\n'
'<br />Spam Level: ' + #spam_level->encodeHtml + '\n'
'<br />Spam Status: ' + #spam_status->encodeHtml + '\n'

// =>
// <br />Spam Version: SpamAssassin 2.61
// <br />Spam Level:
// <br />Spam Status: No, hits=-4.6 required=5.0 tests=AWL,BAYES_00 autolearn=ham

The spam status can then be checked with a conditional in order to ignore any messages that have been marked as
spam (note that the details will depend on what server-side spam checker is being used and which version).

if(#spam_status >> 'Yes') => {
// ... message is spam ...

else
// ... message is not spam ...

}

3. The value for all the headers in the message can be displayed using the email_parse->headers method, as the
following example shows:

local(myParse) = email_parse(#myMsg)
iterate(#myParse->headers, local(header))

'<br />' + #header->first->encodeHtml + ': ' + #header->second->encodeHtml
/iterate

37.2. Parsing Email 403



LassoGuide, Release 9.3

// =>
// <br />Received: From [127.0.0.1] BY example.com ([127.0.0.1]) WITH ESMTP;
// Thu, 08 Jul 2004 08:07:42 -0700
// <br />Mime-Version: 1.0
// <br />Content-Type: text/plain; charset=US-ASCII;
// <br />Message-Id: <8F6A8289-D0F0-11D8-B21D-0003936AD948@example.com>
// <br />Content-Transfer-Encoding: 7bit
// <br />From: Example Sender <example@example.com>
// <br />Subject: Test Message
// <br />Date: Thu, 8 Jul 2004 08:07:42 -0700
// <br />To: Example Recipient <example@example.com>

Locate Parts of a Downloaded Message

The email_parse->body method can find the plain text and HTML parts of a message. The following example shows both
the plain text and HTML parts of a downloaded message:

local(myParse) = email_parse(#myMsg)
'<pre>' + #myParse->body(-type='text/plain')->encodeHtml + '</pre>'
'<hr />' + #myParse->body(-type='text/html')->encodeHtml + '<hr />'

The email_parse->size and email_parse->getmethods can be used with the iteratemethod to inspect every part of
an email message in turn. This will show information about plain text and HTML parts as well as information about attachments.
The headers and body of each part is shown:

local(myParse) = email_parse(#myMsg)
iterate(#myParse, local(myPart))

iterate(#myPart->header, local(header))
'<br />' + #header->first->encodeHtml + ': ' + #header->second->encodeHtml + '\n'

/iterate
'<br />' + #myPart->body->encodeHtml + '\n'
'<hr />\n'

/iterate

// =>
// <br />Content-Type: text/plain; charset=ISO-8859-1
// <br />Content-Transfer-Encoding: 8bit
// <br />This is the text part of the email message!
// <hr />
// <br />Content-Type: text/html; charset=ISO-8859-1
// <br />Content-Transfer-Encoding: 8bit
// <br />&lt;html&gt;
// &lt;body&gt;
// &lt;h3&gt;This is the HTML part of the email message!&lt;/h3&gt;
// &lt;/body&gt;
// &lt;/html&gt;
// <hr />

Extract Attachments of a Downloaded Message

Attachments of a multipart message appear as parts with a Content-Disposition of “attachment”. The name of the attach-
ment can be found by looking at the “name” field of the Content-Type header. The data for the attachment is returned as
the body of the part.

404 Chapter 37. Retrieving Email



LassoGuide, Release 9.3

The attachments can be extracted and written out as files that re-create the attached file, or they can be stored in a database,
processed by the image methods, or served immediately using web_response->sendFile.

The following example finds all of the attachments for a message using the iterate method to cycle through each part
in the message and inspect the Content-Disposition header using email_parse->content_disposition. The name
(email_parse->content_type('name')) and data (email_parse->body) of each part that includes an attachment is
used to write out a file using file->openWrite and file->writeBytes which re-creates the attachment.

local(myParse) = email_parse(#myMsg)
if(#myParse->mode >> 'multipart') => {

iterate(#myParse, local(myPart)) => {
if(#myPart->content_disposition >> 'attachment') => {

local(myFile) = file('/Attachments/' + #myPart->content_type('name'))
local(myFileData) = #myPart->body
#myFile->doWithClose => {

#myFile->openWrite&writeBytes(#myFileData)
}

}
}

}

Note: In order for this code to work, the “Attachments” folder must already exist and have permissions allowing Lasso Server
to write to it.

Store a Downloaded Message in a Database

Messages can be stored in a database in several different ways depending on how the messages are going to be used later.

• The simple headers and body of a message can be stored by calling email_parse->asString directly in an inline:

local(myPOP) = email_pop(
-host = 'mail.example.com',
-username = 'POPUSER',
-password = 'MySecretPassword'

)
handle => {

#myPOP->close
}
iterate(#myPOP, local(myID)) => {

local(myMsg) = #myPOP->retrieve
local(myParse) = email_parse(#myMsg)

inline(
-add,
-database='example',
-table='archive',
'email_format'=#myParse->asString

) => {}
}

• Often it is desirable to store the common headers of the message in individual fields as well as the different body parts.
This example shows how to do this:

local(myPOP) = email_pop(
-host = 'mail.example.com',
-username = 'POPUSER',

37.2. Parsing Email 405



LassoGuide, Release 9.3

-password = 'MySecretPassword'
)
handle => {

#myPOP->close
}
iterate(#myPOP, local(myID)) => {

local(myMsg) = #myPOP->retrieve
local(myParse) = email_parse(#myMsg)

inline(
-add,
-database = 'example',
-table = 'archive',
'email_format' = #myParse->asString,
'email_to' = #myParse->to,
'email_from' = #myParse->from,
'email_subject' = #myParse->subject,
'email_date' = #myParse->date,
'email_cc' = #myParse->cc,
'email_text' = #myParse->body(-type='text/plain'),
'email_html' = #myParse->body(-type='text/html')

) => {}
}

• The raw text of messages can be stored using email_parse->data. It is generally recommended that the raw text of
a message be stored in addition to a more friendly format. This allows additional information to be extracted from the
message later if required.

local(myPOP) = email_pop(
-host = 'mail.example.com',
-username = 'POPUSER',
-password = 'MySecretPassword'

)
handle => {

#myPOP->close
}
iterate(#myPOP, local(myID)) => {

local(myMsg) = #myPOP->retrieve
local(myParse) = email_parse(#myMsg)
inline(

-add,
-database = 'example',
-table = 'archive',
'email_text' = #myParse->asString,
'email_raw' = #myParse->data

) => {}
}
#myPOP->close

Ultimately, the choice of which parts of the email message need to be stored in the database will be solution dependent.

37.3 Email Helper Methods

The email methods use a number of helper methods for their implementation. The following describes a number of these
methods and how they can be used independently.

406 Chapter 37. Retrieving Email



LassoGuide, Release 9.3

email_extract()
Strips all comments out of a MIME header. If specified with a -comment parameter, it will return the comments instead.
Used as a utility method by email_parse->header.

email_extract allows the different parts of email headers to be extracted. Email headers containing email addresses
are often formatted in one of the three formats below:

john@example.com
"John Doe" <john@example.com>
john@example.com (John Doe)

In all three of these cases the email_extract method returns “john@example.com”. The angle brackets in the second
example identify the email address as the important part of the header. The parentheses in the third example identify
that portion of the header as a comment.

If email_extract is called with the optional -comment parameter, it will return “john@example.com” for the first exam-
ple and “John Doe” for the two following examples.

email_findEmails()
Returns an array of all email addresses found in the input. Used as a utility method by email_parse->recipients.

email_safeEmail()
Used as a utility method by email_parse->header. It obscures an email address by returning the comment portion
or only the username before the “@” character, and can safely display email headers on the web without attracting email
address harvesters. It returns the following output for the example headers above:

// =>
// john
// John Doe
// John Doe

email_translateBreaksToCRLF()
Translates all return characters and line feeds in the input into "\r\n" pairs.

37.3. Email Helper Methods 407





Chapter 38

DNS

DNS (Domain Name System) is an essential part of the Internet’s infrastructure for mapping people-friendly domain names like
“www.lassosoft.com” to machine-friendly IP addresses like “127.0.0.1”. Every URL entered into a web browser or email address
entered into an email client requires consulting the DNS system to determine which server to submit the request or route the
message to.

DNS servers can handle many different types of requests. Some of the most common are listed here:

*
Returns all available information about the domain name. The results of this type of request are returned in human-readable
form.

A
This is the most common type of request and simply returns the IP address that corresponds with the domain name.

CNAME
This is a request for the common name associated with a domain name.

MX
This is a request for the mail server that is associated with a domain name. A prioritized list of mail servers are returned.

NS
This is a request for the name servers responsible for providing definitive information about the domain name.

PTR
This type of request allows a reverse lookup to be performed, returning the domain name associated with an IP address.

TXT
Domain name servers can store additional information about a domain name. Specially formatted domain names are
sometimes used as keys that return useful information when queried with this option.

Any query can return either a single value or an array of values. For example, a single domain name may be served by a
collection of web servers. When the A record for that domain name is looked up, a list of servers is returned. The DNS server
may round-robin the list of servers so a different server is on top for each request. This effectively spreads traffic among all the
servers in the pool more or less evenly.

38.1 Domain Names

Domain names are written as a series of words separated by periods. Reading from left to right the domain name gets pro-
gressively more general. In a typical three word domain name like “www.lassosoft.com” the first word represents a particular
machine or a particular service, the second word represents the domain in which the machine or service resides, and the third
word represents the top-level domain that has authorized the use of the domain name.

Top-level domains are controlled by an organization that has been designated by the IANA (Internet Assigned Name Author-
ity). Two common, general-purpose top-level domains are “.com” and “.net”, “.edu” is a top-level domain reserved for educa-
tional institutions, “.gov” is a top-level domain reserved for U.S. government institutions, “.org” is a top-level domain intended
for non-profit organizations.

409



LassoGuide, Release 9.3

Each country has its own top-level domain defined by its standard two letter abbreviation, e.g. “.us” is the top-level domain for
the United States, “.uk” is the top-level domain for the United Kingdom, and “.cn” is the top-level domain for China. The domain
“.tv”, frequently used to refer to television, is actually the country domain for Tuvalu. Each country decides how it wants to
assign domain names within their own top-level domain. Some have created virtual top-level domains like “.com.uk”, “.org.uk”,
“.edu.uk”, etc.

38.2 IP Addresses

IPv4 addresses consist of four numbers from 0 to 255 separated by periods. Each number represents a single 8-bit integer and
the entire IP address represents a 32-bit integer, so there are effectively about 4 billion IPv4 addresses. A typical IPv4 address
appears as follows:

17.149.160.49

In order to expand the range of IP addresses that are available, a new Internet Protocol has been designed and is in the process
of being adopted. This is version 6 of the Internet Protocol and is abbreviated IPv6. The most recent versions of Windows, OS
X, and Linux all support IPv6 addresses. IPv6 addresses are essentially 128-bit integers. A typical IPv6 address may appear as
follows, though abbreviated forms also exist:

2001:0db8:0000:0000:0000:ff00:0042:8329

Note: The DNS lookup methods in Lasso do not support IPv6 addresses at this time.

38.3 Querying for DNS Records

DNS queries are performed with the dns_lookup method.

dns_lookup(name::string, ...)
Queries a DNS server for information about a specified domain name. It requires one parameter, the domain name being
queried. The optional parameters are described below. This method returns either a string, array, or dns_response
object.

Parameters

• name (string) – The domain name being queried.

• -type – The type of data to look up. Defaults to “*” if the first parameter is a domain name or “PTR” if it is
an IP address. Possible values include “*”, “A”, “NS”, “MD”, “MF”, “CNAME”, “SOA”, “MB”, “MG”, “MR”, “NULL”,
“WKS”, “PTR”, “HINFO”, “MINFO”, “MX”, “TXT”, “AXFR”, “MAILB”, “MAILA”.

• -class – The class in which to perform the lookup. Defaults to “IN” which represents the Internet DNS
system. Searching other classes is very rare. Possible values include “*”, “IN”, “CS”, “CH”.

• -noRecurse (boolean) – By default the local DNS server will automatically query other DNS servers to
find the answer to a request. If this parameter is included then the query will only return information that
is known directly by the local DNS server.

• -inverse (boolean) – Sets the inverse bit in the DNS query.

• -status (boolean) – Sets the status bit in the DNS query.

• -showQuery (boolean) – If specified the query is not actually performed, but a dns_response object
representing the query is returned.

410 Chapter 38. DNS



LassoGuide, Release 9.3

• -formatQuery (boolean) – If specified the query is not actually performed, but a string describing the
constructed query is returned.

• -bitQuery (boolean) – If specified the query is not actually performed, but a string is returned that shows
the low-level bit representation of the constructed query.

• -showResponse (boolean) – If specified the response is returned as dns_response object that can be
inspected using the member methods described in the documentation below.

• -format (boolean) – If specified a string is returned that describes the response from the DNS server.

• -bitFormat (boolean) – If specified a string is returned that shows the low-level bit representation of
the response from the DNS server.

• -hostname – Allows specifying the name of a specific DNS server to query. Defaults to the DNS server set
up in the OS.

• -port (integer) – The port of the DNS server to connect to when doing a DNS lookup.

• -timeout (integer) – How long to wait for a response when doing a DNS lookup.

38.3.1 IP Lookup

The following example looks up the associated IP address(es) for a specified domain name. Using a -type of “A” will always
return an array, even if there is only one IP address. An empty array will be returned if no information about the specified
domain name can be found.

dns_lookup('www.apple.com', -type='A')
// => array(17.149.160.49, 17.178.96.59, 17.172.224.47)

38.3.2 Reverse Lookup

Reverse lookups are performed when an IP address is passed to the dns_lookup method, or when the “PTR” type is specified,
and return an array of domain names. An empty array will be returned if no domain name could be found for the specified IP
address.

dns_lookup('23.208.45.15')
// => array(a23-208-45-15.deploy.static.akamaitechnologies.com)

38.3.3 MX Records Lookup

“MX” lookups return an array of pairs. The first element of each pair is a priority and the second element of each pair is an IP
address. The mail servers should be used in order of priority to provide fallback if the preferred mail servers cannot be reached.

dns_lookup('lassosoft.com', -type='MX')
// => array((10 = smtp1.lassosoft.com), (15 = smtp2.lassosoft.com))

38.3.4 Return Different Formats

The following output shows the human-readable response to a DNS request:

38.3. Querying for DNS Records 411



LassoGuide, Release 9.3

dns_lookup('www.apple.com', -format)

// =>
// Length: 73
// ID: 32569
// Type: Answer
// Flags: RD, RA
// Counts: QD 1, AN 1
// QD 1: www.apple.com.. * IN
// AN 1: www.apple.com.. CNAME IN 1331 www.isg-apple.com.akadns.net..

The following output shows the low-level bit formatting of a DNS response. The actual response is fairly long and not shown
here:

dns_lookup('www.lassosoft.com', -bitFormat)

// =>
// ASCII
// 3 T X
// ... rest of response ...

38.4 DNS Response Helper Type

The dns_response type is a helper type which is used to format both DNS requests and responses. Normally a value of this
type will only be returned from the dns_lookup method when -showResponse is specified. However, this type can also
parse raw DNS requests or responses if necessary.

type dns_response

dns_response(message::bytes)
Create a new dns_response object. An object of this type can be returned from the dns_lookup method when
-showResponse is specified.

dns_response->format()
Returns a formatted display of the entire response from the DNS server.

dns_response->bitFormat()
Returns a formatted display of the raw bits returned by the DNS server.

dns_response->answer()
Returns an array of answers for most DNS responses. Address lookups or reverse lookups return an array of IP addresses
or host names. MX record lookups return an array of pairs, each with a priority and an IP address. Other lookups may
return an array of strings or other data.

dns_response->data()
Returns the response as a raw bytes object.

412 Chapter 38. DNS



Chapter 39

LDAP

LDAP (Lightweight Directory Access Protocol) is an industry-standard protocol for publishing directory information within
an organization. LDAP servers are used for many different tasks, such as publishing the contact information for employees or
other publicly accessible information. LDAP servers are also used to publish authentication information so all servers within
an organization can use the same usernames and passwords.

An LDAP server provides access to a “directory information tree” (DIT). Each element in the tree is called an “entry” and has
several attributes. Any element in the tree can be found using its “distinguished name” (DN). The distinguished name is like
the path to a file in an operating system. For example, the DN of the record for John Doe in the directory might be “cn=John
Doe, ou=People, o=LassoSoft”.

The DN is made up of three parts separated by commas. Each part of the DN is called a “relative distinguished name” (RDN) and
must be unique for all entries at that level. The RDN functions much like a primary key and includes one or more name/value
pairs that uniquely identify the element from all of its siblings.

The attributes of each entry make up the data of the entry. Every entry will have an “objectClass” that tells what kind of entry
it is. The remainder of the attributes will be determined by the type of directory that is being searched, but may include first
name, last name, email address, phone number, etc. The attributes are often named with one or two-character abbreviations
like “cn” for combined name, “ln” for last name, “fn” for first name, or “ou” for operational unit. Attributes may also have longer
names like “email”, “telephonenumber”, and so on.

39.1 LDAP Searches

A search is defined starting at a DN within the directory tree. This DN will usually be provided by the LDAP server administrator.
The scope allows the search to be limited to the object itself (i.e., is the object contained within the tree?), children of the object,
or the entire tree below the object. Some possible DNs are shown below:

dc=lassosoft, dc=com
ou=People, o=LassoSoft

The search query is defined by the filter, which is a series of query terms (attributes and values) joined by logical operators.
The most basic filter specifies that all objects in the tree should be returned:

(objectClass=*)

This is actually a special case of the “exists” filter. This filter returns any entries that have a defined objectClass. Similarly, all
entries that have a full name attribute (“cn”) could be found with this filter:

(cn=*)

A filter can specify an attribute name, operator, and value. Any of the attributes of the entries in the directory tree can be used
in the filter. The operators include “equals” (=), “sounds like” (~=), “greater than” (>=), and “less than” (<=). The equals operator
supports the asterisk (*) as a wildcard character, allowing for “contains”, “begins with”, and “ends with” searches. Operators for
“greater than” (>) and “less than” (<) may only be supported on numeric fields. For example, the following simple filters would
find all entries whose full name starts with “John”, ends with “Doe”, or are exactly “John Doe”:

413



LassoGuide, Release 9.3

(cn=John*)
(cn=*Doe)
(cn=John Doe)

Two or more filters can be combined using the logical operators “and” (&) or “or” (|), or a filter can be negated using “not” (!).
The following three filters would find all entries who have a first name of “John” and a last name of “Doe”, a first name of “John”
or a last name of “Doe”, and a first name that is not “John” and a last name that is not “Doe”:

(& (cn=John*) (cn=*Doe))
(| (cn=John*) (cn=*Doe))
(& (! (cn=John*)) (! (cn=*Doe)))

Note that there are no quotes around the values in the filters. The parentheses are used to delimit the values. In order to find a
value that contains parentheses, an asterisk (“*”), a backslash (“\”), or a null character, the following escape sequences can be
used: \2a for “(”, \28 for “)”, \29 for “*”, \5c for “\”, and \00 for null.

39.2 LDAP Results

The results of an LDAP search will be an array of pairs. The first element of each pair will be the DN of the entry. The second
element of each pair will be an array of pairs including the attribute names and values for the entry. For example, a search that
found entries for “John Doe” and “Jane Doe” could contain the following elements:

(:
pair('cn=John Doe, ou=People, o=LassoSoft' = (:

pair('cn'='John Doe'),
pair('mail'='john@example.com')

)),
pair('cn=Jane Doe, ou=People, o=LassoSoft' = (:

pair('cn'='Jane Doe'),
pair('mail'='jane@example.com')

))
)

LDAP allows the results to be customized in two ways. A list of desired attributes can be passed with the search. The results will
only include those attributes. An asterisk wildcard (*) specifies that all attributes should be returned (the default). A plus sign
wildcard (+) specifies that only operational attributes should be returned (these are attributes that are generally used internally
by the LDAP directory). Finally, a flag allows only attribute names to be returned without any values. By default both attribute
names and values are returned.

39.3 LDAP Methods

The ldap type can create a connection to an LDAP server and then send queries to the server.

type ldap

ldap(...)
Creates a new ldap object. Accepts an optional host name and port to immediately open a connection to a server.

ldap->open(...)
Opens a connection to an LDAP server. Requires a host name and optionally a port.

ldap->authenticate(...)
Logs into the LDAP server. Requires a username and password.

414 Chapter 39. LDAP



LassoGuide, Release 9.3

ldap->search(...)
Performs a search on the remote LDAP server. Requires a parameter specifying the base of the query. Additional param-
eters specify the scope, filter, attributes, and attributes-only option for the query. See the following list for details about
these parameters. Returns no value.

Parameters

• base – The DN of the entry at which to start the search. Required.

• scope – The scope of the search. Optional. This parameter should be one of the following methods:

– ldap_scope_base – Search the object itself.

– ldap_scope_onelevel – Search the object’s immediate children.

– ldap_scope_subtree – Search the object and all its descendants.

• filter – The filter to apply to the search. Optional.

• attributes – An array of strings specifying the attribute types to return in the search results. Optional.

– * (asterisk) may be specified in the array to indicate that all attributes are to be returned.

– + (plus sign) may be specified in the array to indicate that all operational attributes should be returned.

– 1.1 may be specified in the array to indicate that no attributes should be returned.

• attribute-only – A boolean specifying that only attributes and no values should be returned. Defaults
to “false”. Optional.

ldap->results()
Returns results from the last search operation as an array containing a series of nested array and pair values. Each element
in the top level array is a pair representing an entry found in the search. The first element of the pair is the DN of the
found entry. The second element of the pair is an array of pairs containing the entry’s attribute names and values.

ldap->referrals()
Returns an array of referral strings if any are generated by the server.

ldap->code()
Returns the code generated by the previous operation. A code of “0” means success. The most common codes are listed
in the table below.

ldap->close(...)
Closes the connection to the LDAP server.

For example, the following code performs an LDAP query against a server “ldap.example.com”. The base of the query is
'dc=example,dc=com'. The scope is ldap_scope_subtree specifying that the object and all of its descendants should
be searched. The filter is '(objectClass=*)' specifying that all object classes are to be returned. The filter attribute is “*”
specifying that all attributes are to be returned. And, the “attribute-only” parameter is automatically set to “false” specifying
that both attributes and values should be returned. After each line is executed the return code is verified to be “0”, indicating
success. If the result code is greater than “0” then an error is reported.

local(my_ldap) = ldap
#my_ldap->open('ldap.example.com')
fail_if(#my_ldap->code != 0, #my_ldap->code, 'LDAP Error ' + #my_ldap->code)
#my_ldap->authenticate('myusername', 'mysecretpassword')
fail_if(#my_ldap->code != 0, #my_ldap->code, 'LDAP Error ' + #my_ldap->code)
#my_ldap->search('dc=example,dc=com', ldap_scope_subtree, '(objectClass=*)')
fail_if(#my_ldap->code != 0, #my_ldap->code, 'LDAP Error ' + #my_ldap->code)
local(my_result) = #my_ldap->results
#my_ldap->close

The result of this operation will be a staticarray of pairs. The first element of each pair is the DN of the entry. The second element
of each pair is a staticarray of pairs containing the names and attributes of the element.

39.3. LDAP Methods 415



LassoGuide, Release 9.3

Table 39.1: Common LDAP Status Codes

Code Description

0 Success (No Error)

1 Operations Error

2 Protocol Error

3 Time Limit Exceeded

4 Size Limit Exceeded

5 Compare False

6 Compare True

7 Auth Method Not Supported

8 Strong Auth Required

10 Referral

11 Admin Limit Exceeded

12 Unavailable Critical Extension

13 Confidentiality Required

14 SASL Bind In Progress

16 No Such Attribute

17 Undefined Attribute Type

18 Inappropriate Matching

19 Constraint Violation

20 Attribute Or Value Exists

21 Invalid Attribute Syntax

32 No Such Object

33 Alias Problem

34 Invalid DN Syntax

36 Alias Dereferencing Problem

48 Inappropriate Authentication

49 Invalid Credentials

50 Insufficient Access Rights

51 Busy

52 Unavailable

53 Unwilling To Perform

54 Loop Detect

64 Naming Violation

65 Object Class Violation

66 Not Allowed On Non-Leaf

67 Not Allowed On RDN

68 Entry Already Exists

69 Object Class Mods Prohibited

71 Affects Multiple DSAs

80 Other

416 Chapter 39. LDAP



Chapter 40

Networking Protocols and Named Pipes

Lasso provides objects for TCP, TCP/SSL and UDP networking. It also provides objects for local communications over named
pipes. These networking objects are designed to fit tightly into the language runtime’s threading model. Each method call
that might block accepts a timeout parameter. All such timeouts are in seconds.

40.1 TCP

TCP (Transmission Control Protocol) networking is provided through the net_tcp type. Objects of this type represent either
the client or the server end of a connection.

40.1.1 Creating net_tcp Objects

type net_tcp

net_tcp()

net_tcp(fd::filedesc)
A net_tcp object is created with no parameters. Once an object is obtained it can open or accept TCP connections.
Alternatively, can be passed a filedesc object that it will use to read and write data.

40.1.2 Opening TCP Connections

net_tcp->connect(to::string, port::integer, timeout::integer=4)
Opens a TCP connection to the specified server. TCP connections are made based on an address string and a port
number. A server must be listening at the address and port before connections can be made to it. The address can be
either a host name or an IP address. The addresses “0.0.0.0” or “127.0.0.1” can be used for local connections.

Returns “true” if the connection succeeds. By default, it will timeout after 4 seconds and return “false” if a connection
cannot be made, but will not cause a failure. It will return sooner than that in cases where the specified server is not on
the network or has no server listening on the specified port. This timeout is more likely to be hit when connecting to
a server that is available but under heavy load and not processing new connections in a timely manner. The timeout
value can be tailored for the expected network conditions. A value of “-1” indicates no timeout.

40.1.3 Accepting TCP Connections

A TCP server listens on a specific port for client connections. Once a client connects, a new net_tcp object is returned for that
connection. There are several steps for establishing a server. The series of methods is generally: bind, listen and then either
accept or forEachAccept.

net_tcp->bind(port::integer, address::string=‘0.0.0.0’)

net_tcp->listen(backlog::integer=128)
When acting as a server, the net_tcp object must first be bound to a local port and optional address. The address
can be ignored in most cases, but is useful on machines that have multiple network interfaces. The bind can be called

417



LassoGuide, Release 9.3

before a client connection is made as well, however the operating system will automatically bind a client connection
to a random port if it is not already bound, so binding a client connection is usually skipped.

When creating a server, listen is called after bind. It allows the new object to begin accepting client connections.

net_tcp->accept(timeoutSeconds::integer=-1)

net_tcp->forEachAccept()
After a net_tcp object has been bound and is listening, client connections can then be accepted. The acceptmethod
is called to accept one connection. The process of accepting a connection does not actually establish a connection;
instead, a new object is returned for that connection. Usually, the new connection should be passed to the new thread.
This permits the server’s thread to continue accepting new connections in a loop while the newly accepted connection
is free to handle itself independently.

By default, accept will wait indefinitely for a client to connect. The timeout parameter can make the call return “null”
if no client has connected in that period.

The forEachAccept method is used to accept connections in a loop. When called it is given a capture. Each accepted
connection will be passed to that capture to be handled.

40.1.4 Closing TCP Connections

net_tcp->close()
TCP connections should be closed as soon as they are no longer needed. Once a net_tcp object has been closed it
should not be used again.

net_tcp->shutdownRd()

net_tcp->shutdownWr()

net_tcp->shutdownRdWr()
These give greater control over closing the connection at the TCP level. Respectively, these methods close down com-
munications channels for the read, write, or read and write directions. A close should still be called after a shutdown.

40.1.5 Reading TCP Data

net_tcp->readSomeBytes(count::integer, timeoutSeconds::integer)
Attempts to read up to the specified number of bytes. If any bytes are immediately available then those will be returned
and may be fewer than the requested amount. The timeout parameter controls how long the method will wait for data
if there is none to be read. The method will return “null” if the timeout is reached.

40.1.6 Writing TCP Data

net_tcp->writeBytes(data::bytes, offset::integer=0, length::integer=-1)
Attempts to send the provided bytes. An optional zero-based offset parameter can specify how far in the bytes to skip
before sending. An optional length parameter can specify how many bytes to send. The default value of “-1” causes
all the bytes to be sent.

Returns the number of bytes that were sent. However, this number will always match the number of bytes requested
to be sent. It automatically handles TCP flow control, but does not accept a timeout value.

40.1.7 Simple Multi-Threaded Server

The example below will create a simple server that returns an HTTP response that simply echos back the request data it
received.

418 Chapter 40. Networking Protocols and Named Pipes



LassoGuide, Release 9.3

local(server) = net_tcp
handle => { #server->close }

#server->bind(8080) & listen & forEachAccept => {
// New client connection
local(con) = #1

// Move connection into new thread
split_thread => {

handle => { #con->close }
local(request) = ''

// Read in the entire request in chunks
{

#request->append(#con->readSomeBytes(8096))
not #request->contains('\r\n\r\n') ? currentCapture->restart

}()

// Write out the HTTP response with the request in the body
local(response) = 'HTTP/1.1 200 OK\r\n\

Content-Type: text/html; charset=UTF-8\r\n\r\n\
' + #request

#con->writeBytes(bytes(#response))
}

}

While that server was running, if you were to open up a terminal shell on the same machine and execute curl local-
host:8080, the following would be the result:

$> curl localhost:8080
GET / HTTP/1.1
User-Agent: curl/7.30.0
Host: localhost:8080
Accept: */*

40.2 TCP/SSL

SSL (Secure Sockets Layer) support is provided through the net_tcp_ssl type. This type inherits from net_tcp, so all of its
methods are available plus a few SSL-specific additions. SSL is turned on and off for connections that are already established.
When being used as a server, creating new net_tcp_ssl objects will return net_tcp objects with SSL turned on.

40.2.1 Creating net_tcp_ssl Objects

type net_tcp_ssl
Changed in version 9.2.6: Renamed from net_tcpssl.

net_tcp_ssl()

net_tcp_ssl(fd::filedesc)
The first method creates and returns a new net_tcp_ssl object and accepts no parameters. The second creator
method can be passed a filedesc object that will use to read and write data.

40.2. TCP/SSL 419



LassoGuide, Release 9.3

40.2.2 Loading SSL Certificates

net_tcp_ssl->loadCerts(cert::string, privateKey::string)
Requires the file paths to a certificate file and a private key file. It is required when creating a TCP SSL
server. The paths should be full OS-specific paths to the files. It calls through to the OpenSSL functions
SSL_CTX_use_certificate_chain_file and SSL_CTX_use_PrivateKey_file. It will fail if an error is returned
from the OpenSSL functions, in which case the OpenSSL-specific error code and message will be set.

40.2.3 Beginning and Ending SSL Sessions

net_tcp_ssl->beginTLS(timeoutSecs::integer=5)
Begins SSL communications for the connection. Because starting SSL requires a series of communications between the
two hosts, this method allows specifying a timeout value which will terminate the action if it takes too long to complete.

Returns no value, but will fail if the underlying OpenSSL library produces an error.

net_tcp_ssl->endTLS()
Ends the SSL session and returns the connection to its non-SSL state. The connection is not terminated in any way.

40.2.4 Accepting SSL Connections

Accepting SSL connections is accomplished in the same manner as accepting non-SSL connections. However, serving SSL
requires setting the certificate and private key files through the net_tcp_ssl->loadCerts method.

The net_tcp_ssl object supports both accept and forEachAccept just as net_tcp does. Accepting a connection using
either of those methods will return a net_tcp_ssl object that has started the SSL session. Because some protocols require
connections to be established first and then switched to SSL, net_tcp_ssl also provides an acceptNoSSL method.

net_tcp_ssl->acceptNoSSL(timeoutSeconds::integer=-1)→ net_tcp_ssl
Accepts a new connection and returns a net_tcp_ssl object for it. This connection has not yet started an SSL session
and operates just as a net_tcp connection would. SSL can be started via the net_tcp_ssl->beginTLS method.

40.3 UDP

UDP (User Datagram Protocol) is a connectionless protocol. It is used to transmit individual packets of data to a server.

40.3.1 Creating net_udp Objects

type net_udp

net_udp()

net_udp(fd::filedesc)
The first method accepts no parameters and returns a new net_udp object. Alternatively, a filedesc object that will
be used to read and write data can be passed as a parameter.

40.3.2 Reading UDP Data

Reading UDP data requires first binding a net_udp object to a specific port and optional address. Once bound, data can be
read through the net_udp->readPacket method which returns data as an object of type net_udp_packet. This contains
the bytes sent as well as the address of the sender and the port from which it was sent.

420 Chapter 40. Networking Protocols and Named Pipes



LassoGuide, Release 9.3

net_udp->readPacket(maxBytes::integer, timeoutSeconds::integer=-1)
Waits to receive a new UDP packet. The first parameter specifies the maximum size of data to receive. The number of
bytes returned may be fewer than the provided value, though individual packets will not be segmented. This value
affects the size of the memory buffer allocated internally to hold incoming data.

The second parameter specifies how long the method should wait before returning a “null” value. The default value of
“-1” causes the method to wait indefinitely.

When successful, this method returns a net_udp_packet object.

type net_udp_packet

net_udp_packet(bytes, name, port)

net_udp_packet->bytes()→ bytes
Returns the bytes received.

net_udp_packet->fromName()→ string
Returns the server name that the data was sent from.

net_udp_packet->fromPort()→ integer
Returns the port that the data was sent from.

40.3.3 Writing UDP Data

With a net_udp object, data is sent one packet at a time to a particular address and port combination. The receivers must be
waiting to accept packets from other hosts.

net_udp->writeBytes(b::bytes, toAddress::string, toPort::integer)→ integer
Sends the bytes specified in the first parameter to the host and port specified in the second and third parameters.
Returns the number of bytes that were sent.

40.3.4 Closing net_udp Objects

net_udp->close()
Although net_udp objects do not maintain a connection, they must still be closed when they are no longer needed
to free up resources.

40.4 Named Pipes

A named pipe is a means of communication between processes on a single local machine. One process begins listening on a
pipe with a particular name. Other processes connect to that pipe and data is exchanged. The net_named_pipe type inherits
from net_tcp and so all of the same methods for reading and writing bytes data are available. Named pipe usage differs in
that the bind and connect methods take a pipe name parameter (with no port number). The net_named_pipe->accept
method returns a net_named_pipe object for the new connection.

The net_named_pipe objects are implemented as UNIX domain sockets on UNIX-based systems and as named pipes on
Windows.

40.4.1 Creating net_named_pipe Objects

type net_named_pipe

net_named_pipe()

40.4. Named Pipes 421



LassoGuide, Release 9.3

net_named_pipe(fd::filedesc)
The first method accepts no parameters and returns a new net_named_pipe object. Alternatively, a filedesc object
that will be used to read and write data can be passed as a parameter.

40.4.2 Opening Named Pipe Connections

net_named_pipe->connect(to::string, timeoutSeconds::integer=4)
Attempts to connect to the specified named pipe. Returns “true” if the connection was made, and “false” otherwise.

40.4.3 Accepting Named Pipe Connections

net_named_pipe->bind(to::string)

net_named_pipe->listen(backlog::integer=128)

net_named_pipe->accept(timeoutSeconds::integer=-1)
The bind method attempts to create a pipe with the given name. It requires one parameter which is the name of the
pipe to create. There can be only one listener on any given pipe name. The method will fail if there is a problem creating
the pipe.

The listen and accept methods operate as described for their net_tcp counterparts, except that accept will return
new net_named_pipe objects for each new connection.

422 Chapter 40. Networking Protocols and Named Pipes



Part VII

Database Operations

423





Chapter 41

Database Interaction Fundamentals

A database is the cornerstone of any significant web application. One of the primary applications of Lasso is to perform
database actions and format the results of those actions. This chapter introduces the fundamentals of specifying database
actions in Lasso.

41.1 Using Inlines

The inline method is used to specify a database action and to present the results of that action within a Lasso page. The
database action is specified using keyword parameters passed to the inline. Additional name/value parameters specify the
user-defined parameters of the database action. Each inline normally represents a single database action, but when using SQL
statements a single inline can be use to perform batch operations as well. Additional actions can be performed in subsequent
or nested inline methods.

inline(...)
Performs the database action specified by the parameters. The results of the database action are available inside the
required capture block or, if an -inlineName is specified, later on the page within resultSet, records, or rows
methods.

Parameters

• -database – Specifies the name of the database that will perform the database action. If no -host is
specified then the database is used to look up the data source specified in Lasso Admin for that database.
Optional.

• -host – Specifies the connection parameters for a host within the inline. This provides an alternative to
setting up data source hosts within Lasso Admin. Optional. See the table Host Array Parameters for the
options available.

• -inlineName – Specifies a name for the inline. The same name can be used with resultSet, records,
or rows methods to return the records from the inline later on in the page. Optional.

• -statementOnly – Specifies that the inline should generate the internal statement required to perform
the action, but not actually perform the action. The statement can be fetched with action_statement.
Optional.

• -table – Specifies the table that should receive the database action. Most database actions require that
a table be specified. The -table is used to determine what encoding will be used when interpreting
database results, so a -table may be necessary even for an inline with an -sql action. Optional.

The results of the database action can be displayed within the contents of the inline’s capture block using the records or rows
methods along with field or column methods. Alternately, the inline can be named using -inlineName and the results can
be displayed later using resultSet, records, or rows methods.

The entire database action can be specified directly in the opening inline method, or visitor-defined aspects of the action
can be retrieved from query or post parameters. Nested inline methods can create complex database actions.

The -statementOnly option instructs the data source to generate the implementation-specific statement required to
perform the desired database action, but not to actually perform it. The generated statement can be returned with ac-
tion_statement. This is useful for seeing the statement Lasso will generate for an action.

425



LassoGuide, Release 9.3

41.1.1 Database Actions

A database action is performed to retrieve data from a database or to manipulate data stored in a database. Database actions
in Lasso can query records in a database that match specific criteria, return a particular record from a database, add a record
to a database, delete a record from a database, fetch information about a database, or navigate through the found set from a
database search. Additionally, database actions can execute SQL statements in databases that understand SQL.

The database actions in Lasso are defined according to which action parameter is used to trigger the action. The following
table lists the parameters that perform database actions that are available in Lasso.

Table 41.1: Database Action Parameters

Parameter Description

-search Finds records in a database that match specific criteria, returns detail for a particular record in a database,
or navigates through a found set of records.

-findAll Returns all records in a specific database table.

-random Returns a single, random record from a database table.

-add Adds a record to a database table.

-update Updates a specific record in a database table.

-delete Removes a specified record from a database table.

-show Returns information about the tables and fields within a database.

-sql=? Executes a SQL statement in a compatible data source. Only works with SQLite, MySQL, and other SQL
databases.

-prepare=? Creates a prepared SQL statement in a compatible data source. Nested inlines will execute the prepared
statement with different values.

-nothing The default action which performs no database actions, but simply passes the parameters of the action.

Note: The tableDatabaseActionParameters lists all of the database actions that Lasso supports. Individual data source connec-
tors may only support a subset of these parameters. For example, the Lasso Connector for FileMaker Server does not support
the -sql action. See the documentation for third-party data source connectors for information about which actions they
support.

Each database action parameter requires additional parameters in order to execute the action properly. These parameters
are specified using additional keyword parameters. For example, a -database parameter specifies the database in which the
action should take place and a -table parameter specifies the specific table from that database in which the action should
take place. Keyword parameters specify the query for a -search action, the initial values for the new record created by an
-add action, or the updated values for an -update action.

Full documentation on which inline parameters are required for each action are detailed in the section specific to that action
in this chapter or in subsequent chapters.

Specifying a -FindAll Action Within an Inline

The following example shows an inline method that has a -findAll database action specified. The inline includes a
-findAll parameter to specify the action, -database and -table parameters to specify the database and table from which
records should be returned, and a -keyField parameter to specify the key field for the table. The entire database action is
hard-coded within the inline method.

The method found_count returns how many records are in the database. The records method executes the code in the
capture block for each record in the found set. The field methods are repeated for each found record, creating a listing of
the names of all the people stored in the “people” table.

426 Chapter 41. Database Interaction Fundamentals



LassoGuide, Release 9.3

inline(
-findAll,
-database='contacts',
-table='people',
-keyField='id'

) => {^
'There are ' + found_count + ' record(s) in the People table.\n'
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

// =>
// There are 2 record(s) in the People table.
// <br />John Doe
// <br />Jane Doe

Specifying a -Search Action Within an Inline

The following example shows an inline method that has a -search database action . The inline includes a -search param-
eter to specify the action, -database and -table parameters to specify the database and table records from which records
should be returned, and a -keyField parameter to specify the key field for the table. The subsequent keyword parameters,
'first_name'='John' and 'last_name'='Doe', specify the query that will be performed in the database. Only records
for John Doe will be returned. The entire database action is hard-coded within the inline.

The method found_count returns how many records for “John Doe” are in the database. The records method executes the
code in the capture block for each record in the found set. The field methods are repeated for each found record, creating
a listing of all the records for “John Doe” stored in the “people” table:

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'first_name'='John',
'last_name'='Doe'

) => {^
'There were ' + found_count + ' record(s) found in the People table.\n'
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

// =>
// There were 1 record(s) found in the People table.
// <br />John Doe

Displaying the Generated Action Statement

Use the action_statement method within the inline method. This returns the action statement that was generated by
the data source connector to fulfill the specified database action. For SQL data sources like MySQL and SQLite, a SQL statement
will be returned. Other data sources may return a different style of action statement.

inline(-search, -database='example', -table='example', /* etc. */) => {^
action_statement

41.1. Using Inlines 427



LassoGuide, Release 9.3

// ...
^}

To see the action statement that would be generated by the data source without actually performing the database action, the
-statementOnly parameter can be specified in the inline method. The action_statement method will return the same
value it would for a normal inline database action, but the database action will not actually be performed.

inline(-search, -database='example', -table='example', -statementOnly, /* etc. */) => {^
action_statement
// ...

^}

41.1.2 Inlines and HTML Forms

The previous two examples show how to specify a hard-coded database action completely within an inline method. This
is an excellent way to embed a database action that will be the same every time a page is loaded, but does not provide any
room for visitor interaction.

A more powerful technique is to use values from an HTML form or URL to allow a site visitor to modify the database action
that is performed within the inline. The following two examples demonstrate two different techniques for doing this using
the singular web_request->param method and the tie-based web_request->params method.

Using HTML Form Values Within an Inline

An inline-based database action can make use of visitor-specified parameters by reading values from an HTML form that the
visitor customizes and submits to trigger the page containing the inline method.

The following HTML form provides two inputs into which the visitor can type information. An input is provided for “first_name”
and one for “last_name”. These correspond to the names of fields in the “people” table. The action of the form is set to “re-
sponse.lasso” which will contain the inline that performs the actual database action:

<form action="response.lasso" method="POST">
<br />First Name: <input type="text" name="first_name" value="" />
<br />Last Name: <input type="text" name="last_name" value="" />
<br /><input type="submit" name="submit" value="Search" />

</form>

The inline in “response.lasso” contains the pair parameter 'first_name'=web_request->param('first_name'). The
web_request->param method instructs Lasso to fetch the input named “first_name” from the form post parameters sub-
mitted to the current page being served, namely the form shown above. The inline contains a similar pair parameter for
“last_name”.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'first_name'=web_request->param('first_name'),
'last_name'=web_request->param('last_name')

) => {^
'There were ' + found_count + ' record(s) found in the People table.\n'
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

428 Chapter 41. Database Interaction Fundamentals



LassoGuide, Release 9.3

If the visitor entered “Jane” for the first name and “Doe” for the last name then the following results would be returned:

// =>
// There were 1 record(s) found in the People table.
// <br />Jane Doe

As many parameters as needed can be named in the HTML form and then retrieved in the response page via the inline.

Tip: The web_request->param member method is a replacement for the action_param or form_param methods used in
prior versions of Lasso for fetching GET or POST data.

Using an Array of Form Values Within an Inline

Rather than specifying each web_request->param individually, an entire set of HTML form parameters can be entered into
an inline method using the web_request->params method. Inserting the web_request->params method into an inline
functions as if all the parameters and name/value pairs in the HTML form were placed into the inline at the location of the
web_request->params parameter.

The inline method in our updated “response.lasso” contains the parameter web_request->params. This instructs Lasso to
take all the parameters from the HTML form or URL which results in the current page being loaded and insert them in the inline
as if they had been typed at the location of web_request->params. This will cause the name/value pairs for “first_name” and
“last_name” entered in the form above to be inserted into the inline.

inline(
web_request->params,
-search,
-database='contacts',
-table='people',
-keyField='id'

) => {^
'There were ' + found_count + ' record(s) found in the People table.\n'
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

If the visitor entered “Jane” for the first name and “Doe” for the last name then the following results would be returned:

// =>
// There were 1 record(s) found in the People table.
// <br />Jane Doe

As many parameters as needed can be named in the HTML form. They will all be passed into the inline at the location of the
web_request->params method.

Tip: The web_request->params member method is a replacement for the action_params method used in prior versions
of Lasso for fetching GET or POST data.

Setting HTML Form Values

If the Lasso page containing an HTML form is the action to an HTML form or the URL has query parameters, the values of the
HTML form inputs can be set to values passed from the previous Lasso page using web_request->param.

41.1. Using Inlines 429



LassoGuide, Release 9.3

For example, if a form is on “default.lasso” and the action of the form is also “default.lasso” then the same page will be reloaded
with the visitor-specified form values each time the form is submitted. The following HTML form uses web_request->param
calls to automatically restore the values the user specified in the form previously each time the page is reloaded:

<form action="default.lasso" method="POST">
First Name: <br />
<input type="text" name="first_name" value="[web_request->param('first_name')]" />
Last Name: <br />
<input type="text" name="last_name" value="[web_request->param('last_name')]" />
<br />
<input type="submit" name="submit" value="Submit" />

</form>

41.1.3 Nesting Inline Database Actions

Database actions can be combined to perform compound database actions. All the records in a database that meet certain
criteria could be updated or deleted. Or, all the records from one database could be added to a different database. Or, the
results of searches from several databases could be merged and used to search another database.

Database actions are combined by nesting inline methods. For example, if inlines are placed inside a records method
within another inline then the inner inline methods will execute once for each record found in the outer inline method.

All database result methods function for only the innermost inline method. Variables can pass through into nested inlines.

Tip: SQL nested inlines can also perform reversible SQL transactions in transaction-compliant data sources. See the section
SQL Transactions in the SQL Data Sources chapter for more information.

Updating Specific Records with Nested Inlines

This example uses nested inline methods to change the last name of all people whose last name is currently “Doe” in a
database to “Person”. The outer inline performs a hard-coded search for all records with “last_name” equal to “Doe”. The inner
inline updates each record so “last_name” is now equal to “Person”. The output confirms that the conversion went as expected
by outputting the new values.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'last_name'='Doe',
-maxRecords='all'

) => {^
records => {^

inline(
-update,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=keyField_value,
'last_name'='Person'

) => {^
'<br />Name is now ' + field('first_name') + ' ' + field('last_name') + '\n'

^}
^}

430 Chapter 41. Database Interaction Fundamentals



LassoGuide, Release 9.3

^}

// =>
// <br />Name is now John Person
// <br />Name is now Jane Person

41.1.4 Array-based Inline Parameters

Most parameters used within an inline method specify an action. Additionally, keyword parameters and name/value pair
parameters can be stored in an array and then passed into an inline as a group. Any single value in an inline that is an array object
will be interpreted as a series of parameters inserted at the location of the array. This technique is useful for programmatically
assembling database actions.

Many parameters can only take a single value within an inline method. For example, only a single action can be specified
and only a single database can be specified. The last parameter defines the value that will be used for the action. For example,
the last -database parameter defines the value that will be used for the database of the action. If an array parameter comes
first in an inline then all subsequent parameters will override any conflicting values within the array parameter.

Using an Array to Pass Values Into an Inline

The following Lasso code performs a -findAll database action with the parameters first specified in an array and stored in
the variable “params”, then passed into an inline method all at once. The value for -maxRecords in the inline overrides the
value specified within the array parameter since it is specified later. Only the number of records found in the database are
returned:

local(params) = (:
-findAll,
-database='contacts',
-table='people',
-maxRecords=50

)
inline(#params, -maxRecords=100) => {^

'There are ' + found_count + ' record(s) in the People table.'
^}

// => There are 2 record(s) in the People table.

41.2 Inline Introspection Methods

Lasso has a set of methods that return information about the current inline’s action. The parameters of the action itself can be
returned or information about the action’s results can be returned.

The following methods can be used within an inlinemethod’s capture block to return information about the action specified
by the inline.

action_param(name::string, join::string=’rn’)

action_param(name::string, -count)

action_param(name::string, position::integer)
Requires a parameter specifying the name of a keyword or pair parameter passed to the inline method. If no other
parameter is specified, it returns all values it finds for the specified name joined together with a line break. An optional

41.2. Inline Introspection Methods 431



LassoGuide, Release 9.3

second parameter can specify the string to use as a separator when it finds more than one parameter with the specified
name.

To find the number of parameters passed to an inline method that share a specified name, specify -count as the
second parameter. This will return the number of parameters sharing the same name. To get the value of a specific one
of these parameters, instead pass an integer specifying which parameter you want. For example, if an inline is passed
four parameters that share the same name, the one that comes third can be retrieved by passing a “3” as the second
value to action_param.

action_params()
Returns an array containing all of the keyword parameters and pair parameters that define the current action.

action_statement()
Returns the statement that was generated for the data source to implement the requested action. For SQL databases,
this will return a SQL statement. Other data sources may return different values.

database_name()
Returns the name of the current database.

keyField_name()

keyColumn_name()
Returns the name of the current key field.

keyField_value()

keyColumn_value()
Returns the name of the current key value if defined. Can also be used for actions that add a new record to get the
newly generated ID.

lasso_currentAction()
Returns the name of the current action.

maxRecords_value()
Returns the number of records from the found set that are currently being displayed.

skipRecords_value()
Returns the current offset into a found set.

table_name()

layout_name()
Returns the name of the current table.

search_arguments()
Executes a capture block once for each pair parameter in the current action.

search_fieldItem()
Used in the capture block of a search_arguments method. Returns the “name” portion of the current pair parameter.

search_valueItem()
Used in the capture block of a search_arguments method. Returns the “value” portion of the current pair parameter.

search_operatorItem()
Used in the capture block of a search_arguments method. Returns the operator associated with the current pair
parameter.

sort_arguments()
Executes a capture block once for each sort parameter in the current action.

sort_fieldItem()
Used in the capture block of a sort_arguments method. Returns the field that will be sorted.

432 Chapter 41. Database Interaction Fundamentals



LassoGuide, Release 9.3

sort_orderItem()
Used in the capture block of a sort_arguments method. Returns the direction in which the field will be sorted.

41.2.1 Display Parameters of the Current Database Action

The value of the action_params method in the following example is formatted to clearly show the elements of the returned
array:

inline(
-search,
-database='contacts',
-table='people',
-keyField='id'

) => {^
action_params

^}

// =>
// staticarray(
// (-search = true),
// (-database = contacts),
// (-table = people),
// (-keyField = id)
// )

41.2.2 Display Parameter Pairs of the Current Database Action

Loop through the action_params method and display only name/value pairs for which the name does not start with a
hyphen, i.e., any pair parameters and not keyword parameters. The following example shows a search of the “people” table of
the “contacts” database for a person named “John Doe”:

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'first_name'='John',
'last_name'='Doe'

) => {^
with param in action_params
where not #param->first->beginsWith('-')
sum '<br />' + #param->asString->encodeHtml + '\n'

^}

// =>
// <br />(first_name = John)
// <br />(last_name = Doe)

41.2.3 Display Action Parameters to a Site Visitor

The search_arguments method can be used in conjunction with the search_fieldItem, search_valueItem and
search_operatorItemmethods to return a list of all pair parameters and associated operators specified in a database action.

41.2. Inline Introspection Methods 433



LassoGuide, Release 9.3

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'first_name'='John',
'last_name'='Doe'

) => {^
search_arguments => {^

'<br />' + search_fieldItem + ' ' + search_operatorItem + ' ' + search_valueItem + '\n'
^}

^}

// =>
// <br />first_name BW John
// <br />last_name BW Doe

The sort_arguments method can be used in conjunction with the sort_fieldItem and sort_orderItem methods to
return a list of all sort parameters specified in a database action.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
-sortField='first_name', -sortOrder='descending',
-sortField='last_name'

) => {^
sort_arguments => {^

'<br />' + sort_fieldItem + ' ' + sort_orderItem + '\n'
^}

^}

// =>
// <br />first_name descending
// <br />last_name ascending

41.3 Inline Action Result Methods

The following documentation details the methods that return information about the results of the current action. These meth-
ods provide information about the current found set rather than providing data about the database or providing information
about what database action was performed. Examples of using most of these methods are provided in the Searching and
Displaying Data and SQL Data Sources chapters.

field(name::string, ...)

column(name::string, ...)
Returns the value for a specified field from the result set. Can optionally take one of the following encoding key-
word parameters: -encodeNone, -encodeHtml, -encodeBreak, -encodeSmart, -encodeUrl, -encodeStrictUrl,
-encodeXml.

found_count()→ integer
Returns the number of records found by the database action.

records(inlineName::string)

records(-inlineName::string=?)

434 Chapter 41. Database Interaction Fundamentals



LassoGuide, Release 9.3

rows(inlineName::string)

rows(-inlineName::string=?)
Loops once for each record in the found set. Any field methods within the records or rows methods return the
value for the specified field in each row in turn. Can be used outside of an inline capture block by specifying the name
of a previously declared inline method with an -inlineName keyword parameter or just by passing in an inline name.

records_array()

rows_array()
Returns the complete found set in a staticarray of staticarrays. The outer staticarray contains one staticarray for every
row in the found set. The inner staticarrays contain one item for each field in the result set.

records_map(...)
Returns the complete found set in a map of maps. See the table below for details about the parameters and output of
records_map.

Parameters

• -keyField – The name of the field to use as the key for the outer map. Defaults to the current key-
Field_name, “ID”, or the first field of the database results.

• -returnField – Specifies a field name that should be included in the inner map. Should be called mul-
tiple times to include multiple fields. If no -returnField is specified then all fields will be returned.

• -excludeField – The name of a field to exclude from the inner map. If no -excludeField is specified
then all fields will be returned.

• -fields – An array of field names to use for the inner map. By default the value for field_names will be
used.

• -type – By default the method returns a map of maps. By specifying -type='array' the method will
instead return an array of maps. This can be useful when the order of records is important.

resultSet_count(-inlineName=?)
Returns the number of result sets that were generated by the inline. This will generally only be applicable to inlines
that include a -sql parameter with multiple statements. An optional -inlineName parameter specifying the name of
another inline will return the number of result sets that it has, outside of that inline’s capture block.

resultSet(-inlineName=?)

resultSet(num::integer, -inlineName=?)

resultSet(num::integer, inlineName::string)
Returns a single result set from an inline. The method can take an integer specifying which result set to return, defaulting
to the first set if it is not specified. An optional -inlineName keyword parameter or just an inline name will return that
inline’s result set.

shown_count()
Returns the number of records shown in the current found set. Less than or equal to maxRecords_value.

shown_first()
Returns the number of the first record shown from the found set. Usually skipRecords_value plus one.

shown_last()
Returns the number of the last record shown from the found set.

The action result methods display information about the current found set. For example, the following code generates a status
message that can be displayed under a database listing:

'Found ' + found_count + ' records.\n'
'<br />Displaying ' + shown_count + ' records from ' + shown_first + ' to ' + shown_last + '.'

41.3. Inline Action Result Methods 435



LassoGuide, Release 9.3

// =>
// Found 100 records.
// Displaying 10 records from 61 to 70.

These methods can also create links that allow a visitor to navigate through a found set.

41.3.1 Using a Records Array

The records_array method gets access to all of the data from an inline operation. The method returns a staticarray with
one element for each record/row in the found set. Each element is itself a staticarray that contains one element for each
field/column in the found set.

The method can either quickly output all of the data from the inline operation or can be used with the iterate methods or
query expressions to access the data programmatically. (Of course, at that point, you probably just want to use the records
or rows methods with the field or column methods.)

inline(-search, -database='contacts', -table='people') => {^
records_array

^}

// => staticarray(staticarray(1, John, Doe), staticarray(1, Jane, Doe), ...)

The output can be made easier to read on a web page using the iterate method and the array->join method:

inline(-search, -database='contacts', -table='people') => {^
iterate(records_array, local(record)) => {^

'<br />' + ('"' + #record->join('", "') + '"')->encodeHtml + '\n'
^}

^}

// =>
// <br />&quot;1&quot;, &quot;John&quot;, &quot;Doe&quot;
// <br />&quot;2&quot;, &quot;Jane&quot;, &quot;Doe&quot;
// ...

// Web output
// =>
// "1", "John", "Doe"
// "2", "Jane", "Doe"
// ...

The output can be listed with the appropriate field names by using the field_names method, which returns an array con-
taining each field name from the current found set. It will always contain the same number of elements as the elements of
the records_array method.

inline(-search, -database='contacts', -table='people') => {^
'<table>\n'
'<tr><td>' + field_names->join('</td><td>')->encodeHtml(false, true) + '</td></tr>\n'
iterate(records_array, local(record)) => {^

'<tr>\n'
' <td>' + #record->join('</td><td>')->encodeHtml(false, true) + '</td>\n'
'</tr>\n'

^}
'</table>\n'

^}

// =>

436 Chapter 41. Database Interaction Fundamentals



LassoGuide, Release 9.3

// <table>
// <tr><td>id</td><td>first_name</td><td>last_name</td></tr>
// <tr>
// <td>1</td><td>John</td><td>Doe</td>
// </tr>
// <tr>
// <td>2</td><td>Jane</td><td>Doe</td>
// </tr>
// ...
// </table>

Together the field_names and records_arraymethods provide a programmatic process of accessing all the data returned
by an inline action. There may be some cases when these methods yield better performance than using records, field, and
field_name methods.

41.3.2 Using a Records Map

The records_map method functions similarly to the records_array method, but returns all of the data from an inline op-
eration as a map of maps. The keys for the outer map are the key field values for each record from the table. The keys for the
inner map are the field names for each record in the found set.

inline(-search, -database='contacts', -table='people', -keyField='id') => {^
records_map

^}

// => map(1 = map(first = John, last = Doe), 2 = map(first = Jane, last = Doe), ...)

41.4 Database Schema Inspection Methods

The schema of a database can be inspected using the database_… methods or the inline -show action parameter which al-
lows information about a database to be returned using thefield_namemethod. Value lists within FileMaker Server databases
can also be accessed using the -show parameter. This is documented in the FileMaker Data Sources chapter.

The -show action parameter functions like the -search parameter except that no name/value pair parameters, sort param-
eters, result parameters, or operator parameters are required. The only other parameters required for a -show action are the
-database and -table parameters. It is also recommended that you specify the -keyField parameter.

The methods detailed below are for inspecting the schema of a database. The field_name method must be used in concert
with a -show action or any database action that returns results including -search, -add, -update, -random, or -findAll.
The database_names and database_tableNames methods can be used on their own.

database_names()
Executes the capture block for every database specified in Lasso Admin. Requires using database_nameItem to show
results.

database_nameItem()
Used inside the capture block of a database_names method to return the name of the current database.

database_realName(alias::string)
Returns the real name of a database given the alias that Lasso uses for the name.

database_tableNames(dbname::string)
Executes the capture block for every table in the specified database. Requires using database_tableNameItem to
show results.

41.4. Database Schema Inspection Methods 437



LassoGuide, Release 9.3

database_tableNameItem()
Used inside the capture block of a database_tableNames method to return the name of the current table.

field_name(-count)

field_name(position::integer, -type=?)

column_name(-count)

column_name(position::integer, -type=?)
If passed the parameter -count then it returns the number of fields in the current table. If passed an integer, it returns
the name of a field at that position in the current database and table. If passed an integer and then the -typeparameter,
it returns the type of field rather than the name. Types include “Text”, “Number”, “Date/Time”, “Boolean”, and “Unknown”.

field_names()

column_names()
Returns an array containing all the field names in the current result set. This is the same data as returned by field_name,
but in a format more suitable for iterating or other data processing.

41.4.1 List All Databases Entered in Lasso Admin

The following example shows how to list the names of all databases set in Lasso Admin using the database_names and
database_nameItem methods:

database_names => {^
'<br />' + loop_count + ': ' + database_nameItem + '\n'

^}

// =>
// <br />1: Contacts
// <br />2: Examples
// <br />3: Site

41.4.2 List All Tables Within a Database

The following example shows how to list the names of all the tables within a database using the database_tableNames and
database_tableNameItem methods. The tables within the “Site” database are listed:

database_tableNames('contacts') => {^
'<br />' + loop_count + ': ' + database_tableNameItem + '\n'

^}

// =>
// <br />1: companies
// <br />2: people

41.4.3 List All Fields Within a Table

The following example demonstrates how to return information about the fields in a table using the inline method to
perform a -show action. A loop method loops through the number of fields in the table and the name and type of each field
is returned. The fields within the “contacts” table are shown:

438 Chapter 41. Database Interaction Fundamentals



LassoGuide, Release 9.3

inline(
-show,
-database='contacts',
-table='people',
-keyField='id'

) => {^
loop(field_name(-count)) => {^

'<br />' + loop_count + ': ' + field_name(loop_count) +
' (' + field_name(loop_count, -type) + ')\n'

^}
^}

// =>
// <br />1: creation_date (Date)
// <br />2: id (Number)
// <br />3: first_name (Text)
// <br />4: last_name (Text)

41.5 Inline Connection Options

Lasso provides two different ways to specify the data source that should execute an inline database action. The connection
characteristics for the data source host can be specified entirely within the inline or the connection characteristics can be
specified within Lasso Admin and then looked up based on which -database is specified within the inline.

Each of these options is described in more detail below including when one may be preferable to the other and the drawbacks
of each. The database method is used throughout most of the examples in this documentation.

41.5.1 Database Name Method

An inline containing only a -database parameter will look up which host and data source should service the inline. If there is a
-table parameter, Lasso uses this to look up which encoding should be used for the results of the database action. If an inline
does not have a specified -database then it inherits the -database (and -table and -keyField) from the surrounding
inline.

Advantages
When using the database method, all of the connection characteristics for the data source host are defined in Lasso
Admin. This makes it easy to change the characteristics of a host, and even move databases from one host to another,
without modifying any Lasso code.

Disadvantages
Setting up a new data source when using the database method requires visiting Lasso Admin. This helps promote
good security practices, but can be an impediment when working on simple web sites or when quickly mocking up
solutions. Additionally, having part of the set up for a website in Lasso Admin means that Lasso must be configured
properly in order to deploy a solution. It is sometimes desirable to have all of the configuration of a solution contained
within the code files of the solution itself.

41.5.2 Host Array Method

With the host array method, all of the characteristics of the data source host that will process the inline database action are
specified directly within the inline.

Advantages
Data source hosts can be quickly specified directly within an inline. No need to visit Lasso Admin to set up a new data

41.5. Inline Connection Options 439



LassoGuide, Release 9.3

source host. Additionally, there is reduced overhead since the connection information doesn’t need to be retrieved
from the SQLite database.

Disadvantages
The username and password for the host must be embedded within the Lasso code. (Although this can be in code
that is not in the web root, thereby mitigating this disadvantage.) Also, switching data source hosts can be more
difficult if inline hosts have been hard-coded.

Inline hosts are specified using a -host parameter within the inline. The value for this parameter is an array specifying the
connection characteristics for the database host. The following example shows an inline host for the MySQL data source that
connects to “localhost” using a username of “lasso”:

inline(
-host=(:

-datasource='mysqlds',
-name='localhost',
-username='lasso',
-password='secret'

),
-sql="SHOW DATABASES;"

) => {^
records_array

^}

// => staticarray(staticarray(contacts), staticarray(examples), staticarray(site))

The following table lists all of the parameters that can be specified within the -host array. Some data sources may require that
just the -datasource be specified, but most data sources will require -datasource, -name, -username, and -password.

The -host parameter can also take a value of “inherit” which specifies that the -host from the surrounding inline should be
used. This is necessary when specifying a -database within nested inlines to prevent Lasso from looking up the database as
it would using the database method.

Table 41.2: Host Array Parameters

Parameter Description

-dataSource=? Required data source name. The name for each data source can be found in the “Datasources”
section of Lasso Server Admin.

-name=? The IP address, DNS host name, or connection string for the data source. Required for most data
sources.

-port=? The port for the data source. Optional.

-username=? The username for the data source connection. Required for most data sources.

-password=? The password for the username. Required for most data sources.

-schema=? The schema for the data source connection. Required for some data sources.

-tableEncoding=? The table encoding for the data source connection. Defaults to “UTF-8”. Optional.

-extra=? Configuration information that may be used by some data sources. Optional.

Note: Consult the documentation for each data source for details about which parameters are required, their format, and
whether the -extra parameter is used.

Once a -host array has been specified the rest of the parameters of the inline will work much the same as they do in inlines
that use a configured data source host. The primary differences are explained here:

• Nested inlines will inherit the -host from the surrounding inline if they are specified with -host='inherit' or if they
do not contain a -database parameter.

440 Chapter 41. Database Interaction Fundamentals



LassoGuide, Release 9.3

• Nested inlines that have a -database parameter and no -host parameter will use the -database parameter to look
up the data source host.

• Nested inlines can specify a different -host parameter than the surrounding inline. Lasso can handle arbitrarily nested
inlines, each of which can use a different host.

• The parameters -database, -table, -keyField (or -key), and -schemamay be required depending on the database
action. Inline actions such as -search, -findAll, -add, -update, -delete, etc. require that the database, table, and
key field be specified just as they would need to be in any inline.

• Some SQL statements may also require that a -database be specified. For example, in MySQL, a host-level SQL state-
ment like SHOW DATABASES doesn’t require that a -database be specified. A table-level SQL statement like SELECT
* FROM 'people' won’t work unless the -database is specified in the inline. (A fully qualified SQL statement like
SELECT * FROM 'contacts'.'people' will also work without a -database.)

41.5. Inline Connection Options 441





Chapter 42

Searching and Displaying Data

Lasso provides several parameters for the inline method for retrieving records within Lasso-compatible databases. These
parameters are used in conjunction with name/value pair parameters in order to perform the desired database action in a
specific database and table or within a specific record.

The inline action parameters documented in this chapter are listed below. The sections that follow describe the additional
keyword and pair parameters required for each database action.

-search
Searches for records within a database.

-findAll
Finds all records within a database.

-random
Returns a random record from a database. (Only works with FileMaker Server databases.)

42.1 How Searches are Performed

The following describes each step that takes place every time a search is performed using Lasso:

1. Lasso checks the database, table, and field name specified in the search to verify that they are all valid.

2. The search query is formatted and sent to the database application. FileMaker Server search queries are formatted
as URLs and submitted to the Web Publishing Engine. MySQL search queries are formatted as SQL statements and
submitted directly to MySQL.

3. The database application performs the desired search and assembles a found set. The database application is responsi-
ble for interpreting search criteria, wild cards in search strings, field operators, and logical operators.

4. The database application sorts the found set based on sort criteria included in the search query. The database applica-
tion is responsible for determining the order of records returned to Lasso.

5. A subset of the found set is sent to Lasso as the result set. Only the number of records specified by -maxRecords
starting at the offset specified by -skipRecords is returned to Lasso. If any -returnField parameters are included
in a search then only those fields they specify are returned to Lasso.

6. The result set can be displayed and manipulated using methods that return information about the result set and meth-
ods that return fields or other values.

42.2 Character Encoding

Lasso stores and retrieves data from data sources based on the preferences established in the “Datasources” section of Lasso
Server Admin. The following rules apply for each standard data source:

Inline Host
The character encoding can be specified explicitly using a -tableEncoding parameter within the -host array.

443



LassoGuide, Release 9.3

Inline Table
The character encoding of the table specified using the-tableparameter is used if-tableEncoding is not specified
within the -host array.

MySQL
By default all communication is encoded as UTF-8.

FileMaker Server
By default all communication is in the MacRoman character set when Lasso Server is hosted on OS X, or in the Latin-1
(ISO-8859-1) character set when Lasso Server is hosted on Windows.

ODBC
Encoding of communication with ODBC data sources is dependent on the encoding of the table being accessed.

42.3 Error Reporting

After a database action has been performed, Lasso reports any errors that occurred via the error_currentError method.
The value of this method should be checked to verify that the database action was successfully performed.

42.3.1 Display Current Error Code and Message

The following code displays the current error message. This code should be placed in a Lasso page that is a response to a
database action or within the capture block of an inline method.

error_code + ': ' + error_msg

If the database action was performed successfully then the following result will be returned:

// => 0: No Error

42.3.2 Check for a Specific Error Code and Message

The following example shows how to report a specific error if one occurs using a conditional if statement to check if the
current error message is equal to error_databaseTimeout:

if(error_currentError == error_databaseTimeout)
'Connection to database lost!'

/if

Full documentation about error methods and error codes can be found in the Error Handling chapter.

42.4 Searching Records

Searches can be performed within any Lasso-compatible database using the -search parameter in an inline method. The
-search parameter requires that a number of additional parameters be defined in order to perform the search. The additional
required parameters are detailed in the table -Search Action Requirements along with a description of other recommended
or optional parameters specific to the -search action.

Additional optional parameters are described in the tables SearchOperator Parameters and Result Parameters in the sections
that follow.

444 Chapter 42. Searching and Displaying Data



LassoGuide, Release 9.3

Table 42.1: -Search Action Requirements

Parameter Description

-search The action that is to be performed. Required.

-database=? The database that should be searched. Required.

-table=? The table from the specified database that should be searched. Required.

-keyField=? The name of the field that holds the primary key for the specified table. Recommended.

-keyValue=? The particular value for the primary key of the record that should be returned. Using -keyValue
overrides all the other search parameters and returns the single record specified. Optional.

-key=? An array specifying the search field operators and pair parameters to find the matching records.
Using -key overrides any other specified name/value pairs.

-host=? Optional inline host array. See the section Inline Connection Options in the Database Interaction
Fundamentals chapter for more information.

name/value pairs A variable number of name/value pair parameters specify the query that will be performed. Any pair
parameters included in the search action will define the query that is performed in the specified
table. All pair parameters must reference a field within the database. Any fields that are not
referenced will be ignored for the purposes of the search.

42.4.1 Search a Database Using an Inline

The following example shows how to search a database by specifying the required parameters within an inlinemethod. The
-database is set to “contacts”, -table is set to “people”, and -keyField is set to “id”. The search returns records that contain
“John” with the field “first_name”.

The results of the search are displayed to the visitor inside the inline. The records method will repeat for each record in the
found set. The field methods will display the value for the specified field from the current record being shown.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'first_name'='John'

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

If the search was successful then the following results will be returned:

// =>
// <br />John Person
// <br />John Doe

Additional pair parameters and keyword parameters can be used to generate more complex searches. These techniques are
documented in the section Search Operators later in this chapter.

42.4.2 Search a Database Using Visitor-Supplied Values

The following example shows how to search a database by specifying the required parameters within an inlinemethod, but
allowing a site visitor to specify the search criteria in an HTML form. The visitor is presented with an HTML form in the Lasso

42.4. Searching Records 445



LassoGuide, Release 9.3

page “default.lasso”. The HTML form contains two text inputs for “first_name” and “last_name” and a submit button. The action
of the form is the response page “response.lasso” which contains the inline that will perform the search. The contents of the
“default.lasso” file include the following:

<form action="response.lasso" method="POST">
<br />First Name: <input type="text" name="first_name" value="" />
<br />Last Name: <input type="text" name="last_name" value="" />
<br /><input type="submit" name="submit" value="Search" />

</form>

The search is performed and the results of the search are displayed to the visitor inside the inline method in “re-
sponse.lasso”. The values entered by the visitor in the HTML form in “default.lasso” are inserted into the inline using the
web_request->param method. The records method will execute the capture block for each record in the found set. The
field methods will display the value for the specified field from the current record being shown. The contents of the “re-
sponse.lasso” file include the following:

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'first_name'=web_request->param('first_name'),
'last_name'=web_request->param('last_name')

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

If the visitor entered “John” for “first_name” and “Person” for “last_name” then the following result would be returned:

// =>
// <br />John Person

42.5 Search Operators

Lasso inlines include a set of parameters that allow the use of operators to create complex database queries. These parameters
are summarized in the table Search Operator Parameters.

Table 42.2: Search Operator Parameters

Parameter Description

-operatorLogical=? or -opLogical=? Specifies the logical operator for the search. Abbreviated as -opLogical.
Defaults to AND.

-operator=? or -op=? When specified before a pair parameter, sets the search operator for that
parameter. Abbreviated as -op. Defaults to “bw”. See below for a full list of
field operators, which can also be written as -bw, -ew, -cn, etc.

-operatorBegin=? or -opBegin=? Specifies the logical operator for all search parameters until -operatorEnd
is reached. Abbreviated as -opBegin.

-operatorEnd=? or -opEnd=? Specifies the end of a logical operator grouping started with
-operatorBegin. Abbreviated as -opEnd.

The operator parameters are divided into two categories:

446 Chapter 42. Searching and Displaying Data



LassoGuide, Release 9.3

Field Operators
These are specified using the -operator parameter before a name/value pair parameter. The field operator changes the
way that the named field is searched for the value. If no field operator is specified then the default begins with operator
(“bw”) is used. See the table Search Field Operators for a list of the possible values. Field operators can also be abbreviated
as -bw, -ew, -cn, etc.

Logical Operators
These are specified using the -operatorLogical, -operatorBegin, and -operatorEnd parameters. These parameters
specify how the results of different pair parameters are combined to form the full results of the search. -operatorLogical
cannot be mixed with -operatorBegin and -operatorEnd.

42.5.1 Field Operators

The possible values for the -operator parameter are listed in the table Search Field Operators. The default operator is begins
with (“bw”). Case is not considered when specifying operators. Several of the field operators are only supported in MySQL or
other SQL databases. These include the “ft” full-text operator and the “rx” and “nrx” regular expression operators, which are
described further in the table MySQL Additional Search Field Operators.

Table 42.3: Search Field Operators

Operator Description

-op='bw' or -bw Begins With. Default if no operator is set.

-op='nbw' or -nbw Not Begins With.

-op='cn' or -cn Contains.

-op='ncn' or -ncn Not Contains.

-op='eq' or -eq Equals.

-op='neq' or -neq Not Equals.

-op='ew' or -ew Ends With.

-op='new' or -new Not Ends With.

-op='gt' or -gt Greater Than.

-op='gte' or -gte Greater Than or Equals.

-op='lt' or -lt Less Than.

-op='lte' or -lte Less Than or Equals.

-op='ft' or -ft Full-Text Search. MySQL databases only.

-op='rx' or -rx Regular Expression Search. MySQL databases only.

-op='nrx' or -nrx Not Regular Expression Search. MySQL databases only.

Field operators are interpreted differently depending on which data source is being accessed. For example, FileMaker Server
interprets “bw” to mean that any word within a field can begin with the value specified for that field. MySQL interprets “bw”
to mean that the first word within the field must begin with the value specified. See the chapters on each data source or the
documentation that came with a third-party data source connector for more information.

Specify a Field Operator in an Inline

Specify the field operator before the name/value pair parameter that it will affect. The following inline method searches for
records where the “first_name” begins with “J” and the “last_name” ends with “son”:

inline(
-search,
-database='contacts',
-table='people',

42.5. Search Operators 447



LassoGuide, Release 9.3

-keyField='id',
-operator='bw', 'first_name'='J',
-operator='ew', 'last_name'='son'

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name')
^}

^}

The same could be accomplished by using a -key parameter:

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
-key=(: -bw, 'first_name'='J', -ew, 'last_name'='son')

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

The results of the search would include the following records:

// =>
// <br />John Person
// <br />Jane Person

42.5.2 Logical Operators

The logical operator parameter -operatorLogical can be used with a value of either “And” or “Or”. The parameters
-operatorBegin and -operatorEnd can be used with values of “And”, “Or”, or “Not”. An -operatorLogical applies to
all search parameters specified with an action while -operatorBegin applies to all search parameters until the matching
-operatorEnd parameter is reached. (Thus the two cannot be mixed into the same inline.) The case of the value is unimpor-
tant when specifying a logical operator.

• AND – Specifies that records that are returned should fulfill all of the search parameters listed.

• OR – Specifies that records that are returned should fulfill one or more of the search parameters listed.

• NOT – Specifies that records that match the search criteria contained between the -operatorBegin and
-operatorEnd parameters should be omitted from the found set. The NOT operator cannot be used with the
-operatorLogical keyword parameter.

Tip: In lieu of a NOT option for -operatorLogical, many field operators can be negated individually by substituting the
opposite field operator. The following pairs of field operators are the opposites of each other: “eq” and “neq”, “lt” and “gte”, and
“gt” and “lte”.

Note: The -operatorBegin and -operatorEnd parameters do not work with Lasso Connector for FileMaker Server.

448 Chapter 42. Searching and Displaying Data



LassoGuide, Release 9.3

Perform a Search Using an AND Operator

Use the -operatorLogical command tag with an “And” value. The following inline method returns records for which the
“first_name” field begins with “John” and the “last_name” field begins with “Doe”. The position of the -operatorLogical
parameter within the inline is unimportant since it applies to the entire action.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
-operatorLogical='And',
'first_name'='John',
'last_name'='Doe'

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name')
^}

^}

// => <br />John Doe

Perform a Search Using an OR Operator

Use the -operatorLogical parameter with an “Or” value. The following inline method returns records for which the
“first_name” field begins with either “John” or “Jane”. The position of the -operatorLogical parameter within the inline
is unimportant since it applies to the entire action.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
-operatorLogical='Or',
'first_name'='John',
'first_name'='Jane'

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

// =>
// <br />John Doe
// <br />Jane Doe
// <br />John Person

Perform a Search Using a NOT Operator

Use the -operatorBegin and -operatorEnd parameters with a “Not” value. The following inline method returns records
for which the “first_name” field begins with “John” and the “last_name” field is not “Doe”. The operator parameters must sur-
round the parameters of the search that is to be negated.

inline(
-search,

42.5. Search Operators 449



LassoGuide, Release 9.3

-database='contacts',
-table='people',
-keyField='id',
'first_name'='John',
-operatorBegin='Not',

'last_name'='Doe',
-operatorEnd='Not'

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name')
^}

^}

// => <br />John Person

Perform a Search with a Complex Query

Use the -operatorBegin and -operatorEnd parameters to build up a complex query. As an example, a query can be
constructed to find records in a database whose “first_name” and “last_name” both begin with the same letter “J” or “M”. The
desired query could be written in pseudocode as follows:

( (first_name begins with J) AND (last_name begins with J) )
OR
( (first_name begins with M) AND (last_name begins with M) )

To translate this into an inline statement, each line of the query becomes a pair of -opBegin='And' and -opEnd='And'
parameters with a pair parameter for “first_name” and “last_name” contained inside. The two lines are then combined using a
pair of -opBegin='Or' and -opEnd='Or' parameters. The nesting of the parameters works like the nesting of parentheses
in the pseudocode above to clarify how Lasso should combine the results of different name/value pair parameters.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
-opBegin='Or',

-opBegin='And',
'first_name'='J',
'last_name'='J',

-opEnd='And',
-opBegin='And',

'first_name'='M',
'last_name'='M',

-opEnd='And',
-opEnd='Or'

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

The returned result might look something like this:

// =>
// <br />Johnny Johnson

450 Chapter 42. Searching and Displaying Data



LassoGuide, Release 9.3

// <br />Jimmy James
// <br />Mark McPerson

42.6 Returning Records

Lasso inlines include a set of parameters for customizing the results of a search. These parameters do not change the found
set of records that are returned from the search, but they do change the data that is returned for formatting and display to the
visitor. The result parameters are summarized in the table Result Parameters.

See also:

• SQL data source–specific methods and parameters in the SQL Data Sources chapter

• FileMaker Server–specific methods and parameters in the FileMaker Data Sources chapter

Table 42.4: Result Parameters

Parameter Description

-sortField=? or -sortColumn=? Specifies that the results should be sorted based on the data in the named
field. Multiple -sortField parameters can be used for complex sorts.
Optional, defaults to returning data in the order it appears in the database.

-sortOrder=? When specified after a -sortField parameter, specifies the order of the
sort, either “ascending”, “descending” or custom. Optional, defaults to
“ascending” for each -sortField.

-maxRecords=? Specifies how many records should be shown from the found set. Optional,
defaults to “50”.

-skipRecords=? Specifies an offset into the found set at which records should start being
shown. Optional, defaults to “1”.

-returnField=? or -returnColumn=? Specifies a field that should be returned in the results of the search. Multiple
-returnField parameters can be used to return multiple fields. Optional,
defaults to returning all fields in the searched table.

The result parameters are divided into three categories:

1. Sorting is specified using the -sortField and -sortOrder parameters. These parameters change the order of the
records that the search returns. The database application performs the sort before Lasso receives the record set.

2. The portion of the Found Set being shown is specified using the -maxRecords and -skipRecords parameters.
-maxRecords sets the number of records that will be iterated over in the records method, while -skipRecords
sets the offset into the found set that is shown. These two parameters define the window of records that are shown
and can be used to navigate through a found set.

3. The Fields that are available are specified using the -returnField parameter. Normally, all fields in the searched table
are returned. If any -returnField parameters are specified then only those fields will be available for display using the
field method. Specifying -returnField parameters can improve the performance of Lasso by not sending unnec-
essary data between the database and the web server.

Note: In order to use the keyField_value method within an inline, the -keyField must be specified as one of the
-returnField values.

42.6. Returning Records 451



LassoGuide, Release 9.3

42.6.1 Return Sorted Results

Specify -sortField and -sortOrder parameters within an inline search. The following inline includes sort parameters. The
records are first sorted by “last_name” in ascending order, then sorted by “first_name” in ascending order:

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'first_name'='J',
-sortField='last_name', -sortOrder='ascending',
-sortField='first_name', -sortOrder='ascending'

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

The following results could be returned when this inline is run. The returned records are sorted in order of “last_name”. If the
“last_name” of two records are equal then those records are sorted in order of “first_name”.

// =>
// <br />Jane Doe
// <br />John Doe
// <br />Jane Person
// <br />John Person

42.6.2 Return a Portion of a Found Set

A portion of a found set can be returned by manipulating the values for -maxRecords and -skipRecords. In the following
example, a search is performed for records where the “first_name” begins with “J”. This search returns four records, but only
the second two records are shown. -maxRecords is set to “2” to show only two records and -skipRecords is set to “2” to
skip the first two records.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'first_name'='J',
-maxRecords=2,
-skipRecords=2

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

The following results could be returned when this inline is run. Neither of the “Doe” records from the previous example are
shown since they are skipped over.

// =>
// <br />Jane Person
// <br />John Person

452 Chapter 42. Searching and Displaying Data



LassoGuide, Release 9.3

42.6.3 Limit Fields Returned in Search Results

Use the -returnField parameter. If a single -returnField parameter is used then only the fields that are specified will be
returned. If no -returnField parameters are specified then all fields within the current table will be returned. In the following
example, only the “first_name” field is shown since it is the only field specified within a -returnField parameter:

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
'first_name'='J',
-returnField='first_name'

) => {^
records => {^

'<br />' + field('first_name') + '\n'
^}

^}

The “last_name” field cannot be shown for any of these records since it was not specified in a‘‘-returnField‘‘ parameter. The
above code would result in something like the following:

// =>
// <br />John
// <br />Jane
// <br />Jane
// <br />John

If the data source is MySQL, the -distinct parameter can be added to just return two records instead of four; one with the
first name of “John” and the other with “Jane” See the SQL Data Sources chapter for details on the -distinct parameter.

42.7 Finding All Records

All records can be returned from a database using the -findAll parameter. The -findAll parameter functions exactly like
the -search parameter except that no name/value pair parameters or operator parameters are required. Parameters that sort
and limit the found set work the same as they do for -search actions.

Table 42.5: -FindAll Action Requirements

Parameter Description

-findAll The action that is to be performed. Required.

-database=? The database that should be searched. Required.

-table=? The table from the specified database that should be searched. Required.

-keyField=? The name of the field that holds the primary key for the specified table. Recommended.

-host=? Optional inline host array. See the section Inline Connection Options in the Database Interaction
Fundamentals chapter for more information.

42.7.1 Return All Records from a Database

The following inline method finds all records within a table named “people” in the “contacts” database and displays them.
The results are shown below:

42.7. Finding All Records 453



LassoGuide, Release 9.3

inline(
-findAll,
-database='contacts',
-table='people',
-keyField='id'

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

// =>
// <br />John Doe
// <br />Jane Doe
// <br />John Person
// <br />Jane Person

42.8 Finding Random Records

A random record can be returned from a FileMaker database using the -random parameter. The -random parameter functions
exactly like the -search parameter except that no name/value pair parameters or operator parameters are required.

Table 42.6: -Random Action Requirements

Parameter Description

-random The action that is to be performed. Required.

-database=? The database that should be searched. Required.

-table=? The table from the specified database that should be searched. Required.

-keyField=? The name of the field that holds the primary key for the specified table. Recommended.

-host=? Optional inline host array. See the section Inline Connection Options in the Database Interaction
Fundamentals chapter for more information.

42.8.1 Return a Random Record from a Database

The following inline finds a single random record from a FileMaker Server database “contacts” and displays it. The-maxRecords
is set to “1” to ensure that only a single record is shown. One potential result is shown below. Each time this inline is run a
different record will be returned.

inline(
-random,
-database='contacts',
-table='people',
-keyField='id',
-maxRecords=1

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name')
^}

^}

// => <br />Jane Person

454 Chapter 42. Searching and Displaying Data



LassoGuide, Release 9.3

42.9 Displaying Data

The examples in this chapter have all relied on the records method and field method to display the results of the search
that have been performed. This section describes the use of these methods in more detail. (See the section InlineActionResult
Methods in the Database Interaction Fundamentals chapter for method documentation and more information.)

The field method always returns the value for a field from the current record when it is used within a capture block of a
records method. If the field method is used outside of records block but inside an inline capture block, it will return
the value for the field from the first record in the found set. If the found set has only one record then the records method is
optional.

Note: For clarity, the example code in these chapters display data exactly as returned from the database, but production code
should use encodeHtml, encodeXml, or an encoding parameter with field calls to ensure characters are proplerly formatted
for the chosen output format.

42.9.1 Display Results of a Search

Use the records method and field method to display the results of a search. The following inline method performs a
-findAll action in a database “contacts”. The results are returned each formatted on a line by itself. The loop_countmethod
is used to indicate the order within the found set.

inline(
-findAll,
-database='contacts',
-table='people',
-keyField='id'

) => {^
records => {^

'<br />' + loop_count + ': ' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

// =>
// <br />1: John Doe
// <br />2: Jane Doe
// <br />3: John Person
// <br />4: Jane Person

42.9.2 Display Result for a Single Record

Use field methods within the capture block of an inline method. The records methods are unnecessary if only a single
record is returned. The following inline performs a -search for a single record whose primary key ‘id’ equals “1”. The key-
Field_value is shown along with the field values for the record.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=1

) => {^
'<br />' + keyField_value + ': ' + field('first_name') + ' ' + field('last_name') + '\n'

42.9. Displaying Data 455



LassoGuide, Release 9.3

^}

// =>
// <br />1: Jane Doe

42.9.3 Display Results from a Named Inline

Use the -inlineName parameter in both the inline method and in the records method. The records method can be
located anywhere in the code after the inline that define the database action. The following example shows a -findAll
action at the top of a page of code with the results formatted later:

inline(
-inlineName='FindAll Results',
-findAll,
-database='contacts',
-table='people',
-keyField='id'

) => {}

// ...

records(-inlineName='FindAll Results') => {^
'<br />' + loop_count + ': ' + field('first_name') + ' ' + field('last_name') + '\n'

^}

// =>
// <br />1: John Doe
// <br />2: Jane Doe
// <br />3: John Person
// <br />4: Jane Person

456 Chapter 42. Searching and Displaying Data



Chapter 43

Adding and Updating Records

Lasso provides action parameters for using the inline method for adding, updating, and deleting records within
Lasso-compatible databases. These action parameters are used in conjunction with additional keyword and pair parameters
in order to perform the desired database action in a specific database and table or within a specific record.

The inline action parameters documented in this chapter are listed below. The sections that follow describe the additional
keyword and pair parameters required for each database action.

-add
Adds a record to a database.

-update
Updates a record or records within a database.

-delete
Removes a record or records from a database.

The same instructions for character encoding and error reporting from the SearchingandDisplayingData chapter apply when
writing to databases.

43.1 Adding Records

Records can be added to any Lasso-compatible database using the -add parameter. The -add parameter requires that a
number of additional parameters be defined in order to perform the -add action. The required parameters are detailed in the
following table.

Table 43.1: -Add Action Requirements

Parameter Description

-add The action that is to be performed. Required.

-database=? The database where the record should be added. Required.

-table=? The table from the specified database to which the record should be added. Required.

-keyField=? The name of the field that holds the primary key for the specified table. Recommended.

-host=? Optional inline host array. See the section Inline Connection Options in the Database Interaction
Fundamentals chapter for more information.

name/value pairs A variable number of name/value pair parameters specifying the field name and initial field values for
the added record. Optional.

Any name/value pair parameters included in the -add action will set the starting values for the record that is added to the
database. All pair parameters must reference a writable field within the database. Any fields that are not referenced will be set
to their default values according to the database’s configuration.

Lasso returns a reference to the record that was added to the database. The reference is different depending on what type of
database to which the record was added.

457



LassoGuide, Release 9.3

SQL Data Sources
The -keyField parameter should be set to the primary key field or auto-increment field of the table. Lasso returns
the added record as the result of the action by checking the specified key field for the last inserted record. The key-
Field_value method can inspect the value of the auto-increment field for the inserted record.

If no -keyField is specified, the specified -keyField is not an auto-increment field, or -maxRecords is set to “0”
then no record will be returned as a result of the -add action. This can be useful in situations where a large record is
being added to the database and there is no need to inspect the values that were added.

FileMaker Server
The keyField_valuemethod is set to the value of the internal Record ID for the new record. The Record ID functions
as an auto-increment field that is automatically maintained by FileMaker Server for all records.

FileMaker Server automatically performs a search for the record that was added to the database. The found set result-
ing from an -add action is equivalent to a search for the single record using the keyField_value method.

The value for -keyField is ignored when adding records to a FileMaker Server database. The value for key-
Field_value is always the internal Record ID value.

Note: Consult the documentation for third-party data sources to see what behavior they implement when adding records to
the database.

43.1.1 Add a Record Using an Inline

The following example shows how to perform an -add action by specifying the required parameters within an inline
method. The -database is set to “contacts”, -table is set to “people”, and -keyField is set to “id”. Feedback that the -add
action was successful is provided to the visitor inside the inline using the error_currentError method. The added record
will only include default values as defined within the database itself.

inline(
-add,
-database='contacts',
-table='people',
-keyField='id'

) => {^
'<p>' + error_code + ': ' + error_msg + '</p>'

^}

If the -add action is successful then the following will be returned:

// => <p>0: No Error</p>

43.1.2 Add a Record with Data Using an Inline

The following example shows how to perform an -add action by specifying the required parameters within an inline
method. Additionally, the inline includes a series of name/value pair parameters that define the values for various fields within
the record that is to be added. The “first_name” field is set to “John” and the “last_name” field is set to “Doe”. The added record
will include these values as well as any default values defined in the database itself.

inline(
-add,
-database='contacts',
-table='people',
-keyField='id',

458 Chapter 43. Adding and Updating Records



LassoGuide, Release 9.3

'first_name'='John',
'last_name'='Doe'

) => {^
'<p>' + error_code + ': ' + error_msg + '</p>\n'
'Record ' + field('id') + ' was added for ' + field('first_name') + ' ' + field('last_name') + '.'

^}

The results of the -add action contain the values for the record that was just added to the database:

// =>
// <p>0: No Error</p>
// Record 2 was added for John Doe.

43.1.3 Add a Record Using an HTML Form

The following example shows how to perform an -add action using an HTML form to send values into an inline method
through web_request->param. The text inputs provide a way for the site visitor to define the initial values for various fields
in the record that will be added to the database. The site visitor can set values for the fields “first_name” and “last_name”.

<form action="response.lasso" method="POST">
<br />First Name: <input type="text" name="first_name" value="" />
<br />Last Name: <input type="text" name="last_name" value="" />
<br /><input type="submit" name="submit" value="Add" />

</form>

The response page for the form, “response.lasso”, contains the following code that performs the action using an inline
method and provides feedback that the record was successfully added to the database. The field values for the record that
was just added to the database are automatically available within the inline.

inline(
-add,
-database='contacts',
-table='people',
-keyField='id',
'first_name'=web_request->param('first_name'),
'last_name'=web_request->param('last_name')

) => {^
'<p>' + error_code + ': ' + error_msg + '</p>\n'
'Record ' + field('id') + ' was added for ' + field('first_name') + ' ' + field('last_name') + '.'

^}

If the form is submitted with “Mary” in the “first_name” input and “Person” in the “last_name” input then the following will be
returned:

// =>
// <p>0: No Error</p>
// Record 3 was added for Mary Person

43.1.4 Add a Record Using a URL

The following example shows how to perform an -add action using a URL to send values into an inline method through
web_request->param. The name/value pair parameters in the URL define the initial values for various fields in the database:
“first_name” is set to “John” and “last_name” is set to “Person”.

43.1. Adding Records 459



LassoGuide, Release 9.3

<a href="response.lasso?first_name=John&last_name=Person">
Add John Person

</a>

Using the same response page from the previous example, if the link for “Add John Person” is activated then the following will
be returned:

// =>
// <p>0: No Error</p>
// Record 4 was added for John Person.

43.2 Updating Records

Records can be updated within any Lasso-compatible database using the -update parameter. The -update parameter re-
quires that a number of additional parameters to be defined in order to perform the -update action. The required parameters
are detailed in the following table.

Table 43.2: -Update Action Requirements

Parameter Description

-update The action that is to be performed. Required.

-database=? The database where the record should be updated. Required.

-table=? The table from the specified database which contains the record that should be updated. Required.

-keyField=? The name of the field that holds the primary key for the specified table. Either a -keyField and
-keyValue or a -key is required.

-keyValue=? The value of the primary key of the record being updated.

-key=? An array specifying the search field operators and pair parameters to find the records to be updated.
Either a -keyField and -keyValue or a -key is required. Using -key overrides any other specified
name/value pairs.

-host=? Optional inline host array. See the section Inline Connection Options in the Database Interaction
Fundamentals chapter for more information.

name/value pairs A variable number of name/value pair parameters specifying the field name and values that need to
be updated. Optional.

Lasso has two methods for finding which records are to be updated.

-keyField and -keyValue
Lasso can identify the record to be updated using the values for the -keyField and -keyValue parameters. The
-keyFieldmust be set to the name of a field in the table. Typically, this is the primary key field for the table. The-keyValue
must be set to a valid value for the -keyField in the table. If no record can be found with the specified -keyValue then
nothing will be updated and an error will be returned.

The following inline would update the record with an “id” of “1” so it has a last name of “Doe”:

inline(
-update,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=1,
'last_name'='Doe'

) => {}

460 Chapter 43. Adding and Updating Records



LassoGuide, Release 9.3

Note that if the specified key value returns multiple records then all of those records will be updated within the target
table. If the -keyField is set to the primary key field of the table (or any field in the table that has a unique value for every
record in the table) then the inline will only update one record.

-key
Lasso can identify the records that are to be updated using a search that is specified in an array. The search can use any of
the fields in the current database table and any of the operators and logical operators which are described in the Searching
and Displaying Data chapter.

The following inline would update all records in the “people” table that have a first name of “John” to have a last name of
“Doe”:

inline(
-update,
-database='contacts',
-table='people',
-key=(: -eq, 'first_name'='John'),
'last_name'='Doe'

) => {}

Caution: Care should be taken when creating the search in a -key array. An update can very quickly modify all of the
records in a database and there is no undo. Update inlines should be tested carefully before they are deployed on live
data.

Any pair parameters included in the update action will set the field values for the record being updated. All pair parameters
must reference a writable field within the database. Any fields that are not referenced will maintain the values they had
before the update.

Lasso returns a reference to the record that was updated within the database. The reference is different depending on what
type of database is being used.

SQL Data Sources
The keyField_value method is set to the value of the key field that was used to identify the record to be updated.
The -keyField should always be set to the primary key or auto-increment field of the table. The results when using
other fields are undefined.

If the -keyField is not set to the primary key field or auto-increment field of the table or if -maxRecords is set to
“0” then no record will be returned as a result of the -update action. This is useful if a large record is being updated
and the results of the update do not need to be inspected.

FileMaker Server
The keyField_value method is set to the value of the internal Record ID for the updated record. The Record ID
functions as an auto-increment field that is automatically maintained by FileMaker Server for all records.

Lasso automatically performs a search for the record that was updated within the database. The found set resulting from an
-update action is equivalent to a search for the single record using the keyField_value.

Note: Consult the documentation for third-party data sources to see what behavior they implement when updating records
within a database.

43.2.1 Update a Record with Data Using an Inline

The following example shows how to perform an -update action by specifying the required parameters within an inline
method. The record with the value “2” in field “id” is updated. The inline includes a series of pair parameters that defines the

43.2. Updating Records 461



LassoGuide, Release 9.3

new values for various fields within the record that is to be updated. The “first_name” field is set to “Bob” and the “last_name”
field is set to “Surname”. The updated record will include these new values, but any fields that were not included in the action
will be left with the values they had before the update.

inline(
-update,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=2,
'first_name'='Bob',
'last_name'='Surname'

) => {^
'<p>' + error_code + ': ' + error_msg + '</p>\n'
'Record ' + field('id') + ' was updated to ' +

field('first_name') + ' ' + field('last_name') + '.'
^}

The updated field values from the -update action are automatically available within the inline:

// =>
// <p>0: No Error</p>
// Record 2 was updated to Bob Surname.

43.2.2 Update a Record Using an HTML Form

The following example shows how to perform an -update action using an HTML form to send values into an inlinemethod.
The text inputs provide a way for the site visitor to define the new values for various fields in the record that will be updated
in the database. The site visitor can see and update the current values for the fields “first_name” and “last_name”.

[inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=3

)]
<form action="response.lasso" method="POST">

<input type="hidden" name="keyValue" value="[keyField_value]" />
<br />First Name: <input type="text" name="first_name" value="[field('first_name')]" />
<br />Last Name: <input type="text" name="last_name" value="[field('last_name')]" />
<br /><input type="submit" name="submit" value="Update" />

</form>
[/inline]

The response page for the form, “response.lasso”, contains the following code that performs the action using an inline
method and provides feedback that the record was successfully updated in the database. The field values from the updated
record are automatically available within the inline.

inline(
-update,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=web_request->param('keyValue'),
'first_name'=web_request->param('first_name'),
'last_name'=web_request->param('last_name')

462 Chapter 43. Adding and Updating Records



LassoGuide, Release 9.3

) => {^
'<p>' + error_code + ': ' + error_msg + '</p>\n'
'Record ' + field('id') + ' was updated to ' +

field('first_name') + ' ' + field('last_name') + '.'
^}

The form initially shows “Mary” for the “first_name” input and “Person” for the “last_name” input. If the form is submitted with
the “last_name” changed to “Peoples” then the following will be returned. (The “first_name” field is unchanged since it was
left set to “Mary”.)

// =>
// <p>0: No Error</p>
// Record 3 was updated to Mary Peoples.

43.2.3 Update a Record Using a URL

The following example shows how to perform an -update action using a URL to send values into an inlinemethod through
web_request->param. The name/value pair parameters in the URL define the new values for various fields in the database:
“first_name” is set to “John” and “last_name” is set to “Person”.

<a href="response.lasso?keyValue=4&first_name=John&last_name=Person">
Update John Person

</a>

Using the same response page from the previous example, if the link for “Update John Person” is activated then the following
will be returned:

// =>
// <p>0: No Error</p>
// Record 4 was updated to John Person.

43.2.4 Update Several Records at Once

The following example shows how to perform an -update action on several records at once within a single database table.
The goal is to update every record in the database with the last name of “Person” to the new last name of “Peoples”.

There are two methods to accomplish this. The first method is to use the -key parameter to find the records that need to be
updated within a single -update inline. The second method is to use an outer inline to find the records to be updated and
then an inner inline that is repeated once for each record.

The -key method has the advantage of speed and is the best choice for simple updates. The nested inline method can be
useful if additional processing is required on each record before it is updated within the data source.

Using -Key to Update Records

The inline uses a -key array that performs a search for all records in the database with a “last_name” equal to “Person”. The
update is performed automatically on this found set.

inline(
-update,
-database='contacts',
-table='people',
-key=(: -eq, 'last_name'='Person'),

43.2. Updating Records 463



LassoGuide, Release 9.3

-maxRecords='all',
'last_name'='Peoples'

) => {}

Using Nested Inlines to Update Records

The outer inline method performs a search for all records in the database with “last_name” equal to “Person”. This forms
the found set of records that need to be updated. The records method executes once for each record in the found set. The
-maxRecords='all' parameter ensures that all records that match the criteria are returned.

The inner inline method performs an update on each record in the found set. Methods are used to retrieve the values for
the required -database, -table, -keyField, and -keyValue parameters. This ensures that these values match those from
the outer inline exactly. The pair parameter 'last_name'='Peoples' updates the field to the new value.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
-maxRecords='all',
'last_name'='Person'

) => {^
records => {^

inline(
-update,
-database=database_name,
-table=table_name,
-keyField=keyField_name,
-keyValue=keyField_value,
'last_name'='Peoples'

) => {^
'<p>' + error_code + ': ' + error_msg + '</p>\n'
'Record ' + field('id') + ' was updated to ' +

field('first_name') + ' ' + field('last_name') + '.'
^}

^}
^}

This particular search only finds one record to update. If the update action is successful then the following will be returned for
each updated record:

// =>
// <p>0: No Error</p>
// Record 4 was updated to John Peoples.

43.3 Deleting Records

Records can be deleted from any Lasso-compatible database using the -delete parameter. The -delete parameter requires
that a number of additional parameters be defined in order to perform the -delete action. The required parameters are
detailed in the following table.

464 Chapter 43. Adding and Updating Records



LassoGuide, Release 9.3

Table 43.3: -Delete Action Requirements

Parameter Description

-delete The action that is to be performed. Required.

-database=? The database where the record should be deleted. Required.

-table=? The table from the specified database from which the record should be deleted. Required.

-keyField=? The name of the field that holds the primary key for the specified table. Either a -keyField and
-keyValue or a -key is required.

-keyValue=? The value of the primary key of the record being deleted.

-key=? An array specifying the search field operators and pair parameters to find the records to be deleted.
Either a -keyField and -keyValue or a -key is required.

-host=? Optional inline host array. See the section Inline Connection Options in the Database Interaction
Fundamentals chapter for more information.

Lasso has two methods to find which records are to be deleted.

-keyField and -keyValue
Lasso can identify the record to be deleted using the values for the -keyField and -keyValue parameters. The
-keyFieldmust be set to the name of a field in the table. Typically, this is the primary key field for the table. The-keyValue
must be set to a valid value for the -keyField in the table. If no record can be found with the specified -keyValue then
nothing will be deleted and no error will be returned.

The following inline would delete the record with an “id” of “1”:

inline(
-delete,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=1

) => {}

Note that if the specified key value returns multiple records then all of those records will be deleted from the target table. If
the -keyField is set to the primary key field of the table (or any field in the table that has a unique value for every record
in the table) then the inline will only delete one record.

-key
Lasso can identify the records that are to be deleted using a search that is specified in an array. The search can use any of
the fields in the current database table and any of the operators and logical operators which are described in the Searching
and Displaying Data chapter.

The following inline would delete all records in the people database that have a first name of “John”:

inline(
-delete,
-database='contacts',
-table='people',
-key=(: -eq, 'first_name'='John')

) => {}

Caution: Care should be taken when creating the search in a -key array. A delete can very quickly remove all of the
records in a database and there is no undo. Delete inlines should be tested carefully before they are deployed on live
data.

43.3. Deleting Records 465



LassoGuide, Release 9.3

Lasso returns an empty found set in response to a -delete action. Since the record has been deleted from the database, the
field method can no longer be used to retrieve any values from it. The error_currentError method should be checked
to verify that it has a value of “No Error” in order to confirm that the record has been successfully deleted.

There is no confirmation or undo of a delete action. When a record is removed from a database it is removed permanently. It
is important to set up security appropriately so accidental or unauthorized deletes don’t occur.

43.3.1 Delete a Record with Data Using an Inline

The following example shows how to perform a delete action by specifying the required parameters within aninlinemethod.
The record with the value “2” in field “id” is deleted:

inline(
-delete,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=2

) => {^
'<p>' + error_code + ': ' + error_msg + '</p>'

^}

If the delete action is successful then the following will be returned:

// => <p>0: No Error</p>

43.3.2 Delete Several Records at Once

The following example shows how to perform a -delete action on several records at once within a single database table.
The goal is to delete every record in the database with the last name of “Peoples”.

Warning: These techniques can remove all records from a database table. They should be used with extreme caution and
tested thoroughly before being added to a production website.

There are two methods to accomplish this. The first method is to use the -key parameter to find the records that need to be
deleted within a single -delete inline. The second method is to use an outer inline to find the records to be deleted and then
an inner inline that is repeated once for each record.

The -key method has the advantage of speed and is the best choice for simple deletes. The nested inline method can be
useful if additional processing is required to decide if each record should be deleted.

Using -Key to Delete Records

This inline uses a -key array that performs a search for all records in the database with a “last_name” equal to “Peoples”. The
records in this found set are automatically deleted.

inline(
-delete,
-database='contacts',
-table='people',
-key=(: -eq, 'last_name'='Peoples')

) => {}

466 Chapter 43. Adding and Updating Records



LassoGuide, Release 9.3

Using Nested Inlines to Delete Records

The outer inline method performs a search for all records in the database with “last_name” equal to “Peoples”. This forms
the found set of records that need to be deleted. The records method executes once for each record in the found set. The
-maxRecords='all' parameter ensures that all records that match the criteria are returned.

The inner inline method deletes each record in the found set. Methods are used to retrieve the values for the required
-database, -table, -keyField, and -keyValue parameters. This ensures that these values match those from the outer
inline exactly.

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
-maxRecords='all',
'last_name'='Peoples'

) => {^
records => {^

inline(
-delete,
-database=database_name,
-table=table_name,
-keyField=keyField_name,
-keyValue=keyField_value

) => {^
'<p>' + error_code + ': ' + error_msg + '</p>'

^}
^}

^}

This particular search only finds one record to delete. If the delete action is successful then the following will be returned for
each deleted record:

// => <p>0: No Error</p>

43.3. Deleting Records 467





Chapter 44

SQL Data Sources

This chapter documents methods and behaviors that are specific to the SQL data sources in Lasso. These include the data
source connectors for MySQL, SQLite, Oracle, PostgreSQL, and SQL Server. Most of the features of Lasso work equally across all
data sources. The differences specific to each SQL data source are noted in the features list and in the descriptions of individual
features.

MySQL
Supports MySQL 3.x, 4.x, or 5.x data sources.

Oracle
Supports Oracle data sources. The Oracle “Instant Client” libraries must be installed in order to activate this data source.

PostgreSQL
Supports PostgreSQL data sources. The PostgreSQL client libraries must be installed in order to activate this data source.

SQL Server
Supports Microsoft SQL Server. The SQL Server client libraries must be installed in order to activate this data source.

SQLite
Supports SQLite 3 data sources. SQLite is the internal data source that is used for the storage of Lasso’s preferences and
security settings.

44.1 Supported Features for SQL Data Sources

The following lists detail the features of each data source in this chapter. Since some features are only available in certain data
sources it is important to check these tables when reading the documentation in order to verify that each data source supports
your solution’s required features.

44.1.1 MySQL Data Source

Friendly Name
Lasso Connector for MySQL

Internal Name
mysqlds

Module Name
MySQLConnector.dll, MySQLConnector.dylib, or MySQLConnector.so

Inline Host Attributes
Requires -name specifying connection URL (e.g. “mysql.example.com”), -username, and -password. Optional -port
defaults to “3306”.

Actions
-add, -delete, -exec, -findAll, -prepare, -search, -show, -sql, -update

469



LassoGuide, Release 9.3

Operators
-bw, -cn, -eq, -ew, -gt, -gte, -lt, -lte, -nbw, -ncn, -new, -ft, -rx, -nrx, -opBegin/-opEnd with “And”, “Or”,
“Not”.

KeyField
-keyField/-keyValue and -key=array

44.1.2 Oracle Data Source

Friendly Name
Lasso Connector for Oracle

Internal Name
oracle

Module Name
SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Inline Host Attributes
Requires -name specifying connection URL (e.g. “oracle.example.com:1521/mydatabase”), -username, and
-password.

Actions
-add, -delete, -findAll, -search, -show, -sql, -update

Operators
-bw, -cn, -eq, -ew, -gt, -gte, -lt, -lte, -nbw, -ncn, -new, -opBegin/-opEnd with “And”, “Or”, “Not”.

KeyField
-keyField/-keyValue

Note: Field names are case-sensitive. All field names and key field names within the inline must be specified with the proper
case.

44.1.3 PostgreSQL Data Source

Friendly Name
Lasso Connector for PostgreSQL

Internal Name
postgresql

Module Name
SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Inline Host Attributes
Requires -name specifying connection URL (e.g. “postgresql.example.com”), -username, and -password.

Actions
-add, -delete, -findAll, -search, -show, -sql, -update

Operators
-bw, -cn, -eq, -ew, -gt, -gte, -lt, -lte, -nbw, -ncn, -new, -opBegin/-opEnd with “And”, “Or”, “Not”.

KeyField
-keyField/-keyValue

470 Chapter 44. SQL Data Sources



LassoGuide, Release 9.3

Note: Field names are case-sensitive. All field names and key field names within the inline must be specified with the proper
case.

44.1.4 SQL Server Data Source

Friendly Name
Lasso Connector for SQL Server

Internal Name
sqlserver

Module Name
SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Inline Host Attributes
Requires -name specifying connection URL (e.g. “sqlserver.example.com\mydatabase”), -username, and -password.

Actions
-add, -delete, -findAll, -search, -show, -sql, -update

Operators
-bw, -cn, -eq, -ew, -gt, -gte, -lt, -lte, -nbw, -ncn, -new, -opBegin/-opEnd with “And”, “Or”, “Not”.

KeyField
-keyField/-keyValue

44.1.5 SQLite Data Source

Friendly Name
Lasso Internal

Internal Name
sqliteconnector

Module Name
SQLiteConnector.dll, SQLiteConnector.dylib, or SQLiteConnector.so

Actions
-add, -delete, -findAll, -search, -show, -sql, -update

Operators
-bw, -cn, -eq, -ew, -gt, -gte, -lt, -lte, -nbw, -ncn, -new, -opBegin/-opEnd with “And”, “Or”, “Not”.

KeyField
-keyField/-keyValue

44.2 SQL Data Source Tips

• Always specify a primary key field using the -keyField parameter for -search, -add, and -findAll actions. This will
ensure that the keyField_value method always returns a value.

• Use -keyField and -keyValue parameters to reference a particular record for updates or deletes.

• Data sources can be case-sensitive. For best results, reference database and table names in the same letter case as they
appear on disk in your Lasso code. Field names may also be case-sensitive (such as in Oracle and PostgreSQL).

44.2. SQL Data Source Tips 471



LassoGuide, Release 9.3

• Some data sources will truncate any data beyond the length they are set up to store. Verify that all fields have sufficient
capacity for the values that need to be stored in them.

• Use -returnField parameters to reduce the number of fields that are returned from a -search action. Returning
only the fields that need to be used for further processing or shown to the site visitor reduces the amount of data that
needs to travel between Lasso and the data source.

• When an -add or -update action is performed on a database, the data from the added or updated record is available
inside the capture block of the inline method. If the -returnField parameter is used, only those fields specified
should be returned from an -add or -update action. Setting -maxRecords=0 specifies that no record should be re-
turned.

44.3 Security Tips

• SQL statements that are generated using visitor-defined data should be screened carefully for unwanted commands
such as “DROP” or “GRANT”.

• Always sanitize any inputs from site visitors that are incorporated into SQL statements. Any SQL strings that have
visitor-defined data should be sanitized using the string->encodeSql method for MySQL data sources and the
string->encodeSql92 method for SQL92-compliant data sources such as SQLite, PostgreSQL, or ODBC data sources.
Encoding the values in this manner ensures that quotes and other reserved characters are properly escaped within the
SQL statement, thereby helping to prevent SQL injection attacks.

For example, the following SQL “SELECT” statement contains a SQL string in the LIKE clause and uses
string->encodeSql to encode the value of the “company” web_request->param. This encoding causes all single
quotes within the passed company parameter to be encoded with a backslash.

local(sql_statement) = "SELECT * FROM contacts.people WHERE company LIKE '" +
string(web_request->param('company'))->encodeSql + "%';"

If web_request->param('company') returns “McDonald’s” then the SQL statement generated by this code would
appear as follows:

SELECT * FROM Contacts.People WHERE Company LIKE "McDonald's%";

44.4 SQL Data Source Methods

Lasso includes methods to identify which type of SQL data source is being used. These methods are summarized below.

lasso_datasourceIsMySQL(name)
Returns “true” if the specified database is hosted by MySQL. Requires one string parameter for the name of a database.

lasso_datasourceIsSybase(name)
Returns “true” if the specified database is hosted by Sybase. Requires one string parameter for the name of a database.

lasso_datasourceIsOracle(name)
Returns “true” if the specified database is hosted by Oracle. Requires one string parameter for the name of a database.

lasso_datasourceIsPostgreSQL(name)
Returns “true” if the specified database is hosted by PostgreSQL. Requires one string parameter for the name of a
database.

lasso_datasourceIsSQLServer(name)
Returns “true” if the specified database is hosted by Microsoft SQL Server. Requires one string parameter for the name
of a database.

472 Chapter 44. SQL Data Sources



LassoGuide, Release 9.3

lasso_datasourceIsSQLite(name)
Returns “true” if the specified database is hosted by SQLite. Requires one string parameter for the name of a database.

44.4.1 Check Whether a Database is Hosted by MySQL

The following example shows how to use lasso_datasourceIsMySQL to check whether the database “example” is hosted
by MySQL or not:

if(lasso_datasourceIsMySQL('example'))
stdoutnl("Example is hosted by MySQL!")

else
stdoutnl("Example is not hosted by MySQL.")

/if

// => Example is hosted by MySQL!

44.4.2 List All Databases Hosted by MySQL

Use the database_names method to list all databases available to Lasso. The lasso_datasourceIsMySQL method can
check each database and only list those which are MySQL hosts. The result shows two databases, “site” and “example”, which
are available through MySQL:

database_names
if(lasso_datasourceIsMySQL(database_nameItem))

'<br />' + database_nameItem + '\n'
/if

/database_names

// =>
// <br />example
// <br />site

44.5 Searching Records with SQL Data Sources

In Lasso, there are unique search operations that can be performed using SQL data sources. These search operations take
advantage of special functions such as full-text indexing, regular expressions, record limits, and distinct values to allow optimal
performance and power when searching. All these search operations can be used on MySQL data sources in addition to all
search operations described in the Searching and Displaying Data chapter.

44.5.1 Search Field Operators for MySQL

Additional field operators are available for the -operator (or -op) parameter when searching MySQL data sources. These
operators are summarized in the table below. Basic use of the -operator parameter is described in the Searching and Dis-
playingData chapter. See the MySQL documentation61 for more information on full-text searches and the regular expressions
supported in MySQL.

61 http://dev.mysql.com/doc/

44.5. Searching Records with SQL Data Sources 473

http://dev.mysql.com/doc/


LassoGuide, Release 9.3

Table 44.1: MySQL Additional Search Field Operators

Operator Description

-op='ft' or -ft Full-Text Search. If used, a MySQL full-text search is performed on the field specified. Will only work
on fields that are full-text indexed in MySQL. Records are automatically returned in order of high
relevance (contains many instances of that value) to low relevance (contains few instances of the
value). Only one -ft operator may be used per action, and no -sortField parameter should be
specified.

-op='nrx' or -rx Regular Expression Search. If used, regular expressions may be used as part of the search field
value. Returns records matching the regular expression value for that field.

-op='nrx' or -nrx Not Regular Expression Search. If used, regular expressions may be used as part of the search field
value. Returns records that do not match the regular expression value for that field.

Perform a Full-Text Search on a Field

If a MySQL field is indexed as full-text, using -op='ft' before the field in a search inline performs a MySQL full-text search on
that field. The example below performs a full-text search on the “jobs” field in the “people” table, and returns the “first_name”
field for each record that contains the word “Manager”. Records that contain the most instances of the word “Manager” are
returned first.

inline(
-search,
-database='contacts',
-table='people',
-op='ft', 'jobs'='Manager'

) => {^
records => {^

'<br />' + field('first_name') + '\n'
^}

^}

// =>
// <br />Mike
// <br />Jane

Use Regular Expressions as Part of a Search

Regular expressions can be used as part of a search value for a field by using -op='rx' before the field in a search inline. The
following example searches for all records where the “last_name” field contains eight characters using a regular expression:

inline(
-search,
-database='contacts',
-table='people',
-op='rx', 'last_name'='.{8}',
-maxRecords='all'

) => {^
records => {^

'<br />' + field('last_name') + ', ' + field('first_name')
^}

^}

// =>

474 Chapter 44. SQL Data Sources



LassoGuide, Release 9.3

// <br />Lastname, Mike
// <br />Lastname, Mary Beth

The following example searches for all records where the “last_name” field doesn’t contain eight characters. This is easily
accomplished using the same inline search above using -op='nrx' instead.

inline(
-search,
-database='contacts',
-table='people',
-op='nrx', 'last_name'='.{8}',
-maxRecords='all'

) => {^
records => {^

'<br />' + field('last_name') + ', ' + field('first_name') + '\n'
^}

^}

// =>
// <br />Doe, John
// <br />Doe, Jane
// <br />Surname, Bob
// <br />Surname, Jane
// <br />Surname, Margaret
// <br />Unknown, Thomas

44.5.2 Result Keyword Parameters

Additional result keyword parameters are available when searching the data sources in this chapter using the inlinemethod.
These parameters are summarized in the following table.

Table 44.2: SQL Additional Result Parameters

Parameter Description

-distinct Causes a -search action to only output records that contain unique field values, comparing only across
returned fields, or a findAll action to return records that are distinct across all fields. Does not require a
value. May be used with the -returnField parameter to limit which fields are checked for distinct
values. MySQL only.

-groupBy=? Specifies a field name that should by used as the “GROUP BY” statement for a search action. Allows data
to be summarized based on the values of the specified field.

-sortRandom Requests that returned records be sorted randomly. Is used in place of the -sortField and
-sortOrder parameters. Does not require a value. MySQL only.

-useLimit Prematurely ends a -search or -findAll action once the specified number of records for the
-maxRecords parameter have been found and returns the found records. Requires the -maxRecords
parameter. This issues a “LIMIT” or “TOP” statement.

Return Only Unique Records in a Search

Use the -distinct parameter in a search inline. In the following example, a -findAll action is used on the “people” table
of the “contacts” database. Only distinct values from the “last_name” field are returned.

44.5. Searching Records with SQL Data Sources 475



LassoGuide, Release 9.3

inline(
-findAll,
-database='contacts',
-table='people',
-returnField='last_name',
-distinct

) => {^
records => {^

'<br />' + field('last_name') + '\n'
^}

^}

// =>
// <br />Doe
// <br />Surname
// <br />Lastname
// <br />Unknown

The -distinct parameter is especially useful for generating lists of values that can be used in a drop-down list. The following
example is a drop-down list of all the last names in the “people” table:

inline(
-findAll,
-database='contacts',
-table='people',
-returnField='last_name',
-distinct

) => {^
'<select name="last_name">\n'
records => {^

' <option value="' + field('last_name') + '">' + field('last_name') + '</option>\n'
^}
'</select>\n'

^}

// =>
// <select name="last_name">
// <option value="Doe">Doe</option>
// <option value="Surname">Surname</option>
// <option value="Lastname">Lastname</option>
// <option value="Unknown">Unknown</option>
// </select>

Use the -groupBy parameter to specify a field whose values should be distinct without limiting which fields are returned. The
following query returns the same result as above, but has all fields available for display:

inline(
-search,
-database='contacts',
-table='people',
-groupBy='last_name'

) => {^
'<select name="last_name">\n'
records => {^

' <option value="' + field('last_name') + '">' + field('last_name') + '</option>\n'
^}
'</select>\n'

^}

476 Chapter 44. SQL Data Sources



LassoGuide, Release 9.3

Sort Results Randomly

Use the -sortRandom parameter in a search inline. In the following example, all records from the “people” table of the “con-
tacts” database are returned in random order:

inline(
-findAll,
-database='contacts',
-table='people',
-keyField='id',
-sortRandom

) => {^
records => {^

field('id')
^}

^}

// => 5 2 8 1 3 6 4 7

Note: Due to the nature of the -sortRandom parameter, the results of this example will vary upon each execution of the inline.

Return Records Once a Limit is Reached

Use the -useLimit parameter in the search inline. Normally, Lasso will find all records that match the inline search criteria
and then pare down the results based on -maxRecords and -skipRecords values. The -useLimit parameter instructs the
data source to terminate the specified search process once the number of records specified for -maxRecords is found. The
following example searches the “people” table with a limit of five records:

inline(
-findAll,
-database='contacts',
-table='people',
-maxRecords='5',
-useLimit

) => {^
found_count

^}

// => 5

Note: If the-useLimitparameter is used, the value of thefound_countmethod will always be the same as the-maxRecords
value if the limit is reached. Otherwise, the found_countmethod will return the total number of records in the specified table
that match the search criteria if -useLimit is not used.

44.5.3 Searching for Null Values

When searching tables in a SQL data source, “NULL” values may be explicitly searched for within fields using the null object.
A “NULL” value in a SQL data source designates that there is no value stored in that particular field. This is similar to searching
a field for an empty string (e.g. 'fieldname'=''), however “NULL” values and empty strings are not the same in SQL data
sources. For more information about how “NULL” values are handled, see the documentation for each data source.

44.5. Searching Records with SQL Data Sources 477



LassoGuide, Release 9.3

inline(
-search,
-database='contacts',
-table='people',
-op='eq', 'title'=null,
-maxRecords='all'

) => {^
records => {^

'<br />Record ' + field('id') + ' does not have a title.\n'
^}

^}

// =>
// <br />Record 7 does not have a title.
// <br />Record 8 does not have a title.

44.6 Adding and Updating Records

In Lasso, there are special add and update operations that can be performed using SQL data sources in addition to all the add
and update operations described in the Adding and Updating Records chapter.

44.6.1 Multiple Field Values

When adding or updating data to a field in MySQL, the same field name can be used several times in an -addor -update inline.
The result is that all data added or updated in each instance of the field name will be concatenated in a comma-delimited
form. This is particularly useful for adding data to “SET” field types.

Add or Update Multiple Field Values

The following example adds a record with two comma-delimited values in the “Jobs” field:

inline(
-add,
-database='contacts',
-table='people',
-keyField='id',
'jobs'='Customer Service',
'jobs'='Sales'

) => {^
field('jobs')

^}

// => Customer Service,Sales

The following example updates the “jobs” field of a record with three comma-delimited values:

inline(
-update,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=5,
'jobs'='Customer Service',

478 Chapter 44. SQL Data Sources



LassoGuide, Release 9.3

'jobs'='Sales',
'jobs'='Support'

) => {^
field('jobs')

^}

// => Customer Service,Sales,Support

Note: The individual values being added or updated should not contain commas.

44.6.2 Null Values

“NULL” values can be explicitly added to fields using the null object. A “NULL” value in a SQL data source designates that there
is no value stored in that particular field. This is similar to setting a field to an empty string (e.g. 'fieldname'=''), however
the two are different in SQL data sources. For more information about how “NULL” values are handled, see the documentation
for each data source.

Add or Update a Null Field Value

Use the null object as the field value. The following example adds a record with a “NULL” value in the “last_name” field:

inline(
-add,
-database='contacts',
-table='people',
-keyField='id',
'last_name'=null

) => {}

The following example updates a record with a “NULL” value in the “last_name” field:

inline(
-update,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=5,
'last_name'=null

) => {}

44.7 Value Lists for ENUM or SET Fields

A value list in Lasso is a set of possible values that can be used for a field. Value lists in MySQL are lists of predefined and stored
values for a “SET” or “ENUM” field type. A value list from a “SET” or “ENUM” field can be displayed using the methods defined
below. None of these methods will work in -sql inlines or if -noValueLists is specified.

value_list(name::string)
Executes a capture block once for each value allowed for an “ENUM” or “SET” field. Requires a single parameter specifying
the name of an “ENUM” or “SET” field from the current table. It will not work in -sql inlines or if the -noValueLists
parameter is specified.

44.7. Value Lists for ENUM or SET Fields 479



LassoGuide, Release 9.3

value_listItem()
While in a value_list capture block, it returns the value for the current item.

selected()
Displays the word “selected” if the current value list item is contained in the data of the “ENUM” or “SET” field.

checked()
Displays the word “checked” if the current value list item is contained in the data of the “ENUM” or “SET” field.

Tip: See the sectionDatabase Schema InspectionMethods for information about the -show parameter which is used through-
out these examples.

44.7.1 Display Allowed Values for an ENUM or SET Field

Perform a -show action to return the schema of a MySQL database and use the value_list method to display the allowed
values for an “ENUM” or “SET” field. The following example shows how to display all values from the “ENUM” field “title” in the
“people” table. “SET” fields function in the same manner as “ENUM” fields, and all examples in this section may be used with
either “ENUM” or “SET” field types.

inline(
-show,
-database='contacts',
-table='people'

) => {^
value_list('title') => {^

'<br />' + value_listItem + '\n'
^}

^}

// =>
// <br />Mr.
// <br />Mrs.
// <br />Ms.
// <br />Dr.

The following example shows how to display all values from a value list using a named inline. The same name “values” is
referenced by -inlineName in both the inline method and resultSet method.

inline(
-inlineName='Values',
-show,
-database='contacts',
-table='people'

) => {}

// ...

resultSet(1, -inlineName='Values') => {^
value_list('title') => {^

'<br />' + value_listItem + '\n'
^}

^}

// =>
// <br />Mr.
// <br />Mrs.

480 Chapter 44. SQL Data Sources



LassoGuide, Release 9.3

// <br />Ms.
// <br />Dr.

44.7.2 Display a Drop-Down Menu with All Values from a Value List

The following example shows how to format an HTML <select> drop-down menu to show all the values from a value list. A
select list can be created with the same code by including size and multiple parameters within the <select> tag. This code
is usually used within an HTML form that calls a response page that performs an -add or -update action so the visitor can
select a value from the value list for the record they create or modify.

The example shows a single <select> within an inline method with a -show action. If many value lists from the same
database are being formatted, they can all be contained within a single inline.

'<form action="response.lasso" method="POST">\n'
inline(

-show,
-database='contacts',
-table='people'

) => {^
'<select name="title">\n'
value_list('title') => {^

' <option value="' + value_listItem + '">' + value_listItem + '</option>\n'
^}
'</select>\n'

^}
'<p><input type="submit" name="submit" value="Add Record"></p>\n</form>\n'

// =>
// <form action="response.lasso" method="POST">
// <select name="title">
// <option value="Mr.">Mr.</option>
// <option value="Mrs.">Mrs.</option>
// <option value="Ms.">Ms.</option>
// <option value="Dr.">Dr.</option>
// </select>
// <p><input type="submit" name="submit" value="Add Record"></p>
// </form>

44.7.3 Display Radio Buttons with All Values from a Value List

The following example shows how to format a set of HTML <input> tags to show all the values from a value list as radio
buttons. The visitor will be able to select one value from the value list. Checkboxes can be created with the same code by
changing the type from radio to checkbox.

'<form action="response.lasso" method="POST">\n'
inline(

-show,
-database='contacts',
-table='people'

) => {^
value_list('title') => {^

' <input type="radio" name="title" value="' + value_listItem + '" /> ' + value_listItem + '\n'
^}

^}
'<p><input type="submit" name="submit" value="Add Record"></p>\n</form>\n'

44.7. Value Lists for ENUM or SET Fields 481



LassoGuide, Release 9.3

// =>
// <form action="response.lasso" method="POST">
// <input type="radio" name="title" value="Mr." /> Mr.
// <input type="radio" name="title" value="Mrs." /> Mrs.
// <input type="radio" name="title" value="Ms." /> Ms.
// <input type="radio" name="title" value="Dr." /> Dr.
// <p><input type="submit" name="submit" value="Add Record"></p>
// </form>

44.7.4 Display Only Selected Values from a Value List

The following example shows how to display the selected values from a value list for the current record. The record for “John
Doe” is found within the database and the selected value for the “title” field, “Mr.”, is displayed.

Theselectedmethod is used to ensure that only selected value list items are shown. The following example uses a conditional
to check whether selected is empty and only shows the value_listItem if it is not:

inline(
-search,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=126

) => {^
value_list('title') => {^

if(selected != '') => {^
'<br />' + value_listItem

^}
^}

^}

// => <br />Mr.

The field method can also be used simply to display the current value for a field without reference to the value list.

'<br />' + field('title')

// => <br />Mr.

44.7.5 Display a Drop-Down Menu with Selected Values from a Value List

The following example shows how to format an HTML <select> list to show all the values from a value list with the selected
values highlighted. The selected method will return “selected” if the current value list item is selected in the database or
nothing otherwise.

'<form action="response.lasso" method="POST">\n'
inline(

-search,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=126

) => {^
'<select name="title" multiple size="4">\n'

482 Chapter 44. SQL Data Sources



LassoGuide, Release 9.3

value_list('title') => {^
' <option value="' + value_listItem + '" ' + selected + '>' + value_listItem + '</option>\n'

^}
'</select>\n'

^}
'<input type="submit" name="submit" value="Update Record">\n</form>\n'

// =>
// <form action="response.lasso" method="POST">
// <select name="title" multiple size="4">
// <option value="Mr." selected>Mr.</option>
// <option value="Mrs." >Mrs.</option>
// <option value="Ms." >Ms.</option>
// <option value="Dr." >Dr.</option>
// </select>
// <input type="submit" name="submit" value="Update Record">
// </form>

44.7.6 Display Checkboxes with Selected Values from a Value List

The following example shows how to format a set of HTML <input> tags to show all the values from a value list as checkboxes
with the selected checkboxes checked. The checked method will return “checked” if the current value list item is selected in
the database or nothing otherwise. Radio buttons can be created with the same code by changing the type from “checkbox”
to “radio”.

'<form action="response.lasso" method="POST">\n'
inline(

-search,
-database='contacts',
-table='people',
-keyField='id',
-keyValue=126

) => {^
value_list('title') => {^

' <input type="checkbox" name="title" value="' + value_listItem + '" ' + checked + '>'
+ value_listItem + '\n'

^}
^}
'<input type="submit" name="submit" value="Update Record">\n</form>\n'

// =>
// <form action="response.lasso" method="POST">
// <input type="checkbox" name="title" value="Mr." checked> Mr.
// <input type="checkbox" name="title" value="Mrs." > Mrs.
// <input type="checkbox" name="title" value="Ms." > Ms.
// <input type="checkbox" name="title" value="Dr." > Dr.
// <input type="submit" name="submit" value="Update Record">
// </form>

Note: Storing multiple values is only supported using “SET” field types.

44.7. Value Lists for ENUM or SET Fields 483



LassoGuide, Release 9.3

44.8 SQL Statements

Lasso provides the ability to issue SQL statements directly to SQL-compliant data sources, including the MySQL data source.
SQL statements are specified within the inline method using the -sql parameter. Many third-party databases that support
SQL statements also support the use of the -sql parameter. SQL inlines can be used as the primary method of database
interaction in Lasso, or they can be used alongside standard inline actions (e.g. -search, -add, -update, -delete) where a
specific SQL function is desired that cannot be replicated using standard database commands.

Note: SQL statements are not supported for FileMaker data sources.

For most data sources multiple SQL statements can be specified within the -sql parameter separated by a semicolon. Lasso
will issue all of the statements to the data source at once and will collect all of the results into result sets. TheresultSet_count
method returns the number of result sets that Lasso found. The resultSet method can then be used with an integer param-
eter to return the results from one of the result sets.

Caution: Visitor-supplied values must be sanitized when they are concatenated into SQL statements. Sanitizing these
values ensures that no invalid characters are passed to the data source and helps to prevent SQL injection attacks. The
string->encodeSql method should be used to encode values for MySQL strings. The string->encodeSql92 method
should be used to encode values for strings for other SQL-compliant data sources including ODBC data sources and SQLite.
The -search, -add, -update, etc. database actions automatically sanitize values passed as pairs into an inline.

Table 44.3: SQL Statement Parameters

Parameter Description

-sql=? Issues one or more SQL command to a compatible data source. Multiple commands are delimited
by a semicolon. When multiple commands are used, all will be executed, however only the first
command issued will return results to the inline method unless the resultSet method is used.

-database=? The database in the data source in which to execute the SQL statement.

-table=? A table in the database (used for encoding information).

-maxRecords=? The maximum number of records to return. Optional, defaults to “50”.

-skipRecords=? The offset into the found set at which to start returning records. Optional, defaults to “1”.

The -database parameter can be any database within the data source in which the SQL statement should be executed. The
-database parameter determines the data source, and table references within the statement can include both a database
name and a table name (e.g. “contacts.people”) in order to fetch results from multiple tables. For example, to create a new
database in MySQL, a CREATE DATABASE statement can be executed with -database set to a name of a database in the host
you want the new database to reside in.

When referencing the name of a database and table in a SQL statement (e.g. “contacts.people”), only the true names of a
database can be used as MySQL does not recognize Lasso database aliases in a SQL command.

Results from a SQL statement are returned in a record set within the inline method. The results can be read and displayed
using the records or rows methods and the field or column method. However, many SQL statements return a synthetic
record set that does not correspond to the names of the fields of the table being operated upon. This is demonstrated in the
examples that follow.

Note: Documentation of SQL itself is beyond the scope of this guide. Please consult the documentation included with your
data source for information on which SQL statements it supports.

484 Chapter 44. SQL Data Sources



LassoGuide, Release 9.3

44.8.1 Issuing SQL Statements

SQL statement are specified within an inline method with a -sql keyword parameter.

The following example calculates the results of a mathematical expression “1 + 2” and returns the value as a field named
“result”. Note that even though this SQL statement does not reference a database, a -database parameter is still required so
Lasso knows to which data source to send the statement:

inline(
-database='example',
-sql="SELECT 1+2 AS result;"

) => {^
'The result is: ' + field('result')

^}

// => The result is 3

The following example calculates the results of several mathematical expressions and returns them as field values “one”, “two”,
and “three”:

inline(
-database='example',
-sql="SELECT 1+2 AS one, sin(.5) AS two, 5%2 AS three;"

) => {^
'The results are: ' + field('one') + ', ' + field('two') + ', and ' + field('three')

^}

// => The results are 3, 0.579426, and 1

The following example calculates the results of several mathematical expressions using Lasso and returns them as field values
“one”, “two”, and “three”. It demonstrates how the results of Lasso expressions and methods can be used in a SQL statement:

inline(
-database='example',
-sql="SELECT " + (1+2) + " AS one, " + math_sin(0.5) + " AS two, " + (5%2) + " AS three;"

) => {^
'The results are: ' + field('one') + ', ' + field('two') + ', and ' + field('three')

^}

// => The results are 3, 0.579426, and 1

The following example returns records from the “phone_book” table where “first_name” is equal to “John”. This is equivalent
to a -search action:

inline(
-database='contacts',
-sql="SELECT * FROM phone_book WHERE first_name = 'John';"

) => {^
records => {^

'<br />' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

// =>
// <br />John Doe
// <br />John Person

44.8. SQL Statements 485



LassoGuide, Release 9.3

Issue a SQL Statement with Multiple Commands

Specify several SQL statements within an inline method in a -sql keyword parameter, with each SQL command separated
by a semicolon. The following example adds three unique records to the “people” table of the “contacts” database:

inline(
-database='contacts',
-sql="INSERT INTO people (first_name, last_name) VALUES ('John', 'Jakob');

INSERT INTO people (first_name, last_name) VALUES ('Tom', 'Smith');
INSERT INTO people (first_name, last_name) VALUES ('Sally', 'Brown');"

) => {}

Determine the Actual Database Name for a SQL Statement

Use the database_realNamemethod. When using the -sql parameter to issue SQL statements to a host, only true database
names may be used (bypassing the alias). The database_realName method automatically determines the true name of a
database, allowing them to be used in a valid SQL statement.

local(real_db) = database_realName('Contacts_alias')
inline(

-database='contacts_alias',
-sql="SELECT * FROM `" + #real_db + "`.people;"

) => {}

44.8.2 Sanitizing Visitor-Supplied Values in a SQL Statement

All visitor supplied values must be sanitized before they are concatenated into a SQL statement in order to ensure the validity of
the SQL statement and to prevent SQL injection. Values from the web_request->param, web_request->cookie, and field
methods should be encoded as well as values from any calculations that rely on these methods. The string->encodeSql
method should be used to encode values within SQL statements for MySQL data sources. The string->encodeSql92
method should be used to encode values for other SQL-compliant data sources including ODBC data sources and SQLite.

string->encodeSql()
Encodes illegal characters in MySQL string literals by escaping them with a backslash. Helps to prevent SQL injection
attacks and ensures that SQL statements only contain valid characters. It should be used to encode visitor supplied
values within SQL statements for MySQL strings.

string->encodeSql92()
Encodes illegal characters in SQL string literals by escaping a single quote with two single quotes. Helps to prevent SQL
injection attacks and ensures that SQL statements only contain valid characters. It should be used to encode values for
SQLite and most other SQL-compliant data sources.

The following example encodes the query or post parameter for “first_name” for a MySQL data source:

inline(
-database='contacts',
-sql="SELECT * FROM phone_book WHERE first_name = '" +

string(web_request->param('first_name'))->encodeSql + "';"
) => {}

The following example encodes the query or post parameter “first_name” for a SQLite (or other SQL-compliant) data source:

inline(
-database='contacts',
-sql="SELECT * FROM phone_book WHERE first_name = '" +

486 Chapter 44. SQL Data Sources



LassoGuide, Release 9.3

string(web_request->param('first_name'))->encodeSql92 + "';"
) => {}

Important: The string->encodeSql and string->encodeSql92 methods can only sanitize data being used as SQL string
data in the SQL expression. If you need to sanitize data being used as integer or decimal data, use those creator methods
to verify the object is of those types. To sanitize a date object, use the date->format method and make sure the format
string doesn’t contain invalid characters. If you need to use variables to specify database, table, or column names inside a SQL
statement, you will need to take additional precautions that vary by data source. All of this is to say that you should always
sanitize your inputs, and simply using the encodeSql methods is not enough.

44.8.3 Automatically Formatting SQL Statement Results

Use the field_name method and loop method to create an HTML table that automatically formats the results of a -sql
command. The -maxRecords parameter should be set to “All” so all records are returned rather than the default (50).

The following example shows a REPAIR TABLE contacts.people SQL statement being issued to a MySQL database, and
the result being automatically formatted. The statement will return a synthetic record set that shows the results of the repair.

Notice that the database “contacts” is specified explicitly within the SQL statement. Even though the database is identified in
the -database parameter within the inline it may still be explicitly specified in each table reference within the SQL statement.

inline(
-database='contacts',
-sql="REPAIR TABLE contacts.people;",
-maxRecords='all'

) => {^
'<table border="1">\n'
'<tr>\n'
loop(field_name(-count)) => {^

' <td><b>' + field_name(loop_count) + '</b></td>\n'
^}
'</tr>\n'
records => {^

'<tr>\n'
loop(field_name(-count)) => {^

' <td>' + field(field_name(loop_count)) + '</td>\n'
^}
'</tr>\n'

^}
'</table>\n'

^}

The results are returned in a table with bold column headings. The following results show that the table did not require any
repairs. If repairs are performed then many more records will be returned.

// =>
// <table border="1">
// <tr>
// <td><b>Table</b></td>
// <td><b>Op</b></td>
// <td><b>Msg_type</b></td>
// <td><b>Msg_text</b></td>
// </tr>
// <tr>
// <td>people</td>

44.8. SQL Statements 487



LassoGuide, Release 9.3

// <td>Check</td>
// <td>Status</td>
// <td>OK</td>
// </tr>
// </table>

44.8.4 Using Result Sets

An inline that uses a -sql action can return multiple result sets. Each SQL statement within the -sql action is separated by
a semicolon and generates its own result set. This allows multiple SQL statements to be issued to a data source in a single
connection and for the results of each statement to be reviewed individually.

In the following example the resultSet_count method is used to report the number of result sets that the inline returned.
Since the -sql parameter contains two SQL statements, two result sets are returned. The two result sets are then looped
through by passing the resultSet_count method to the loop method and passing the loop_count as the parameter for
the resultSet method. Finally, the records method is used as normal to display the records from each result set.

inline(
-database='contacts',
-sql="SELECT CONCAT(first_name, ' ', last_name) AS name FROM people; SELECT name FROM companies;"

) => {^
resultSet_count + ' Result Sets\n'
'<hr />\n'
loop(resultSet_count) => {^

resultSet(loop_count) => {^
records => {^

'<br />' + field('name') + '\n'
^}
'<hr />\n'

^}
^}

^}

// =>
// 2 Result Sets
// <hr />
// <br />John Doe
// <br />Jane Doe
// <hr />
// <br />LassoSoft
// <hr />

The same example can be rewritten using a named inline. An -inlineName parameter with the name “MyResults” is added
to the inline method, the resultSet_count method, and the resultSet method. This way the result sets can be output
from anywhere after the inline. The results of the following example will be the same as those shown above:

inline(
-inlineName='MyResults',
-database='contacts',
-sql="SELECT CONCAT(first_name, ' ', last_name) AS name FROM people; SELECT name FROM companies;"

) => {}

// ...

resultSet_count(-inlineName='MyResults') + ' Result Sets\n<hr />'
loop(resultSet_count(-inlineName='MyResults')) => {^

488 Chapter 44. SQL Data Sources



LassoGuide, Release 9.3

resultSet(loop_count, -inlineName='MyResults') => {^
records => {^

'<br />' + field('name')
^}
'<hr />'

^}
^}

44.9 SQL Transactions

Lasso supports the ability to perform SQL transactions, which are reversible groups of statements, provided that the data source
used supports this functionality, such as MySQL 4 and later with certain storage engines. See your data source documentation
to see if transactions are supported.

SQL transactions can be achieved within nested inline methods. A single connection to MySQL or ODBC data sources will
be held open around the outer inline. Any nested inlines that use the same data source will make use of the same connection.

Note: When using named inlines, the connection is not available in subsequent records(-inlineName='Name') methods.

44.9.1 Open a Transaction and Commit or Rollback in MySQL

Use nested -sql inlines, where the outer inline performs a transaction, and the inner inline commits or rolls back the transac-
tion depending on the results of a conditional statement.

inline(
-database='contacts',
-sql="START TRANSACTION;

INSERT INTO contacts.people (title, company) VALUES ('Mr.', 'LassoSoft');"
) => {

if(error_currentError != error_msg_noerror) => {
inline(-database='contacts', -sql="ROLLBACK;") => {}

else
inline(-database='contacts', -sql="COMMIT;") => {}

}
}

44.9.2 Fetch the Last Inserted ID in MySQL

Use nested -sql inlines, where the outer inline performs an insert query, and the inner inline retrieves the ID of the last inserted
record using the MySQL last_insert_id() function. Because the two inlines share the same connection, the inner inline
always returns the value added by the outer inline.

inline(
-database='contacts',
-sql="INSERT INTO people (title, company) VALUES ('Mr.', 'LassoSoft');"

) => {^
inline(-sql="SELECT last_insert_id();") => {^

field('last_insert_id()')
^}

^}

44.9. SQL Transactions 489



LassoGuide, Release 9.3

// => 23

44.10 Prepared Statements

Lasso supports the ability to use prepared statements to speed up database operations provided that the data source used
supports this functionality, such as MySQL 4 and later. See your data source documentation to see if prepared statements are
supported.

A prepared statement is a cached database query that can speed up database operations by cutting down on the amount of
overhead that the data source needs to perform for each statement. For example, processing the following “INSERT” statement
requires the data source to load the people table, determine its primary key, load information about its indexes, and deter-
mine default values for fields not listed. After the new record is inserted the indexes must be updated. If another “INSERT” is
performed then all of these steps are repeated from the beginning:

INSERT INTO people (`first_name`, `last_name`) VALUES ("John", "Doe");

When this statement is changed into a prepared statement then the data source knows to expect multiple executions of the
statement. The data source can cache information about the table in memory and reuse that information for each execution.
The data source might also be able to defer some operations such as finalizing index updates until after several statements
have been executed.

The specific details of how prepared statements are treated are dependent on the data source. The savings in overhead and
increase in speed may vary depending on what type of SQL statement is being issued, the size of the table and indexes that
are being used, and other factors.

The statement above can be rewritten as a prepared statement by replacing the values with question marks. The name of the
table and field list are defined just as they were in the original SQL statement. This statement is a template into which particular
values will be placed before the data source executes it:

INSERT INTO people (`first_name`, `last_name`) VALUES (?, ?)

The particular values are specified as an array. Each element of the array corresponds with one question mark from the prepared
statement. To insert “John Doe” into the “people” table the following array would be used:

array('John', 'Doe')

One new database action is used to prepare statement and execute them: -prepare is similar to -sql, but informs Lasso
that you want to create a prepared statement. Nested inlines are then issued with an array and the -sql parameter. The array
should contain values that should be plugged into the prepared statement.

The prepared statement and values shown above would be issued by the following inlines. The outer inline prepares the
statement and the inner inline executes it with specific values. Note that the inner inline does not contain any -database or
-table parameters. These are inherited from the outer inline so they don’t need to be specified again.

inline(
-database='contacts',
-prepare="INSERT INTO people (`first_name`, `last_name`) VALUES (?, ?);"

) => {
inline(array('John', 'Doe'), -sql) => {}

}

If the executed statement returns any values then those results can be inspected within the inner inline. The inline with the
-prepare action will not return any results itself, but each inner inline with a -sql parameter may return a result as if the full
equivalent SQL statement were issued in that inline.

490 Chapter 44. SQL Data Sources



Chapter 45

ODBC Data Sources

This chapter documents methods and behaviors that are specific to the ODBC data source in Lasso. Native support for ODBC
data sources is included in Lasso. This feature allows Lasso to communicate with dozens of ODBC-compliant data sources
including Sybase, DB2, Frontbase, OpenBase, Interbase, and Microsoft SQL Server. For more information on ODBC connectivity
and availability for a particular data source, see the documentation for the data source or contact the data source provider.

Lasso accesses ODBC drivers that are set up as System DSNs. Use an ODBC Data Source Administrator utility or control panel to
configure the driver as a System DSN, after which the data source name can be entered into Lasso. See the Datasource Setup
chapter for additional details.

45.1 Supported Features for ODBC Data Sources

The following chart details the features of this data source connector.

Friendly Name
Lasso Connector for ODBC

Internal Name
odbc

Module Name
SQLConnector.dll, SQLConnector.dylib, or SQLConnector.so

Inline Host Attributes
The -name should specify the data source name (System DSN). A -username and -password may also be required.

Actions
-add, -delete, -findAll, -search, -show, -sql, -update

Operators
-bw, -cn, -eq, -ew, -gt, -gte, -lt, -lte, -nbw, -ncn, -new; -opBegin/-opEnd with “And”, “Or”, “Not”.

KeyField
-keyField/-keyValue

45.2 ODBC Data Source Tips

The following is a list of guidelines to follow when writing Lasso code that interfaces with ODBC data sources.

• Always specify a primary key field using the -keyField parameter for -search, -add, and -findAll actions. This will
ensure that the keyField_value method always returns a value.

• Use -keyField and -keyValue to reference a particular record for updates or deletes.

• Some data sources will truncate any data beyond the length they are set up to store. Verify that all fields have sufficient
capacity for the values that need to be stored in them.

491



LassoGuide, Release 9.3

• Use -returnField parameters to reduce the number of fields that are returned from a -search action. Returning
only the fields that need to be used for further processing or shown to the site visitor reduces the amount of data that
needs to travel between Lasso and the data source.

• When an -add or -update action is performed on a database, the data from the added or updated record is available
inside the capture block of the inline method. If the -returnField parameter is used, only those fields specified
should be returned from an -add or -update action. Setting -maxRecords=0 specifies that no record should be re-
turned.

• SQL statements that are generated using visitor-defined data should be screened carefully for unwanted commands
such as “DROP” or “GRANT”.

• Always sanitize any inputs from site visitors that are incorporated into SQL statements. For example, any SQL strings that
have visitor-defined data should be sanitized using the string->encodeSql method for MySQL-like data sources or
the string->encodeSql92 method for SQL92-compliant data sources or ODBC data sources. Encoding the values in
this manner ensures that quotes and other reserved characters are properly escaped within the SQL statement, thereby
helping to prevent SQL injection attacks.

For example, the following SQL “SELECT” statement contains a SQL string in the LIKE clause and uses
string->encodeSql92 to encode the value of the 'company' web_request->param. This encoding causes all sin-
gle quotes within the passed company parameter to be encoded with an additional single quote.

local(sql_statement) = "SELECT * FROM contacts.people WHERE company LIKE '" +
string(web_request->param('company'))->encodeSql92 + "%';"

If web_request->param('company') returns “McDonald’s” then the SQL statement generated by this code would
appear as follows:

SELECT * FROM Contacts.People WHERE Company LIKE "McDonald's%";

• Lasso Server uses connection pooling when connecting to data sources via ODBC, and the ODBC connections will
remain open during the time that Lasso Server is running.

45.3 Using ODBC Data Sources

Data source operations outlined in the Database Interaction Fundamentals, Searching and Displaying Data, and Adding and
Updating Records chapters are supported with ODBC data sources. Because ODBC is a standardized API for connecting to
tabular data sources, there are no unique methods in Lasso that are specific to ODBC data sources or invoke special functions
specific to any ODBC data source.

492 Chapter 45. ODBC Data Sources



Chapter 46

FileMaker Data Sources

Lasso Server allows access to FileMaker Server 7–12 Advanced and FileMaker Server 9–12 through the Lasso Connec-
tor for FileMaker. Lasso provides several methods and options that are unique to FileMaker Server connections including
-layoutResponse and -noValueLists.

While Lasso is a predominantly data source–independent platform, it does include many FileMaker-specific options as docu-
mented in this chapter. However, all of the common procedures outlined in the Database Interaction Fundamentals, Search-
ing and Displaying Data, and Adding and Updating Records chapters can be used with FileMaker data sources.

Important: The methods and options defined in this chapter can only be used with FileMaker data sources. Any solution that
relies on the methods in this chapter cannot be easily retargeted to work with a different data source.

46.1 Lasso and FileMaker

Since Lasso works with many different data sources this documentation uses data source–agnostic terms to refer to databases,
tables, and fields. The following terms that are used in the FileMaker documentation are equivalent to their Lasso counterparts:

Database
Database is used to refer to a single FileMaker database file. FileMaker databases differ from other databases in Lasso in that
they contain layouts rather than individual data tables. Even in FileMaker Server 7–12, Lasso sees individual layouts rather
than data tables. From a data storage point of view, a FileMaker database is equivalent to a single MySQL table.

Layout
Within Lasso a FileMaker layout is treated as equivalent to a table. The two terms can be used interchangeably. This equiva-
lence simplifies Lasso security and makes transitioning between data sources easier. All FileMaker layouts can be thought
of as views of a single data table. Lasso can only access fields that are contained in the layout named within the current
database action.

Record
FileMaker records are referenced using a single -keyValue rather than a -keyField and -keyValue pair. The -keyField
in FileMaker is always the Record ID that is set internally.

Field
The value for any field in the current layout in FileMaker can be returned including the values for related fields, repeating
fields, and fields in portals.

46.1.1 Performance Tips

This section contains a number of tips that will help get the best performance from a FileMaker database. Since queries must
be performed sequentially within FileMaker Server, even small optimizations can yield significant increases in the speed of
web serving under heavy load.

• Dedicated FileMaker Server Machine – For best performance, place the FileMaker Server on a different machine from
Lasso Server and the web server.

493



LassoGuide, Release 9.3

• FileMaker Server – If a FileMaker database must be accessed by a mix of FileMaker clients and web visitors through
Lasso, it should be hosted on FileMaker Server. Lasso can access the database directly through FileMaker Server 7–12
Advanced and FileMaker Server 9–12.

• Index Fields – Any fields that will be searched through Lasso should have indexing turned on. Avoid searching on
non-stored calculation fields, related fields, and summary fields.

• Custom Layouts – Layouts should be created with the minimal number of fields required for Lasso. All the data for the
fields in the layout will be sent to Lasso with the query results. Limiting the number of fields can dramatically cut down
the amount of data that needs to be sent from FileMaker Server to Lasso.

• Value Lists – For FileMaker Server data sources use the -noValueLists parameter to suppress the automatic sending
of value lists from FileMaker when those value lists are not going to be used on the response page.

• Layout Response – For FileMaker Server data sources use the -layoutResponse parameter to specify which layout
should be used to return results from FileMaker. A different layout from what was specified in the request can be used
for the result. This is a replacement for the -returnField parameter, which is not supported for FileMaker data sources.

• Sorting – Sorting can have a serious impact on performance if large numbers of records must be sorted. Avoid sorting
large record sets and avoid sorting on calculation fields, related fields, unindexed fields, or summary fields.

• Contains Searching – FileMaker is optimized for the default “Begins With” searches (and for numerical searches). Use of
the contains operator (-cn) can dramatically slow down performance since FileMaker will not be able to use its indices
to optimize searches.

• Max Records – Using -maxRecords to limit the number of records returned in the result set from FileMaker Server can
speed up performance. Use -maxRecords and -skipRecords methods to navigate a visitor through the found set.

• Calculation Fields – Calculation fields should be avoided if possible. Searching or sorting on unindexed, uncached
calculation fields can have a negative effect on FileMaker Server performance.

• FileMaker Scripts – The use of FileMaker scripts should be avoided if possible. While FileMaker executes a script, no
other database actions can be performed. FileMaker scripts can usually be rewritten as Lasso code to achieve the same
effect, often with greater performance.

In addition to these tips, MySQL or PostgreSQL can shift some of the burden off of FileMaker Server. MySQL and PostgreSQL
can usually perform database searches much faster than FileMaker. Lasso also includes sessions and collection types that can
perform some of the tasks of a database, but with higher performance for small amounts of data.

46.1.2 Compatibility Tips

Following these tips will help to ensure that it is easy to transfer data from a FileMaker database to another data source, such
as a PostgreSQL database, at a future date.

• DatabaseNames – Database, layout, and field names should contain only a mix of letters, numbers, and the underscore
character.

• Calculation Fields – Avoid the use of calculation fields. Instead, perform calculations within Lasso and store the results
back into regular fields if they will be needed later.

• Summary Fields – Avoid the use of summary fields. Instead, summarize data using inline searches within Lasso.

• Scripts – Avoid the use of FileMaker scripts. Most actions performed with scripts can be performed using the database
actions available within Lasso.

• Record ID – Create a calculation field with the calculation Status(CurrentRecordID) and name it “id”. Always use
the -keyField='id' within inline database actions. This ensures that when moving to a database that relies on
storing the key field value explicitly, a unique key field value is available.

494 Chapter 46. FileMaker Data Sources



LassoGuide, Release 9.3

46.2 FileMaker Queries

The queries generated by inlines for FileMaker data sources differ from the queries generated for other data sources in several
significant ways. This section includes a description of how search operators, logical operators, and other keyword parameters
are used to construct queries for each of the FileMaker data sources.

46.2.1 Search Operators

By default FileMaker performs a “begins with” search for each field in a query. In FileMaker Server each field can only be specified
one time within each search query. See the information below on FileMaker search symbols for strategies to perform complex
queries in FileMaker Server.

Lasso also provides the following operators that allow performing different queries. Each operator should be specified im-
mediately before the field and its search value are specified. Note that this list of operators is somewhat different from those
supported by other data source connectors including older FileMaker data source connectors.

Table 46.1: FileMaker Search Field Operators

Operator Description

-op='bw' or -bw Begins With. Matches records where any word in the field begins with the specified substring. This
is the default if no other operator is specified.

-op='cn' or -cn Contains. Matches records where any word in the field contains the substring.

-op='eq' or -eq Equals. Matches records where any word in the field exactly matches the string.

-op='ew' or -ew Ends With. Matches records where any word in the field ends with the specified substring.

-op='gt' or -gt Greater Than. Matches records where the field value is greater than the parameter.

-op='gte' or -gte Greater Than or Equals.

-op='lt' or -lt Less Than. Matches records where the field value is less than the parameter.

-op='lte' or -lte Less Than or Equals.

-op='rx' or -rx Use a FileMaker search expression. See the table below for a list of symbols.

Note that there is no -neq operator or other negated operators. It is necessary to use a -not query to omit records from the
found set instead, as explained further below. For example, to find records where the field “first_name” is not “Joe” the following
search terms must be used: -not, -op='eq', 'first_name'='Joe'

The -rx operator can pass a raw FileMaker search expression as a query. This allows the use of any of the FileMaker search
symbols. See the FileMaker documentation62 for a full explanation of how these symbols work.

62 http://www.filemaker.com/support/product/documentation.html

46.2. FileMaker Queries 495

http://www.filemaker.com/support/product/documentation.html


LassoGuide, Release 9.3

Table 46.2: FileMaker Search Symbols

Symbol Description

@ Matches one character.

* Matches zero or more characters. A single * matches non-empty fields.

.. Matches a range of values such as “1..10” or “A..Z”. Can be written as two or three periods.

# Matches one number.

" " Quotes surround a substring that should be matched literally.

= Matches a whole word. “=John” will match “John”, but not “Johnny”. A single = matches empty fields.

== Matches a whole field value rather than per-word. Should be specified at the start of the search term.

< Matches values less than a specified value.

<= Matches values less than or equal to a specified value.

> Matches values greater than a specified value.

>= Matches values greater than or equal to a specified value.

// Matches today’s date.

? Matches a record with invalid date data in the field.

! Matches records that have a duplicate value. Both records will be returned.

The range symbol (..) is most useful for performing searches within a date range, e.g. a date in 2006 can be found by searching
for -rx, 'date_field'='1/1/2006..12/31/2006'.

46.2.2 Logical Operators

FileMaker data sources default to performing an AND search. The records that are returned from the data source must match
all of the specified criteria. It is also possible to specify -opLogical to switch to an OR search where the records that are
returned from the data source may match any of the specified criteria.

For example, the following criteria returns records where the “first_name” is “John” and the “last_name” is “Doe”: -eq,
'first_name'='John', -eq, 'last_name'='Doe'

The following criteria instead returns records where the “first_name” is “John” or the “last_name” is “Doe”. This would return
records for “John Doe” as well as “Jane Doe” and “John Walker”: -opLogical='Or', -eq, 'first_name'='John', -eq,
'last_name'='Doe'

46.2.3 Complex Queries with FileMaker Server 9 and Later

Starting with FileMaker Server 9, a search request is made up of one or more queries. By default a single query is generated
and all of the search terms within it are combined using an AND operator. Additional queries can be added to either extend
the found set using an OR operator or to omit records from the found set using a NOT operator. These queries correspond
precisely to find requests within the FileMaker Server user interface.

Each field can only be listed once per query. The standard Lasso operators can be used for most common search parameters
like equals, begins with, ends with, contains, less than, greater than, etc. FileMaker’s standard find symbols can be used for
more complex criteria. It may also be necessary to use multiple queries for more complex search criteria.

Search requests in FileMaker Server 9 and later do not support the “Not Equals” operator or any of the NOT-variant operators.
Instead, these should be created by combining an omit query with the appropriate affirmative operator. The -opLogical,
-opBegin, and -opEnd operators are not supported. The -or and -not operators must be used instead.

496 Chapter 46. FileMaker Data Sources



LassoGuide, Release 9.3

Table 46.3: FileMaker Search Operator Parameters

Parameter Description

-or Starts a new query. Records that match the query will be added to the result set.

-not Starts an omit query. Records that match the query will be omitted from the result set.

A search with a single query uses an AND operator to combine each of the search terms. Records where the field “first_name”
begins with the letter “J” and the field “last_name” begins with the letter “D” can be found using the following search
terms in Lasso. Each record in the result set will match every search term in the query: -bw, 'first_name'='J', -bw,
'last_name='D'

We start an additional query using an -or parameter. FileMaker runs the first and second queries independently and then
combines the search results. The result of the following search terms will be to find every record where the field “first_name”
begins with the letter “J” and the field “last_name” begins with either the letter “D” or the letter “S”. Each record in the result
set will match either the first query or the second query.

-bw, 'first_name'='J',
-bw, 'last_name'='D',
-or,
-bw, 'first_name'='J',
-bw, 'last_name'='S'

Note that each field name can only appear once per query, but the same field name can be used in multiple queries. The
“first_name” search term is repeated in both queries so that all returned records will have a “first_name” starting with “J”. If
the “first_name” search term was left out of the second query then the result set would contain every record where the field
“first_name” begins with the “J” and the field “last_name” begins with the letter “D” and every record where the field “last_name”
begins with the letter “S”.

The result set can be narrowed by adding an omit query using a -not parameter. FileMaker will run the first query and any -or
queries first, generating a complete result set. Then, the -not queries will be run and any records that match those queries will
be omitted from the found set. The result of the following search terms will be to find every record where the field “first_name”
begins with the letter “J” and the field “last_name” begins with the letter “D” except for the record for “John Doe”. Each record
in the result set will match the first query and will not match the second query.

-bw, 'first_name'='J',
-bw, 'last_name'='D',
-not,
-bw, 'first_name'='John',
-bw, 'last_name'='Doe'

It is possible to construct most searches positively using only a single query or a few -or queries, but sometimes it is more
logical to construct a large result set and then use one or more -not queries to omit records from it.

46.2.4 Additional Commands for FileMaker Server 9 and Later

FileMaker Server 9 supports a number of additional unique commands that are summarized in the following table. Most of
these commands are passed through to FileMaker Server without modification by Lasso. The FileMaker Server 9 Custom Web
Publishing with XML and XSLT documentation should be consulted for full details about these commands.

46.2. FileMaker Queries 497



LassoGuide, Release 9.3

Table 46.4: FileMaker Additional Parameters

Parameter Description

-layoutResponse=? Returns the result set using the layout specified in this
parameter rather than the layout used to specify the
database action.

-noValueLists Suppresses the fetching of value list data for FileMaker
Server data sources.

-relatedSets.filter=? If set to “layout”, FileMaker Server will return only the
number of related records shown in portals on the current
layout. Defaults to returning all records up to the number set
by -relatedSets.max.

-relatedSets.max=? Sets the number of related records returned. Can be set to a
number or “All”.

-script=? and -script.param=? Runs a script after the find has been processed and sorted.
This optional parameter value can be accessed from within
the script.

-script.preFind=? and -script.preFind.param=? Runs a script before the find is processed.

-script.preSort=? and -script.preSort.param=? Runs a script after the find has been processed, but before
the results are sorted.

46.3 Primary Key Field and Record ID

FileMaker databases include a built-in primary key value called the Record ID. This value is guaranteed to be unique for any
record in a FileMaker database. It is predominantly sequential, but should not be relied upon to be sequential. The values of
the Record IDs within a database may change after an import or after a database is compressed using Save a Copy As.... Record
IDs can be used within a solution to refer to a record on multiple pages, but should not be stored as permanent references to
FileMaker records.

46.3.1 Return the Current Record ID

The Record ID for the current record can be returned using keyField_value. The following example shows an inline
method that will perform a -findAll action and return the Record ID for each returned record using the keyField_value
method:

inline(
-findAll,
-database='contacts',
-table='people'

) => {^
records => {^

'<br />' + keyField_value + ': ' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

// =>
// <br />126: John Doe
// <br />127: Jane Doe
// <br />4096: Jane Person

498 Chapter 46. FileMaker Data Sources



LassoGuide, Release 9.3

46.3.2 Reference a Record by Record ID

For -update and -delete action parameters the Record ID for the record being operated upon can be referenced using
-keyValue. The -keyField does not need to be defined or should be set to an empty string if it currently is (-keyField='').
The following example shows a record in “contacts” being updated with -keyValue=126. The name of the person referenced
by the record is changed to “John Surname”.

inline(
-update,
-database='contacts',
-table='people',
-keyValue=126,
'first_name'='John',
'last_name'='Surname'

) => {^
keyField_value + ': ' + field('first_name') + ' ' + field('last_name')

^}

// => 126: John Surname

The following example shows a record in “contacts” being deleted with -keyValue=127. The -keyField keyword parameter
is included, but its value is set to the empty string.

inline(
-delete,
-database='contacts',
-table='people',
-keyField='',
-keyValue=127

) => {}

Tip: The calculation value Status(CurrentRecordID) can access the Record ID for the current record.

46.4 Sorting Records

In addition to the “ascending” and “descending” values for the -sortOrder keyword parameter, FileMaker data sources can
also accept a custom value. In FileMaker Server, the value for -sortOrder should name a value list. The order of that value list
will be used as the custom sorting order for records in the result set. Note also that FileMaker Server only supports specifying
up to nine sort fields in a single database search.

46.4.1 Return Results in Custom Sort Order

Specify -sortField and -sortOrder keyword parameters within the search inline. The records are first sorted by “title”
in custom order, then by “last_name” and “first_name” in ascending order. The “title” field will be sorted in the order of the
elements within the value list associated with the field in the database. In this case, it will be sorted as “Mr., Mrs., Ms.”.

inline(
-findAll,
-database='contacts',
-table='people',
-keyField='id',
-sortField='title', -sortOrder='title',

46.4. Sorting Records 499



LassoGuide, Release 9.3

-sortField='last_name', -sortOrder='ascending',
-sortField='first_name', -sortOrder='ascending'

) => {^
records => {^

'<br />' + field('title') + ' ' + field('first_name') + ' ' + field('last_name') + '\n'
^}

^}

The following results could be returned when this page is loaded. Each of the records with a title of “Mr.” appear before each
of the records with a title of “Mrs.”. Within each title, the names are sorted in ascending alphabetical order.

// =>
// <br />Mr. John Doe
// <br />Mr. John Person
// <br />Mrs. Jane Doe
// <br />Mrs. Jane Person

46.5 Displaying Data

FileMaker includes a number of methods for displaying the different types of FileMaker fields. These methods are summarized
below, and examples are included in the sections that follow.

field(...)
References FileMaker fields including related fields and repeating fields. Fields from the current table are named simply
(e.g. field('first_name')). Fields from a related record are named with the related database name, two colons, and
the name of the field (e.g. field('Calls::Approved')). Repeating fields include the repetition number in parenthe-
ses (e.g. field('Responses(3)')).

repeating(name::string)
Executes a capture block once for each defined repetition of a repeating field. Requires a single parameter specifying
the name of the repeating field from the current layout.

repeating_valueItem()
Returns the value for each repetition of a repeating field.

portal(name::string)
Executes a capture block once for each record in a portal. Requires a single parameter specifying the name of the portal
relationship from the current layout. Fields from the portal can be found using the same method as for related records
(e.g. field('Calls::Approved') within a portal showing records from the “Calls” database).

Note: All fields that Lasso references must be contained in the current layout in FileMaker. For portals and repeating fields only
the number of repetitions shown in the current layout will be available to Lasso.

46.5.1 Related Fields

Related fields are named using the relationship name followed by two colons and the field name. For example, a related field
“call_duration” from a “calls” database might be referenced as calls::call_duration. Any related fields included in the
layout specified for the current Lasso action can be referenced using this syntax. Data can be retrieved from related fields or it
can be set in related fields when records are added or updated.

500 Chapter 46. FileMaker Data Sources



LassoGuide, Release 9.3

Return Data from a Related Field

Specify the name of the related field within a field method. The related field must be contained in the current layout either
individually or within a portal. In a one-to-one relationship, the value from the single related record will be returned. In a
one-to-many relationship, the value from the first related record as defined by the relationship options will be returned. See
the section Portals below for more control over one-to-many relationships.

The following example shows a -findAll action being performed in a database “contacts”. The related field “last_call_time”
from the “calls” database is returned for each record through a relationship named “calls”.

inline(
-findAll,
-database='contacts',
-table='people'

) => {^
records => {^

'<br />' + keyField_value + ': ' + field('first_name') + ' ' + field('last_name') +
'(Last call at: ' + field('calls::last_call_time') + ').\n'

^}
^}

// =>
// <br />126: John Doe (Last call at 12:00 pm).
// <br />127: Jane Doe (Last call at 9:25 am).
// <br />496: Jane Person (Last call at 4:46 pm).

Set Value for a Related Field

Specify the name of the related field, along with the related field’s Record ID, within the action that adds or updates a record.
The related field must be contained in the current layout either individually or within a portal.

In one-to-one or one-to-many relationships, the fully qualified field name must be used along with the Record ID of the
related field in the format table::field.id, where “id” is the related field’s Record ID. See the section Portals below for
more information.

The following example shows an -update action being performed in a database “contacts”. The related field “last_call_time”,
with a Record ID of “9”, from the “calls” database is updated for “Jane Person”. The new value is returned.

inline(
-update,
-database='contacts',
-table='people',
-keyField='',
-keyValue='7',
'Calls::last_call_time.9'='12:14:56'

) => {^
field('calls::last_call_time')

^}

// => 12:14:56

Important: Every database that is referenced by a related field or a portal must have the same permissions defined. If a related
database does not have the proper permissions then not only will FileMaker Server leave the related fields blank, but will deny
the entire database request.

46.5. Displaying Data 501



LassoGuide, Release 9.3

46.5.2 Portals

A portal allows one-to-many relationships to be displayed within FileMaker databases. Portals allow retrieving data from many
related records and displaying it in a single Lasso page. A portal must be present in the current FileMaker layout in order for
its values to be retrieved using Lasso.

Only the number of repetitions formatted to display within FileMaker will be displayed using Lasso. A portal must contain a
scroll bar in order for all records from the portal to be displayed using Lasso.

Fields in portals are named using the same convention as related fields. The relationship name is followed by two
colons and the field name. For example, a related field “call_duration” from a “calls” database might be referenced as
calls::call_duration.

Tip: Everything that is possible to do with portals can also be performed using nested inline capture blocks to perform
actions in the related database. Portals are unique to FileMaker databases.

Return Values from a Portal

Use the portal method with the name of the portal referenced. The field method within the portal capture block should
reference the fields from the current portal row using the relationship field syntax.

The following example shows a portal “calls” that is contained in the “people” layout of the “contacts” database. The “time”,
“duration”, and “number” of each call is displayed.

inline(
-findAll,
-database='contact',
-table='people'

) => {^
records => {^

'<p>Calls for ' + field('first_name') + ' ' + field('last_name') + ':\n'
portal('calls') => {^

'<br />' + field('calls::number') + ' at ' + field('calls::time') +
'for ' + field('calls::duration') + ' minutes.\n'

^}
'</p>\n'

^}
^}

// =>
// <p>Calls for John Doe:
// <br />555-1212 at 12:00 pm for 15 minutes.
// </p>
// <p>Calls for Jane Doe:
// <br />555-1212 at 09:25 am for 60 minutes.
// </p>
// <p>Calls for Jane Person:
// <br />555-1212 at 2:23 pm for 55 minutes.
// <br />555-1212 at 4:46 pm for 5 minutes.
// </p>

Add a Record to a Portal

A record can be added to a portal by adding the record directly to the related database. In the following example the “calls”
database is related to the “contacts” database by means of a field “contact_id” that stores the ID for the contact to which the

502 Chapter 46. FileMaker Data Sources



LassoGuide, Release 9.3

calls were made. New records added to “calls” with the appropriate “contact_id” will be shown through the portal to the next
site visitor.

In the following example a new call is added to the “calls” database for John Doe. John Doe has an ID of “123” in the “people”
table of the “contacts” database. This is the value used for the “contact_id” field in “calls”.

inline(
-add,
-database='calls',
-table='people',
'contact_id'=123,
'number'='555-1212',
'time'='12:00 am',
'duration'=55

) => {}

46.5.3 Value Lists

Value lists in FileMaker allow defining a set of possible values for a field. The items in the value list associated with a field on
the current layout for a Lasso action can be retrieved using the value_list methods as shown in the examples below. See
the FileMaker documentation63 for more information on how to create and use value lists.

In order to display values from a value list, the layout referenced in the current database action must contain a field formatted
to show the desired value list as a drop-down menu, select list, checkboxes, or radio buttons. Lasso cannot reference a value
list directly, but can reference a value list through a formatted field in the current layout.

value_list(colName::string)
Executes a capture block for each value in the named value list. Requires a single parameter specifying the name of a
field from the current layout that has a value list assigned to it.

value_listItem()
While in a value_list capture block, it returns the value for the current item.

selected()
Displays the word “selected” if the current value list item is selected in the field associated with the value list.

checked()
Displays the word “checked” if the current value list item is selected in the field associated with the value list.

Display All Values from a Value List

The following example shows how to display all values from a value list using a -show action within an inline capture block.
The field “title” in the “people” table contains four values: “Mr.”, “Mrs.”, “Ms.”, and “Dr.”. The -show action allows the values for
value lists to be retrieved without performing a database action.

inline(
-show,
-database='contacts',
-table='people'

) => {^
value_list('title') => {^

value_listItem + ', '
^}

^}

// => Mr., Mrs., Ms., Dr.,

63 http://www.filemaker.com/support/product/documentation.html

46.5. Displaying Data 503

http://www.filemaker.com/support/product/documentation.html


LassoGuide, Release 9.3

Display a Drop-Down Menu with All Values from a Value List

The following example shows how to format an HTML <select> drop-down menu to show all the values from a value list. A
select list can be created with the same code by including a "size" and/or "multiple" option within the <select> tag.
This code is usually used within an HTML form that submits to a page that performs an -add action so the visitor can select a
value from the value list for the record they create.

The example shows a single <select> tag within an inline capture block with a -show command. If many value lists from
the same database are being formatted, they can all be contained within a single inline.

'<form action="response.lasso" method="post">\n'
inline(

-show,
-database='contacts',
-table='people'

) => {^
'<select name="title">\n'

value_list('title') => {^
' <option value="' + value_listItem + '">' + value_listItem + '</option>\n'

^}
'</select>\n'

^}
'<p><input type="submit" name="submit" value="Add Record">\n</form>\n'

// =>
// <form action="response.lasso" method="post">
// <select name="title">
// <option value="Mr." selected>Mr.</option>
// <option value="Mrs." >Mrs.</option>
// <option value="Ms." >Ms.</option>
// <option value="Dr." >Dr.</option>
// </select>
// <p><input type="submit" name="submit" value="Add Record"></p>
// </form>

Display Radio Buttons with All Values from a Value List

The following example shows how to format a set of HTML <input> tags to show all the values from a value list as radio
buttons. The visitor will be able to select one value from the value list. Checkboxes can be created with the same code by
changing the type from “radio” to “checkbox”.

'<form action="response.lasso" method="post">\n'
inline(

-show,
-database='contacts',
-table='people'

) => {^
value_list('title') => {^

' <input type="radio" name="title" value="' + value_listItem + '" /> ' + value_listItem + '\n'
^}

^}
'<p><input type="submit" name="submit" value="Add Record">\n</form>\n'

// =>

504 Chapter 46. FileMaker Data Sources



LassoGuide, Release 9.3

// <form action="response.lasso" method="post">
// <input type="radio" name="title" value="Mr." /> Mr.
// <input type="radio" name="title" value="Mrs." /> Mrs.
// <input type="radio" name="title" value="Ms." /> Ms.
// <input type="radio" name="title" value="Dr." /> Dr.
// <p><input type="submit" name="submit" value="Add Record"></p>
// </form>

46.5. Displaying Data 505





Part VIII

Extending Lasso

507





Chapter 47

Lasso C API

47.1 LCAPI Overview

The Lasso C/C++ Application Programming Interface (LCAPI) lets you write C or C++ code to add new Lasso methods, types, or
data source connectors to Lasso. Writing in LCAPI can offer speed and system performance advantages over LJAPI and custom
Lasso libraries. However, modules must be compiled separately for Windows, OS X, and Linux.

This chapter provides a walkthrough for building and debugging an example LCAPI method. You can download the source
code64 for this and other examples online.

47.1.1 Requirements

In order to compile LCAPI methods, types, or data source connectors you need the following:

OS X

• Lasso Server installed on a supported OS X version

• Xcode

• The 10.5 SDK, which does not come with the newest development tools. See this link for unsupported help with
installing older SDKs65 .

Linux

• Lasso Server installed on a supported Linux distribution

• The gcc C/C++ development libraries and executables

Windows

• Lasso Server installed on a supported Windows version

• Microsoft Visual C++ .NET

47.1.2 Quick Start

This section provides a walkthrough for building sample LCAPI method modules.

Build a sample LCAPI module in Windows

1. Download and expand the example code.

2. In the “MathFuncsTags” folder, double-click the MathFuncsCAPI.sln project file (you need Microsoft Visual C++
.NET in order to open it).

3. Choose Build → Build Solution to compile and make the MathFuncsCAPI.DLL module.

64 http://lassoguide.com/_downloads/lcapi_examples.zip
65 http://devernay.free.fr/hacks/xcodelegacy/

509

http://lassoguide.com/_downloads/lcapi_examples.zip
http://lassoguide.com/_downloads/lcapi_examples.zip
http://devernay.free.fr/hacks/xcodelegacy/


LassoGuide, Release 9.3

4. After building, a “Debug” folder will have been created inside your “MathFuncsCAPI” project folder. Open it and drag
MathFuncsCAPI.DLL into “LassoModules” in a Lasso instance home directory.

5. Restart the Lasso instance.

6. New methods example_math_abs, example_math_sin, and example_math_sqrt are now part of your Lasso
installation.

7. Drag the sample Lasso page called MathFuncsCAPI.lasso into the web server root.

8. View the MathFuncsCAPI.lasso page in a web browser to see the new Lasso methods in action.

Build a sample LCAPI module in OS X or Linux

1. Download and expand the example code.

2. Open a terminal window and change the working directory to the “MathFuncsTags” folder in the example code.

3. Build the sample project using the provided makefile by running make.

4. After building, a file named MathFuncsCAPI.dylibon OS X and MathFuncsCAPI.soon Linux will be in the current
folder. Move that file into “LassoModules” in a Lasso instance home directory.

5. Restart the Lasso instance.

6. New methods example_math_abs, example_math_sin, and example_math_sqrt are now part of your Lasso
installation.

7. Drag the sample Lasso page called MathFuncsCAPI.lasso into the web server root.

8. View the MathFuncsCAPI.lasso page in a web browser to see the new Lasso methods in action.

47.1.3 Debugging

You can set breakpoints in your LCAPI-compiled libraries and perform source-level debugging for your own code. In order to
set this up, follow the example below. For this section, we will use the “MathFuncsCAPI” example.

Debug in Windows

1. Select Debug → Processes....

2. In the “Processes” window, select each instance of “lassoserver.exe” and choose to Attach.

3. Close the “Processes” window and set a breakpoint in the tagMathAbsFunc function.

4. Use a web browser to access the sample MathFuncsCAPI.lasso file on the web server. Visual Studio will stop at
the location that the breakpoint was placed.

Debug in OS X or Linux

1. The provided makefile compiles with the DEBUG options by default, so there is no need to recompile.

2. Find the process ID number of lassoserver so you can attach to it later with GNU Debugger:

$> ps -ax | grep lassoserver
2081 ?? 2:32.39 /usr/sbin/lassoserver -flisten lasso.fastcgi.sock

3. Start the GNU Debugger as the root user:

$> sudo gdb

Tip: For newer versions of OS X, use lldb instead of gdb.

510 Chapter 47. Lasso C API



LassoGuide, Release 9.3

4. From within GNU Debugger’s command line, attach to the lassoserver process ID by entering the following (re-
placing <PROCESS ID> with the actual process ID):

attach <PROCESS ID>

5. Instruct GNU Debugger to break whenever the function tagMathAbsFunc is called by entering the following:

break tagMathAbsFunc

6. Use a web browser to access the sample MathFuncsCAPI.lasso file on the web server. GNU Debugger will break
at the first line in tagMathAbsFunc when the example_math_abs method is called.

Tip: Type “help” in GNU Debugger for more information about using the GNU Debugger, or search for gdb tutorials on the
web for more in-depth information.

47.1.4 Frequently Asked Questions

How do I install my custom module?
Once you’ve compiled your module, move it to the “LassoModules” directory for the instance you want it to run in or the
“LassoModules” directory in the master Lasso home directory. You’ll need to restart any running instances for them to pick
up the new method/type/data source connector.

How do I return text from my custom module?
Use either lasso_returnTagValueString to return UTF-8 data, or lasso_returnTagValueStringW to return
UTF-16 data. Character data in other encoding methods can be returned by first allocating a string type using
lasso_typeAllocStringConv and then returning it using lasso_returnTagValue.

How do I return binary data from my custom method?
Use lasso_returnTagValueBytes to return binary data.

How do I prevent Lasso from automatically encoding text returned from my custom method?
Make sure that your method is registered with the flag_noDefaultEncoding flag. This flag is specified when you call
lasso_registerTagModule at startup.

How do I debug my custom method?
You can set breakpoints in your code and attach your debugger to lassoserver. See the section Debugging above.

How do I get parameters that were passed into my method?
Most of the parameters passed into your custom method can be retrieved using the lasso_getTagParam and
lasso_findTagParam parameter info functions. The lasso_getTagParam function retrieves parameters by index and
lasso_findTagParam retrieves them by name. All parameters retrieved using these functions will be returned as strings.
To access the parameters as Lasso type instances, use lasso_getTagParam2 and lasso_findTagParam2.

How do I get the value of unnamed parameters passed into my method?
While there is no direct way to get unnamed parameters (how do you know what name to ask for?), you can enumerate
through all the parameters by index, and then pick out the ones that do not have names. If after retrieving a parameter,
you discover that its data member is an empty string, this indicates it is an unnamed parameter, and you can get its value
from the name member. An example of this is in the LCAPI method tutorial.

What’s an auto_lasso_value_t and how do I use it?
It’s a data structure that contains both a name and a value (a name/value pair). Many LCAPI APIs fill in this structure for you,
and you can access the name and data members directly as null-terminated C strings.

What is a lasso_type_t and how do I use it?
A lasso_type_t represents an instance of a Lasso type. Any Lasso type can be represented by a lasso_type_t, including
strings, integers, or custom types. LCAPI provides many functions for allocating or manipulating lasso_type_t objects.

47.1. LCAPI Overview 511



LassoGuide, Release 9.3

All lasso_type_t objects encountered inside an LCAPI method will be automatically garbage-collected after the func-
tion returns. Therefore, a lasso_type_t object should not be saved unless it is freed from the garbage collector using
lasso_typeDetach.

How do I access variables from the Lasso page I’m in?
You may need to get or even create Lasso variables (the same variables that a Lasso programmer makes when using the
var(dozen) = 12 variable syntax in a Lasso page) from within your LCAPI module. You can retrieve a thread variable, as
long as it has already been assigned before your custom method is executed, by calling lasso_getVariable with the
variable’s name. Using this method, one could directly set the “__html_reply__” variable.

How do I return fatal and non-fatal error codes?
It is very important that your method return an error code of osErrNoErr(0) if nothing fatal happened. An example of
a fatal error would be a missing required parameter. If you encounter a fatal error, return a non-zero result code from your
function; at that point Lasso will stop processing the page and display an error page.

How do I write code that will compile easily across multiple operating systems?
While we cannot provide a complete cross-platform programming tutorial here, we can at least provide some guidance.
The simplest way to make sure code compiles across platforms is to make sure you use standard library functions (from
stdio.h and stdlib.h) as much as possible: functions like strcpy(), malloc(), and strcmp() are always available on
all platforms. Also note that *nix platforms are case-sensitive, so when you #include files, just make sure you keep the
case the same as the file on disk. Finally, stay away from platform-specific functions, such as Windows APIs that are most
often not available on *nix platforms. Take a look at the *nix makefiles that are provided with the sample projects: notice
the same source code is used for Windows, and all source files are saved with DOS-style CR/LF line breaks so as not to
confuse the Windows compilers. As a last resort, you can use #ifdef to show/hide platform-specific portions of source
code.

47.2 Creating Lasso Methods

When Lasso first starts up, it looks for module files (Windows DLLs, OS X DYLIBs, or Linux SOs) in its “LassoModules” directory. As
it encounters each module, it executes that module’s registerLassoModule function once and only once. LCAPI developers
must write code to register each new custom method (or type or data source connector) in this registerLassoModule
function. The following example function is required in every LCAPI module. It gets called once when Lasso starts up:

void registerLassoModule() {
lasso_registerTagModule( "CAPITester", "testtag", myTagFunc,

REG_FLAGS_TAG_DEFAULT, "simple test LCAPI tag" );
}

The preceding example registers a C function named myTagFunc to execute whenever the Lasso CAPITester_testtag
method call is encountered in Lasso code. The first parameter CAPITester is the namespace in which testtagwill be placed.

Once the method function is registered, Lasso will call it at appropriate times while parsing and executing Lasso code. The
custom method functions will not be called if none of the custom methods are encountered while executing a script. When
Lasso encounters one of your custom methods, it will be called with two parameters: an opaque data structure called a token,
and an integer action which is currently unused. LCAPI provides many function calls that can get information about the
environment, variables, parameters, etc., when provided with a token.

The passed-in token can also be used to acquire any parameters and to return a value from your custom method function.

47.2.1 Basic Custom Method Function

Use the following C++ code:

512 Chapter 47. Lasso C API



LassoGuide, Release 9.3

osError myTagFunc(lasso_request_t token, tag_action_t action)
{

const char * retString = "Hello, World!";
return lasso_returnTagValueString(token, retString, strlen(retString));

}

Below is the Lasso code needed to get the custom method to execute:

<p>Here is the custom tag:</p>
[CAPITester_testtag]
<!-- This should display "Hello, World" when this page executes -->

This will produce:

Here is the custom tag:
Hello, World

47.2.2 Custom Method Tutorial

This section provides a walkthrough of building an example method to show how LCAPI features are used. This code can be
found in the “SampleMethod” folder in the LCAPI examples66 , which can be downloaded online.

The method will simply display its parameters, and it will look like the example below when called in Lasso code:

sample_method('some text here', -option1='named param', -option2=12.5)

Notice the method takes one unnamed parameter, one string keyword parameter -option1, and one numeric keyword
parameter -option2. For keyword parameters, Lasso does not care about the order in which you pass them, so plan to make
this method as flexible as possible by not assuming anything about their order. The following variations should work exactly
the same:

sample_method('some text here', -option1='named param', -option2=12.5)
sample_method('some text here', -option2=12.5, -option1='named param')

LCAPI Method Module Code

Below is the C++ code for the custom method:

void registerLassoModule()
{

lasso_registerTagModule( "sample", "method", myTagFunc,
REG_FLAGS_TAG_DEFAULT, "sample test" );

}

osError myTagFunc( lasso_request_t token, tag_action_t action )
{

std::basic_string<char> retValue;
lasso_type_t opt2 = NULL;
auto_lasso_value_t v;
INITVAL(&v);

if( lasso_findTagParam(token, "-option1", &v) == osErrNoErr ) {
retValue.append("The value of -option1 is ");

66 http://lassoguide.com/_downloads/lcapi_examples.zip

47.2. Creating Lasso Methods 513

http://lassoguide.com/_downloads/lcapi_examples.zip


LassoGuide, Release 9.3

retValue.append(v.data);
}

if( lasso_findTagParam2(token, "-option2", &opt2) == osErrNoErr ) {
double tempValue;
char tempValueFmtd[128];

lasso_typeGetDecimal(token, opt2, &tempValue);
sprintf(tempValueFmtd, "%.15lg", tempValue);

retValue.append(" The value of -option2 is ");
retValue.append(tempValueFmtd);

}

int count = 0;
lasso_getTagParamCount(token, &count);

for( int i = 0; i < count; ++i )
{

lasso_getTagParam(token, i, &v);
if( v.name == v.data ) {

retValue.append(" The value of unnamed param is ");
retValue.append(v.data);

}
}

return lasso_returnTagValueString(token, retValue.c_str(), (int)retValue.length());
}

Method Module Code Walkthrough

This section provides a step-by-step walkthrough of the code for the custom method module.

1. First, the new method is registered in the required registerLassoModule export function:

void registerLassoModule()
{

lasso_registerTagModule( "sample", "method", myTagFunc,
REG_FLAGS_TAG_DEFAULT, "sample test" );

}

2. Implement myTagFunc, which gets called when sample_method is encountered. All method functions have this pro-
totype. When the method function is called, it’s passed an opaque token data structure.

osError myTagFunc( lasso_request_t token, tag_action_t action )
{

The remainder of the code in the walkthrough includes the implementation for the myTagFunc function.

3. Allocate a string to be this method’s return value:

std::basic_string<char> retValue;

4. The lasso_type_t variable named “opt2” and the auto_lasso_value_t variable named “v” will be temporary vari-
ables for holding parameter values. Start off by initializing them:

514 Chapter 47. Lasso C API



LassoGuide, Release 9.3

lasso_type_t opt2 = NULL;
auto_lasso_value_t v;
INITVAL(&v);

5. Call lasso_findTagParam in order to get the value of the -option1 parameter. If it is found (no error while finding
the named parameter), append some information about it to our return value string:

if( lasso_findTagParam(token, "-option1", &v) == osErrNoErr ) {
retValue.append("The value of -option1 is ");
retValue.append(v.data);

}

6. Look for the other named parameter -option2 and store its value into variable “opt2”. Because -option2 should be
a decimal value, use lasso_findTagParam2, which will preserve the original data type of the value as opposed to
converting it into a string like lasso_findTagParam will.

if( lasso_findTagParam2(token, "-option2", &opt2) == osErrNoErr ) {

7. Declare a temporary floating-point (double) value to hold the number passed in and then declare a temporary string
to hold the converted number for display. Get the value of “opt2” as a decimal then print it to the “tempValueFmtd”
variable.

double tempValue;
char tempValueFmtd[128];

lasso_typeGetDecimal(token, opt2, &tempValue);
sprintf(tempValueFmtd, "%.15lg", tempValue);

8. Append the parameter’s information to the return string:

retValue.append(" The value of -option2 is ");
retValue.append(tempValueFmtd);

9. Now, we’re going to look for the unnamed parameter. Because there’s no way to ask for unnamed parameters, we’re
going to enumerate through all the parameters looking for one without a name. The integer “count” will hold the
number of parameters found. Use lasso_getTagParamCount to find out how many parameters were passed into our
method. The variable “count” now contains the number “3”, if we were indeed passed three parameters.

int count = 0;
lasso_getTagParamCount(token, &count);

for( int i = 0; i < count; ++i )
{

10. Use lasso_getTagParam to retrieve a parameter by its index. If you design methods that require parameters to be in a
particular order, use this function to retrieve parameters by index, starting at index 0. If the parameter is unnamed, that
means it’s the one needed. Note that if the user passes in more than one unnamed parameter, this loop will find all of
them, and will ignore any named parameters. (A parameter is unnamed if both the name and data of the struct point
to the same value.)

lasso_getTagParam(token, i, &v);
if( v.name == v.data ) {

11. Again, append a descriptive line of text about the unnamed parameter and its value.

if( v.name == v.data ) {
retValue.append(" The value of unnamed param is ");

47.2. Creating Lasso Methods 515



LassoGuide, Release 9.3

retValue.append(v.data);
}

12. Returning an error code is very important. If you return a non-zero error code, the interpreter will throw an exception
indicating that this method failed fatally, causing Lasso’s standard page error routines to display an error message. In
our example, lasso_returnTagValueString will return an error if it has a problem setting the return value.

return lasso_returnTagValueString(token, retValue.c_str(), (int)retValue.length());

47.3 Creating Lasso Types

Creating a new Lasso type in LCAPI is similar to creating a custom method. When Lasso Server starts up, it scans the “Lasso-
Modules” directory for module files (Windows DLLs, OS X DYLIBs, or Linux SOs). As it encounters each module, it executes the
registerLassoModule function for that module. The developer registers the LCAPI types or methods implemented by the
module inside this function. Registering type initializers differs from registering normal methods in that the third parameter in
lasso_registerTagModule is the value “REG_FLAGS_TYPE_DEFAULT”:

void registerLassoModule()
{

lasso_registerTagModule( "test", "type", myTypeInitFunc,
REG_FLAGS_TYPE_DEFAULT, "simple test LCAPI type" );

}

The prototype of an LCAPI type initializer is the same as a regular LCAPI custom method function. Lasso will call the type
initializer each time a new instance of the type is created:

osError myTypeInitFunc( lasso_request_t token, tag_action_t action );

When the type initializer function is called, a new instance of the type is created using lasso_typeAllocCustom. This new
instance will be created without data members or member methods:

osError myTypeInitFunc( lasso_request_t token, tag_action_t action );
{

lasso_type_t theNewInstance = NULL;
lasso_typeAllocCustom( token, &theNewInstance, "test_type" );

Once the type is created, new data members and member methods can be added to it using lasso_typeAddMember. Data
members can be of any type and should be allocated using any of the LCAPI type allocation calls. Member methods are
allocated using lasso_typeAllocTag. LCAPI member method functions are implemented just like any other LCAPI method.
In the example below, myTagMemberFunction is a function with the standard LCAPI prototype:

const char * kStringData = "This is a string member.";
lasso_type_t stringMember = NULL;
lasso_typeAllocString( token, &stringMember, kStringData, strlen(kStringData) );
lasso_typeAddDataMember( token, theNewInstance, "member1", stringMember );

lasso_type_t tagMember = NULL;
lasso_typeAllocTag( token, &tagMember, myTagMemberFunction );
lasso_typeAddMember( token, theNewInstance, "member2", tagMember );

The final step in creating a new LCAPI type instance is to return the new type to Lasso as the initializer’s return value. After the
type is returned, Lasso will complete the creation of the type by instantiating the new type’s parent types:

516 Chapter 47. Lasso C API



LassoGuide, Release 9.3

lasso_returnTagValue( token, theNewInstance );
return osErrNoErr;

}

47.3.1 Basic Custom Type

This tutorial walks through the main points of creating a custom type using LCAPI. The resulting type is an example_file
type, and the ability to open, close, read, and write to the file are implemented via the following member methods: exam-
ple_file->open, example_file->close, example_file->read, example_file->write.

The example project is the “CAPIFile” project in the LCAPI examples67 found online. Due to the length of the code in that file,
the entire code is not reproduced here. Instead, this section provides a conceptual overview of the example_file type and
describes the basic LCAPI functions used to implement it.

1. The first step in creating a custom type is to register the type’s initializer. Type initializers are registered in the same way
that regular method functions are registered. The only difference being that “REG_FLAGS_TYPE_DEFAULT” should be
passed for the fourth (flags) parameter.

This concept is illustrated in lines 247–282 of the CAPIFile.cpp file:

void registerLassoModule()
{

...
lasso_registerTagModule("", kFileTypeName, file_init,

REG_FLAGS_TYPE_DEFAULT, "Initializer for the file type.");
}

2. The registered type initializer will be called when the module is loaded. In the above case, the LCAPI functionfile_init
was registered as being the initializer. The prototype for file_init should look like any other LCAPI function, as shown
on line 285 of the CAPIFile.cpp file:

osError file_init(lasso_request_t token, tag_action_t action)

3. The file_init function will now be called whenever the module is loaded. Within the type initializer, the type’s mem-
ber methods are added. Each member method is implemented by its own LCAPI function. However, before members
can be added, the new blank type must be created using lasso_typeAllocCustom.

lasso_typeAllocCustom can only be used within a properly registered type initializer. The value it produces should
always be the return value of the method as set by the lasso_returnTagValue function. See lines 289–290 of the
CAPIFile.cpp file:

lasso_type_t file;
lasso_typeAllocCustom(token, &file, kFileTypeName);

4. Once the blank type has been created, members can be added to it. LCAPI types often need to store pointers to al-
located structures or memory. LCAPI provides a means to accomplish this by using the lasso_setPtrMember and
lasso_getPtrMember functions. These functions allow storing a pointer with a specific name. The pointer is stored as
a regular integer data member. The names of all pointer members should begin with an underscore. Naming a pointer
as such will indicate to Lasso that it should not be copied when a copy is made of the type instance. In the initializer
function, add the integer data member as seen on lines 293–295:

lasso_type_t i;
lasso_typeAllocInteger(token, &i, 0);
lasso_typeAddDataMember(token, file, kPrivateMember, i);

67 http://lassoguide.com/_downloads/lcapi_examples.zip

47.3. Creating Lasso Types 517

http://lassoguide.com/_downloads/lcapi_examples.zip


LassoGuide, Release 9.3

This LCAPI example_file type stores its private data in a structure named file_desc_t. The actual call to
lasso_setPtrMember is in the method’s onCreate method as shown on lines 344–345 of the CAPIFile.cpp file:

file_desc_t * desc = new file_desc_t;
lasso_setPtrMember(token, self, kPrivateMember, desc, &cleanUp);

5. Member methods for open, close, read, and write could be written like this:

lasso_type_t mem;
lasso_typeAllocTag(token, &mem, file_open);
lasso_typeAddMember(token, file, "open", mem);

lasso_typeAllocTag(token, &mem, file_close);
lasso_typeAddMember(token, file, "close", mem);

lasso_typeAllocTag(token, &mem, file_read);
lasso_typeAddMember(token, file, "read", mem);

lasso_typeAllocTag(token, &mem, file_write);
lasso_typeAddMember(token, file, "write", mem);

But to avoid the repetitive nature of this, the CAPIFile.cpp file defines a macro named ADD_TAG to do the work as
seen on lines 300–309:

#define ADD_TAG(NAME, FUNC) {
lasso_type_t mem;\
lasso_typeAllocTag(token, &mem, FUNC);\
lasso_typeAddMember(token, file, NAME, mem);\

}

// Add the type's member tags
ADD_TAG(kMemOpen, file_open);
ADD_TAG(kMemClose, file_close);
ADD_TAG(kMemRead, file_read);
ADD_TAG(kMemWrite, file_write);

6. At this point, the return value should be set. Keep in mind that the new example_file type is completely blank except
for the members that were added above. No inherited members are available at this point. Inherited members are only
added after the LCAPI type initializer returns. Line 324 of the CAPIFile.cpp file sets the return value:

lasso_returnTagValue(token, file);

7. There were no errors in the type initialization process, so return a “no error” code to Lasso, completing the type’s initial-
ization. See line 325 of the CAPIFile.cpp file:

return osErrNoErr;

Note: For brevity, this example will not cover accepting parameters in the type’s onCreate method. The full “CAPIFile”
project illustrates accepting parameters in the onCreate member method to open the file under various read and
write permissions.

8. The new file type has now been initialized and made available to the caller in the script. The first member method of
the file type is example_file->open, which is implemented as the LCAPI function file_open beginning on line 385
of the CAPIFile.cpp file:

518 Chapter 47. Lasso C API



LassoGuide, Release 9.3

osError file_open(lasso_request_t token, tag_action_t action)
{

9. The first step in implementing a member method is to acquire the “self” instance. The “self” is the instance upon which
the member call was made. This is illustrated on lines 387–390 of the CAPIFile.cpp file:

lasso_type_t self = NULL;
lasso_getTagSelf(token, &self);
if(!self)

return osErrInvalidParameter;

10. Once the “self” is successfully acquired and is not “null”, the rest of the member method can proceed. This member
method accepts one parameter for the path to the file to be opened. Since the path is a string value, it can be acquired
using lasso_getTagParam. If the path parameter was not passed to the open member method, an error should be
returned and presented to the user. All of this can be seen on lines 400–418 of the CAPIFile.cpp file:

// See what parameters we are being initialized with
int count;
lasso_getTagParamCount(token, &count);

if( count < 2 )
{

lasso_setResultMessage(token, "file->open requires at least a file path and open mode.");
return osErrInvalidParameter;

}

if( count > 0 ) // We are given *at the least* a path
{

// First param is going to be a string, so use the LCAPI call to get it
auto_lasso_value_t pathParam;
pathParam.name = "";
lasso_getTagParam(token, 0, &pathParam);

desc->fPath = pathParam.name;
}

11. Once the path is properly converted, the actual file can be opened using the file system calls supplied by the operating
system. This concept is illustrated on line 225 of the CAPIFile.cpp file:

FILE * f = fopen(xformPath, openMode);

12. The FILE pointer can now be retrieved using the lasso_typeGetCustomPtr LCAPI function. No error has occurred
while opening the file, so complete the function call and return “no error”. See line 449 of the CAPIFile.cpp file:

return osErrNoErr;

13. The remaining method functions are implemented in a similar manner. Study the CAPIFile example for a more in-depth
and complete example of how to properly construct custom Lasso types in LCAPI.

47.4 Creating Lasso Data Sources

When Lasso Server starts up, it looks for module files (Windows DLLs, OS X DYLIBs, or Linux SOs) in the “LassoModules” direc-
tory. As Lasso encounters each module, it executes the module’s registerLassoModule function once and only once. It is
your job as an LCAPI developer to write code to register each of your new data source function entry points in this regis-
terLassoModule function. Custom methods, types, and data sources may be registered at the same time, and the code for

47.4. Creating Lasso Data Sources 519



LassoGuide, Release 9.3

them can reside in the same module. The only difference between registering a data source and a custom method is whether
you call lasso_registerTagModule or lasso_registerDSModule.

Data sources are a bit more complex than custom methods because Lasso calls them with many different actions during the
course of various database operations. Whereas a custom method only needs to know how to format itself, a data source
needs to enumerate its tables, search through records, add new records, delete records, etc. Even so, this added complexity is
easily handled with a single switch() statement, as can be seen in the following tutorial.

47.4.1 Data Source Connectors and Lasso Server Admin

Once a custom data source connector module is registered by Lasso Server, it will appear in the “Datasources” section of Lasso
Server Admin. A connector appearing here indicates it has been installed correctly.

The administrator adds the data source connection information to the “Hosts” form, which sets the parameters used by Lasso
to connect to the data source via the connector. The information is stored in the site’s database_registry SQLite database,
where the connector can retrieve and use the data via function calls.

The “Hosts” information includes the following:

Name
The connection URL string used to connect to a data source. This is typically the IP address or hostname of the machine
hosting the data source.

Port
The TCP/IP port number for the data source.

Enabled
Allows administrators to enable or disable the connection to the data source.

Username
The username Lasso uses to authenticate to the data source.

Password
The password for the username Lasso uses to authenticate to the data source.

These values are passed to the data source via the lasso_getDataHost function, which is described later in this chapter:

LCAPICALL osError lasso_getDataHost( lasso_request_t token,
auto_lasso_value_t * host, auto_lasso_value_t * usernamepassword );

47.4.2 Basic Data Source Connector

This section provides a walkthrough of an example data source to show how some of the LCAPI features are used. This code
can be found in the “SampleConnector” example project which can be downloaded with the other LCAPI examples68 online.

This example data source simply displays some simple text as each action is called from a Lasso inline. It is not an effective or
useful data source; it’s meant to just provide an overview of what functions must be implemented. The sample data source will
simulate a data source that has two databases, an “Accounting” database and a “Customers” database. Each of those databases,
in turn, will report that it has a few tables within it. For a more complete example of a data source that is useful, look at the
SQLiteDS source code69 in the Lasso source code repository.

LCAPI Data Source Connector Code

Below is the code for the Sample Data Source Connector:

68 http://lassoguide.com/_downloads/lcapi_examples.zip
69 http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/SQLiteDS/

520 Chapter 47. Lasso C API

http://lassoguide.com/_downloads/lcapi_examples.zip
http://source.lassosoft.com/svn/lasso/lasso9_source/trunk/SQLiteDS/


LassoGuide, Release 9.3

void registerLassoModule()
{

lasso_registerDSModule( "SampleDSConnector", sampleds_func, 0 );
lasso_log(LOG_LEVEL_ALWAYS, "Loading Sample Data Source Connector");

}

osError sampleds_func
( lasso_request_t token, datasource_action_t action, const auto_lasso_value_t * param )

{
osError err = osErrNoErr;
auto_lasso_value_t v1, v2, notused;
bool boolnotused = false;
const char * ret;
switch( action )
{

case datasourceInit:
break;

case datasourceTerm:
break;

case datasourceCloseConnection: // Connections only get closed through here
// Here's where to gracefully close the connection
break;

case datasourceTickle:
//
break;

case datasourceNames:
// Database Names
lasso_addDataSourceResult(token, "Accounting");
lasso_addDataSourceResult(token, "Customers");
break;

case datasourceTableNames:
if( strcmp(param->data, "Accounting") == 0 ) {

lasso_addDataSourceResultUTF8(token, "Payroll");
lasso_addDataSourceResultUTF8(token, "Payables");
lasso_addDataSourceResultUTF8(token, "Receivables");

}
if( strcmp(param->data, "Customers") == 0 ) {

lasso_addDataSourceResultUTF8(token, "ContactInfo");
lasso_addDataSourceResultUTF8(token, "ItemsPurchased");

}
break;

case datasourceSearch:
case datasourceFindAll:

lasso_getDataSourceName(token, &v1, &boolnotused, &notused);
lasso_getTableName(token, &v2);

if( strcmp(v1.data, "Accounting") == 0 ) {
int count, i;
lasso_getInputColumnCount(token, &count);
for( i=0; i < count; i++) {

auto_lasso_value_t columnItem;
lasso_getInputColumn(token, i, &columnItem);

}
if( strcmp(v2.data, "Payroll") == 0 ) {

const char ** values = new const char*[3];
unsigned long * sizes = new unsigned long[3];
values[0] = "Samuel Goldwyn";
values[1] = "1955-03-27";

47.4. Creating Lasso Data Sources 521



LassoGuide, Release 9.3

values[2] = "15000.00";
sizes[0] = 14;
sizes[1] = 10;
sizes[2] = 8;

lasso_addColumnInfo(token, "Employee", true, lpTypeString, kProtectionNone);
lasso_addColumnInfo(token, "StartDate", true, lpTypeDateTime, kProtectionNone);
lasso_addColumnInfo(token, "Wages", true, lpTypeDecimal, kProtectionNone);

lasso_addResultRow(token, values, sizes, 3);
lasso_setNumRowsFound(token, 1);

delete [] sizes;
delete [] values;

}
}
if( strcmp(v1.data, "Customers") == 0 ) {
}
break;

case datasourceAdd:
ret = "datasourceAdd was called to append a record<br />";
lasso_returnTagValueString(token, ret, (int)strlen(ret));

case datasourceUpdate:
ret = "datasourceUpdate was called to replace a record<br />";
lasso_returnTagValueString(token, ret, (int)strlen(ret));

case datasourceDelete:
ret = "datasourceDelete was called to remove a record<br />";
lasso_returnTagValueString(token, ret, (int)strlen(ret));

case datasourceInfo:
ret = "datasourceInfo was called<br />";
lasso_returnTagValueString(token, ret, (int)strlen(ret));

case datasourcePrepareSQL:
ret = "datasourcePrepareSQL was called<br />";
lasso_returnTagValueString(token, ret, (int)strlen(ret));

case datasourceUnprepareSQL:
ret = "datasourceUnprepareSQL was called<br />";
lasso_returnTagValueString(token, ret, (int)strlen(ret));

case datasourceExecSQL:
ret = "datasourceExecSQL was called<br />";
lasso_returnTagValueString(token, ret, (int)strlen(ret));

default:
break;

}

return err;
}

522 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Data Source Connector Walkthrough

This section provides a step-by-step walkthrough of the code for the custom data source connector.

1. Register the new data source in the registerLassoModule function:

void registerLassoModule()
{

lasso_registerDSModule( "SampleDSConnector", sampleds_func, 0 );
lasso_log(LOG_LEVEL_ALWAYS, "Loading Sample Data Source Connector");

}

2. Implement the sampleds_func function which gets called when any database operations for this data source are
encountered:

osError sampleds_func
( lasso_request_t token, datasource_action_t action, const auto_lasso_value_t * param )

All data source functions have this prototype. When your data source function is called, it’s passed an opaque token
data structure, an integer action telling it what it should do, and an optional parameter that sometimes contains extra
information (like a database name) needed by the action being requested at the time.

3. Set a default error return value to indicate no error. Returning a non-zero value will cause Lasso to report a fatal error
and stop processing code. We are also declaring a few temporary variables to be used later to retrieve values such as
database names and table names:

osError err = osErrNoErr;
auto_lasso_value_t v1, v2, notused;
bool boolnotused = false;
const char * ret;

4. This function is called with various actions passed to it as Lasso translates the inline requests to one of many actions.
The switch statement is used with various enumerated values to determine the requested action:

switch( action )
{

5. The datasourceInit action is called once when Lasso Server starts up. This gives us a chance to initialize any com-
munications with our database back-end, and do any initial setup if needed.

The datasourceTerm action is called once when Lasso Server shuts down. This allows for any graceful cleanup that
may be necessary for your data source.

The datasourceCloseConnection action is called to close the connection to a data source.

Because this data source is so simple, it needs no special initialization, shutdown code, or close connection code:

case datasourceInit:
break;

case datasourceTerm:
break;

case datasourceCloseConnection: // Connections only get closed through here
// Here's where to gracefully close the connection
break;

6. The datasourceNames action is called whenever Lasso needs to get a list of databases that your data source provides
access to. The developer must write code that discovers the list of all databases your data source host “knows about”
and call lasso_addDataSourceResult once for each found database, passing the name of the database. If the data
source has five databases, you would call lasso_addDataSourceResult five times. In our example, we have two
databases:

47.4. Creating Lasso Data Sources 523



LassoGuide, Release 9.3

case datasourceNames:
// Database Names
lasso_addDataSourceResult(token, "Accounting");
lasso_addDataSourceResult(token, "Customers");
break;

7. Lasso will also need to know about all the tables each of the databases in your data source knows about, and for this it
calls the function with the datasourceTableNames action, passing the database name in the param->data value. In
our example, we are adding three tables to the “Accounting” database and two to “Customers”:

case datasourceTableNames:
if( strcmp(param->data, "Accounting") == 0 ) {

lasso_addDataSourceResultUTF8(token, "Payroll");
lasso_addDataSourceResultUTF8(token, "Payables");
lasso_addDataSourceResultUTF8(token, "Receivables");

}
if( strcmp(param->data, "Customers") == 0 ) {

lasso_addDataSourceResultUTF8(token, "ContactInfo");
lasso_addDataSourceResultUTF8(token, "ItemsPurchased");

}
break;

8. The datasourceSearch and datasourceFindAll actions are used to search a data source. All pertinent information
(database and table names, search arguments, sort arguments, etc.) can be retrieved, and a search can be performed
by calling various LCAPI functions such as lasso_getDataSourceName and lasso_getTableName to get the name
of the database and table, respectively:

case datasourceSearch:
case datasourceFindAll:

lasso_getDataSourceName(token, &v1, &boolnotused, &notused);
lasso_getTableName(token, &v2);

9. In our example, only the “Payroll” table in the “Accounting” database has any data in it, so we have a conditional to check
to see if the “Accounting” database was specified. We then use lasso_getInputColumnCount to get the number of
search fields passed to the inline. We have a for loop to retrieve the name/value text for each search parameter. For
example, calling the following Lasso code:

inline(-database='Accounting', -table='Payroll', 'Employee'='Fred', 'Wages'='15000')

will fill the “columnItem” variable with the values “Employee, Fred” the first time through the loop, and “Wages, 15000”
the second time through the loop:

if( strcmp(v1.data, "Accounting") == 0 ) {
int count, i;
lasso_getInputColumnCount(token, &count);
for( i=0; i < count; i++) {

auto_lasso_value_t columnItem;
lasso_getInputColumn(token, i, &columnItem);

}

10. Next, set a conditional statement to ask if the “Payroll” table is being searched. If so, we’ll set up some fake hard-coded
data in the next few lines of code. Declare an array of strings that represent the three fields we will return for this search.
Declare an array of field sizes to match the lengths of the strings created on the previous line.

The lasso_addColumnInfo function tells Lasso the column name and data type for a column. Call it once for each
column and then call lasso_addResultRow with the values and their sizes to add a row to the result. Finally, the
number of found rows must be specified using lasso_setNumRowsFound:

524 Chapter 47. Lasso C API



LassoGuide, Release 9.3

if( strcmp(v2.data, "Payroll") == 0 ) {
const char ** values = new const char*[3];
unsigned long * sizes = new unsigned long[3];
values[0] = "Samuel Goldwyn";
values[1] = "1955-03-27";
values[2] = "15000.00";
sizes[0] = 14;
sizes[1] = 10;
sizes[2] = 8;

lasso_addColumnInfo(token, "Employee", true, lpTypeString, kProtectionNone);
lasso_addColumnInfo(token, "StartDate", true, lpTypeDateTime, kProtectionNone);
lasso_addColumnInfo(token, "Wages", true, lpTypeDecimal, kProtectionNone);

lasso_addResultRow(token, values, sizes, 3);
lasso_setNumRowsFound(token, 1);

delete [] sizes;
delete [] values;

}

11. The rest of the actions simply return the fact that they had been called. In a real data source connector, you would add
code for those actions to add, update, delete, and query data from the data source.

47.5 C/C++ Reference for LCAPI

47.5.1 LassoCAPI.h

LassoCAPI Main Header File.

This file contains all of the available LCAPI defines and functions.

Tag Registration Flags

The following flags may be OR’d together in various combinations and passed to lasso_registerTagModule or
lasso_registerTagModuleW as the flags parameter to control how the tag behaves when it is called.

const int flag_typeInitializer = 0x00000001
The tag is to be treated as an initializer for a custom type.

const int flag_typeSubstitutionTag = 0x00000002
The tag is to be treated as a “regular” tag.

This is the default behavior so this flag is not required.

const int flag_typeAsync = 0x00000004
The tag is to be run in its own thread.

It will return no value to the caller.

const int flag_typeContainerTag = 0x00000008
The tag is a container tag.

The tag must be called using the proper syntax or an error is generated. The result of executing any body statements
can be retrieved using the lasso_childrenRun function.

47.5. C/C++ Reference for LCAPI 525



LassoGuide, Release 9.3

const int flag_typeInterstitial = 0x00000010
Used internally.

const int flag_typeSkipSecurityCheck = 0x00000040
Bypass any security checks for the tag.

Useful to avoid any performance hits associated with security checks. Should only be used when a tag performs only
trival or completely secure operations.

const int flag_INTERNALONLY = 0x00000080
Used internally.

const int flag_typeLoopingTag = 0x00000100
The tag is a looping container tag.

For any tag registered with this flag, Lasso will automatically keep track of the loop_count and increment it each time
the tag calls lasso_childrenRun.

const int flag_typeEval = 0x00000200
Used internally. Not useful for LCAPI tag types.

const int flag_noGlobalImport = 0x00000400
The tag should not be automatically imported into the global namespace.

All LCAPI tags, starting with LP8, which are registered with a namespace should specify this flag.

const int flag_INTERNALONLY2 = 0x00000800
Used internally.

const int flag_deprecated = 0x00001000
Use of the tag is deprecated.

Depending on the administrator’s configuration, calling the tag will automatically output a warning to the logging
system.

const int flag_noDefaultEncoding = 0x00002000
Never apply default HTML encoding to the tag’s return value.

const int flag_INTERNALONLY3 = 0x00004000

const int flag_prototype = 0x00008000
Applies only to types registered with lasso_registerTypeModule.

An instance of the type will be created immediately (onCreate will not be called). Any further calls to this type will result
in a fast copy of the prototype being created.

const int flag_atomic = 0x00010000

const int flag_private = 0x00020000

const int flag_nonBlockingCAPI = 0x00040000

const int flag_User1 = 0x01000000
User defined flag.

May be used with lasso_tagSetFlag, lasso_tagHasFlag, lasso_tagClearFlag OR lasso_typeSetFlag, lasso_typeHasFlag,
lasso_typeClearFlag

const int flag_User2 = 0x02000000
User defined flag.

May be used with lasso_tagSetFlag, lasso_tagHasFlag, lasso_tagClearFlag OR lasso_typeSetFlag, lasso_typeHasFlag,
lasso_typeClearFlag

526 Chapter 47. Lasso C API



LassoGuide, Release 9.3

const int flag_User3 = 0x03000000
User defined flag.

May be used with lasso_tagSetFlag, lasso_tagHasFlag, lasso_tagClearFlag OR lasso_typeSetFlag, lasso_typeHasFlag,
lasso_typeClearFlag

const int flag_User4 = 0x04000000
User defined flag.

May be used with lasso_tagSetFlag, lasso_tagHasFlag, lasso_tagClearFlag OR lasso_typeSetFlag, lasso_typeHasFlag,
lasso_typeClearFlag

const int REG_FLAGS_TAG_DEFAULT = (flag_typeSubstitutionTag | flag_noGlobalImport)
Recommended default registration flags.

For a normal tag.

const int REG_FLAGS_CONTAINER_DEFAULT = (flag_typeContainerTag | flag_noGlobalImport)
Recommended default registration flags.

For a container tag.

const int REG_FLAGS_LOOPING_DEFAULT = (flag_typeLoopingTag | flag_noGlobalImport)
Recommended default registration flags.

For a looping container tag.

const int REG_FLAGS_TYPE_DEFAULT = (flag_typeInitializer | flag_noGlobalImport)
Recommended default registration flags.

For a type initializer tag.

Type Registration

These functions are called to register a new type.

LCAPICALL osError lasso_registerTypeModule(const char * namespaceName, const char * tagName,
lasso_tag_func func, int flags, const char * description, const
char * superType)

Registers a new type.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• namespaceName: The namespace in which the type will be registered.

• tagName: The name which the type can be called by.

• func: The user supplied callback for the type initializer.

• flags: Any special flags for the type. If flag_typeInitializer is ommited, it will be automatically added. Any con-
flicting flags such as flag_typeContainerTag or flag_typeLoopingTag will be ignored.

• description: A description for the type.

• superType: Optionally, the name of the new type’s super type.

LCAPICALL osError lasso_registerTypeModuleW(const UChar * namespaceName, const UChar * tagName,
lasso_tag_func func, int flags, const UChar * description, const
UChar * superType)

47.5. C/C++ Reference for LCAPI 527



LassoGuide, Release 9.3

Datasource Module Registration

These functions are called to register a new datasource module.

LCAPICALL osError lasso_registerDSModule(const char * moduleName, lasso_ds_func func, int flags)
Registers a new datasource module.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• moduleName: The name of the datasource module.

• func: The User supplied callback for the datasource module.

• flags: Any special flags for the datasource module.

LCAPICALL osError lasso_registerDSModuleW(const UChar * moduleName, lasso_ds_func func, int flags)

LCAPICALL osError lasso_registerDSModule2(const char * moduleName, lasso_ds_func func, int flags, void
* userData, void(*userDataDtor)(void *))

LCAPICALL osError lasso_registerDSModule2W(const UChar * moduleName, lasso_ds_func func, int flags, void
* userData, void(*userDataDtor)(void *))

Allocating Built-in Type Instances

The following functions allocate instances of specific built-in types. The lasso_request_t token may be null. If it is null, the
allocated types are created as “detached” and must be manually freed using lasso_typeFree.

LCAPICALL osError lasso_typeAllocNull(lasso_request_t token, lasso_type_t * outNull)
Allocates a new instance of type null.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outNull: The resulting new type instance.

LCAPICALL osError lasso_typeAllocVoid(lasso_request_t token, lasso_type_t * outVoid)
Allocates a new instance of type void.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outVoid: The resulting new type instance.

LCAPICALL osError lasso_typeAllocString(lasso_request_t token, lasso_type_t * outString, const char * value,
int length)

Allocates a new instance of type string.

528 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outString: The resulting new type instance.

• value: The UTF-8 data from which to copy for the new string instance.

• length: The length of the UTF-8 data in characters.

LCAPICALL osError lasso_typeAllocStringConv(lasso_request_t token, lasso_type_t * outString, const char
* value, int length, const char * conv)

Allocates a new instance of type string using the specified conversion method.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outString: The resulting new type instance.

• value: The source data from which to copy for the new string instance.

• length: The length of the source data in bytes.

• conv: The encoding of the source data.

LCAPICALL osError lasso_typeAllocStringW(lasso_request_t token, lasso_type_t * outString, const UChar * value,
int length)

Allocates a new instance of type string.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outString: The resulting new type instance.

• value: The UTF-16 data from which to copy for the new string instance.

• length: The length of the UTF-16 data in characters.

LCAPICALL osError lasso_typeAppendStringW(lasso_request_t token, lasso_type_t type, const UChar * val,
int len)

LCAPICALL osError lasso_typeAllocInteger(lasso_request_t token, lasso_type_t * outInteger, int64_t value)
Allocates a new instance of type integer.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

47.5. C/C++ Reference for LCAPI 529



LassoGuide, Release 9.3

• outInteger: The resulting new type instance.

• value: The integer value which the new type instance will hold.

LCAPICALL osError lasso_typeAllocDecimal(lasso_request_t token, lasso_type_t * outDecimal, double value)
Allocates a new instance of type decimal.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outDecimal: The resulting new type instance.

• value: The double value which the new type instance will hold.

LCAPICALL osError lasso_typeAllocDecimal2(lasso_request_t token, lasso_type_t * outDecimal, double value,
int precision)

Allocates a new instance of type decimal.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outDecimal: The resulting new type instance.

• value: The double value which the new type instance will hold.

• precision: The decimal precision that the new type instance will output to.

LCAPICALL osError lasso_typeAllocPair(lasso_request_t token, lasso_type_t * outPair, lasso_type_t first,
lasso_type_t second)

Allocates a new instance of type pair.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outPair: The resulting new type instance.

• first: The instance to use for the first member of the pair. A reference to the instance will be made.

• second: The instance to use for the second member of the pair. A reference to the instance will be made.

LCAPICALL osError lasso_typeAllocReference(lasso_request_t token, lasso_type_t * outRef,
lasso_type_t referenced)

Allocates a new hard reference to a type instance. The new instance will point to the original. This is a no-op under
Lasso 9.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

530 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outRef: The resulting new type instance.

• referenced: The instance to be referenced.

LCAPICALL osError lasso_typeAllocTag(lasso_request_t token, lasso_type_t * outTag,
lasso_tag_func nativeTagFunction)

Allocates a new instance of type tag.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outTag: The resulting new type instance.

• nativeTagFunction: The LCAPI lasso_tag_func which will be called when the tag is used.

LCAPICALL osError lasso_typeAllocTagFromSource(lasso_request_t token, lasso_type_t * outTag, const char
* source, int length)

Allocates a new instance of type tag from the given source text.

If the source text is UTF-8, it must contain a BOM or it will be treated as the default platform encoding.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outTag: The resulting new type instance.

• source: The source text which will be compiled to become the body of the tag.

• length: The length of the source text in characters.

LCAPICALL osError lasso_typeAllocArray(lasso_request_t token, lasso_type_t * outArray, int count, lasso_type_t
* elements)

Allocates a new instance of type array.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outArray: The resulting new type instance.

• count: The number of new array elements to insert. The number of items in the elements parameter.

• elements: A pointer to an array of lasso_type_t which will become the elements of the array. Each item will
be referenced.

47.5. C/C++ Reference for LCAPI 531



LassoGuide, Release 9.3

LCAPICALL osError lasso_typeAllocBoolean(lasso_request_t token, lasso_type_t * outBool, bool inValue)
Allocates a new instance of type boolean.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outBool: The resulting new type instance.

• inValue: The boolean value which the new type instance will hold.

Getting or Setting Values of Built-in Type Instances

The following functions get and set the data on a previously created built-in type instance. When getting a value, the source
type instance will not be altered. When setting a value, the provided type instance is converted, if required. The lasso_request_t
token may be null.

LCAPICALL osError lasso_typeGetString(lasso_request_t token, lasso_type_t type, auto_lasso_value_t * val)
Retrieves character data from a type instance.

If the type is a string instance, the data will be converted to UTF-8. If the type is a bytes instance, the data will be provided
unaltered. For any other type, the result will be the same as converting the type into a string and returning the data as
UTF-8.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• type: The type instance from which to retrieve the character data.

• val: A pointer to a lasso_value_t struct in which to store the result. The data will be stored in the name portion
of the struct.

LCAPICALL osError lasso_typeGetStringConv(lasso_request_t token, lasso_type_t type, auto_lasso_value_t
* val, const char * conv)

Retrieves character data from a type instance using the specified conversion method. If the special conversion method
of “BINARY” is used, and the source type is a string, the resulting data will be UTF-16 data. If the special conversion
method of “BINARY” is used, and the source type is bytes, the resulting data will be provided unaltered. For any other
type, if the special conversion method of “BINARY” is used, the result will be the same as converting the instance to a
string and retrieving the UTF-16 data.

The remaining possible values for the conversion method are any of the character encoding methods supported by
ICU or any of the converters stored in the ‘external_converters‘ global variable.

In all cases, the nameSize portion of the resulting value struct will be the number of bytes in the result data.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

532 Chapter 47. Lasso C API



LassoGuide, Release 9.3

• type: The type instance from which to retrieve the character data.

• val: A pointer to a lasso_value_t struct in which to store the result. The data will be stored in the name portion
of the struct.

• conv: The encoding method to use when transforming the Unicode string data.

LCAPICALL osError lasso_typeGetStringW(lasso_request_t token, lasso_type_t type, auto_lasso_value_w_t
* val)

Retrieves Unicode character data from a type instance.

For any type other than string, the result will be the same as converting the type into a string and returning the data as
UTF-16.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• type: The type instance from which to retrieve the character data.

• val: A pointer to a lasso_value_w_t struct in which to store the result. The data will be stored in the name
portion of the struct.

LCAPICALL osError lasso_typeGetInteger(lasso_request_t token, lasso_type_t type, int64_t * out)
Retrieves the integer value from a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• type: The type instance from which to retieve the integer value.

• out: A pointer to the resulting 64-bit integer.

LCAPICALL osError lasso_typeGetDecimal(lasso_request_t token, lasso_type_t type, double * out)
Retrieves the decimal value from a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• type: The type instance from which to retieve the decimal value.

• out: A pointer to the resulting double.

LCAPICALL osError lasso_typeGetBoolean(lasso_request_t token, lasso_type_t type, bool * out)
Retrieves the boolean value from a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

47.5. C/C++ Reference for LCAPI 533



LassoGuide, Release 9.3

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• type: The type instance from which to retieve the boolean value.

• out: A pointer to the resulting boolean.

LCAPICALL osError lasso_typeSetString(lasso_request_t token, lasso_type_t type, const char * val, int len)
Converts the type instance into a string and sets the value.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• type: The type instance to set.

• val: The source data in UTF-8 encoding.

• len: The length of the source UTF-8 data.

LCAPICALL osError lasso_typeSetStringW(lasso_request_t token, lasso_type_t type, const UChar * val, int len)
Converts the type instance into a string and sets the value.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• type: The type instance to set.

• val: The source data.

• len: The length of the source data.

LCAPICALL osError lasso_arrayGetSize(lasso_request_t token, lasso_type_t array, int * len)
Retrieves the size of the provided array instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• array: The array instance.

• len: A pointer in which to store the resulting size.

LCAPICALL osError lasso_arrayGetElement(lasso_request_t token, lasso_type_t array, int index, lasso_type_t
* out)

Retrieves the specified element of the provided array instance.

534 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• array: The array instance.

• index: The zero based index at which to retreive.

• out: The pointer in which to store the result.

LCAPICALL osError lasso_arraySetElement(lasso_request_t token, lasso_type_t array, int index,
lasso_type_t elem)

Sets the specified element of the provided array instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• array: The array instance.

• index: The zero based index at which to set. If the index is greater than the array’s current size or is less than
zero, the new item is added to the end of the array.

• elem: The type instance which will be placed at the specified index. The instance will be referenced.

LCAPICALL osError lasso_pairGetFirst(lasso_request_t token, lasso_type_t pr, lasso_type_t * out)
Retrieves the first member from the provided pair.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• pr: The pair instance.

• out: The pointer in which to store the result.

LCAPICALL osError lasso_pairGetSecond(lasso_request_t token, lasso_type_t pr, lasso_type_t * out)
Retrieves the second member from the provided pair.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• pr: The pair instance.

• out: The pointer in which to store the result.

47.5. C/C++ Reference for LCAPI 535



LassoGuide, Release 9.3

LCAPICALL osError lasso_pairSetFirst(lasso_request_t token, lasso_type_t pr, lasso_type_t frst)
Sets the first member of the provided pair.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• pr: The pair instance.

• frst: The instance to use as the first member. The instance will be referenced.

LCAPICALL osError lasso_pairSetSecond(lasso_request_t token, lasso_type_t pr, lasso_type_t scnd)
Sets the second member of the provided pair.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• pr: The pair instance.

• scnd: The instance to use as the second member. The instance will be referenced.

Datasource Module Functions

LCAPICALL osError lasso_addDataSourceResult(lasso_request_t token, const char * data)
Adds a datasource result value.

Datasource actions which require returning multiple values can use this to add those values. For example, this call can
be used to add the name of a datasource that the module services or the names of the tables in a particular datasource.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• data: The data to add. Data must be in ISO8859-1 encoding.

LCAPICALL osError lasso_addDataSourceResultUTF8(lasso_request_t token, const char * data)
Adds a datasource result value.

Datasource actions which require returning multiple values can use this to add those values. For example, this call can
be used to add the name of a datasource that the module services or the names of the tables in a particular datasource.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

536 Chapter 47. Lasso C API



LassoGuide, Release 9.3

• data: The data to add. Data must be in UTF-8 encoding.

LCAPICALL osError lasso_getDataSourceName(lasso_request_t token, auto_lasso_value_t * t, bool
* useHostDefault, auto_lasso_value_t * usernamepassword)

Gets the currently specified database name and associated data.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• t: The resulting database name.

• useHostDefault: The setting which specifies whether the hosts username/password combo should be used
in the absence of a database specific combo.

• usernamepassword: The username/password combo for the database.

LCAPICALL osError lasso_getTableName(lasso_request_t token, auto_lasso_value_t * t)
Gets the currently specified table name.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• t: The resulting table name which will be placed in the name portion of the struct.

LCAPICALL osError lasso_getTableEncoding(lasso_request_t token, auto_lasso_value_t * t)
Gets the currently specified table encoding. This is the encoding as set in SiteAdmin for the current table.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• t: The resulting table encoding which will be placed in the name portion of the struct.

LCAPICALL osError lasso_getSchemaName(lasso_request_t token, auto_lasso_value_t * schema)
Gets the currently specified schema name.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• schema: The resulting schema name which will be placed in the name portion of the struct.

47.5. C/C++ Reference for LCAPI 537



LassoGuide, Release 9.3

LCAPICALL osError lasso_getDataHost(lasso_request_t token, auto_lasso_value_t * host, auto_lasso_value_t
* usernamepassword)

Returns the host that maintains the current database.

The host name will be placed in the name portion of the struct while the port will be placed in the data portion.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• host: The resulting host data.

• usernamepassword: The resulting username/password combo.

LCAPICALL osError lasso_getDataHostID(lasso_request_t token, int * outId)
Returns the id of the host that maintains the current database.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outId: The resulting host id.

LCAPICALL osError lasso_getDataHost2(lasso_request_t token, auto_lasso_value_t * host, auto_lasso_value_t
* defaultSchema, auto_lasso_value_t * usernamepassword)

Returns the host that maintains the current database.

The host name will be placed in the name portion of the struct while the port will be placed in the data portion.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• host: The resulting host data.

• defaultSchema: The resulting default schema name which will be placed in the name portion of the struct.

• usernamepassword: The resulting username/password combo.

LCAPICALL osError lasso_getDataHostExtra(lasso_request_t token, auto_lasso_value_t * data)
Returns the “extra” information associated with the current host.

The data, if any, will be placed in the name portion of the struct.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

538 Chapter 47. Lasso C API



LassoGuide, Release 9.3

• data: The resulting extra host data.

LCAPICALL osError lasso_getDataHostIsDynamic(lasso_request_t token, bool * wasDyn)
Indicates if the host is dynamic.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• wasDyn: Will be set to true if the host was dynamic and false if it was not.

LCAPICALL osError lasso_getSkipRows(lasso_request_t token, int * recs)
The number of rows that should be skipped in the found set.

-skiprecords

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• recs: The resulting -skiprecords value.

LCAPICALL osError lasso_getMaxRows(lasso_request_t token, int * recs)
The maximum number of rows in the found set to return.

-maxrecords

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• recs: The resulting -maxrecords value.

LCAPICALL osError lasso_setRowID(lasso_request_t token, int id)
Sets the currently specified record id (FileMaker specific).

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• id: The numeric row id.

LCAPICALL osError lasso_setRowID2(lasso_request_t token, unsigned long long id)

LCAPICALL osError lasso_getRowID2(lasso_request_t token, unsigned long long * id)

47.5. C/C++ Reference for LCAPI 539



LassoGuide, Release 9.3

LCAPICALL osError lasso_getRowID(lasso_request_t token, int * id)
Gets the currently specified record id (FileMaker specific).

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• id: The numeric row id.

LCAPICALL osError lasso_getPrimaryKeyColumn(lasso_request_t token, auto_lasso_value_t * v)
Gets the name and the value of the currently specified primary key column.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• v: The resulting key name and value.

LCAPICALL osError lasso_getPrimaryKeyColumn2(lasso_request_t token, int index, auto_lasso_value_t * v,
LP_TypeDesc * desc)

Gets the name and the value of the primary key column specified by index.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• index: The zero based index.

• v: The resulting key name and value.

• desc: A pointer to a LP_TypeDesc in which to place the original type of the input data.

LCAPICALL osError lasso_getPrimaryKeyColumn3(lasso_request_t token, int index, auto_lasso_value_t
* keyName, lasso_type_t * type)

Gets the name and the value of the primary key column specified by index, preserving the original type.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• index: The zero based index.

• keyName: The name of the key field will be stored in the name member.

• type: The value portion of the key field in its original type.

540 Chapter 47. Lasso C API



LassoGuide, Release 9.3

LCAPICALL osError lasso_getPrimaryKeyColumnCount(lasso_request_t token, int * count)
Gets the number of key columns.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• count: A pointer to an int in which the number of key columns will be placed.

LCAPICALL osError lasso_getInputColumnCount(lasso_request_t token, int * count)
Gets the number of input columns for this database action.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• count: The resulting number of input columns.

LCAPICALL osError lasso_getSortColumnCount(lasso_request_t token, int * count)
Gets the number of sort columns for this database action.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• count: The resulting number of sort columns.

LCAPICALL osError lasso_getInputColumn(lasso_request_t token, int num, auto_lasso_value_t * v)
Gets an individual input column by index.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• num: the zero based index of the column to retrieve.

• v: The resulting value.

LCAPICALL osError lasso_getInputColumn2(lasso_request_t token, int num, auto_lasso_value_t * v,
LP_TypeDesc * desc)

Gets an individual input column by index.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

47.5. C/C++ Reference for LCAPI 541



LassoGuide, Release 9.3

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• num: the zero based index of the column to retrieve.

• v: The resulting value.

• desc: A pointer to a LP_TypeDesc in which to place the original type of the input data.

LCAPICALL osError lasso_getInputColumn3(lasso_request_t token, int num, auto_lasso_value_t * colName,
lasso_type_t * type)

Gets an individual input column by index, preserving the original type.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• num: the zero based index of the column to retrieve.

• colName: The name of the column will be stored in the name member.

• type: The value portion of the input column in its original type.

LCAPICALL osError lasso_getSortColumn(lasso_request_t token, int num, auto_lasso_value_t * v)
Gets an individual sort column by index.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• num: the zero based index of the sort column to retrieve.

• v: The resulting value.

LCAPICALL osError lasso_findInputColumn(lasso_request_t token, const char * name, auto_lasso_value_t
* value)

Gets an individual input column by name.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• name: the name of the input column to retrieve.

• value: The resulting value.

LCAPICALL osError lasso_findInputColumnW(lasso_request_t token, const UChar * name, auto_lasso_value_t
* value)

Gets an individual input column by name.

542 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• name: the name of the input column to retrieve.

• value: The resulting value.

LCAPICALL osError lasso_getLogicalOp(lasso_request_t token, LP_TypeDesc * op)
Gets the logical operator for this database action.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• op: The resulting operator code. Operator codes are declared at the top of this file.

LCAPICALL osError lasso_getReturnColumnCount(lasso_request_t token, int * count)
Gets the number of return columns for this action.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• count: The resulting number of return columns.

LCAPICALL osError lasso_getReturnColumn(lasso_request_t token, int num, auto_lasso_value_t * v)
Gets an individual return column by index.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• num: The zero based index of the return column to retrieve.

• v: The resulting value.

LCAPICALL osError lasso_addColumnInfo(lasso_request_t token, const char * name, int nullOK, LP_TypeDesc type,
LP_TypeDesc protection)

Adds information about a particular column.

Column information should be added in the order in which the columns occur inthe database. Column information
should be added no matter what the action is. For the show action, only column information is added.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

47.5. C/C++ Reference for LCAPI 543



LassoGuide, Release 9.3

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• name: The column name.

• nullOK: IS a null value for this column ok?

• type: The data type for the column as represented by a type code. osConfig.h.

• protection: The code for the column’s protection. osConfig.h.

LCAPICALL osError lasso_addColumnInfo2(lasso_request_t token, const char * name, int nullOK,
LP_TypeDesc type, LP_TypeDesc protection, const char ** valueList,
int countValueList)

Adds information, including valuelists, about a particular column.

Column information should be added in the order in which the columns occur inthe database. Column information
should be added no matter what the action is. For the show action, only column information is added.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• name: The column name.

• nullOK: IS a null value for this column ok?

• type: The data type for the column as represented by a type code. osConfig.h.

• protection: The code for the column’s protection. osConfig.h.

• valueList: An array of strings for the column’s valuelist.

• countValueList: The number of values in the value list.

LCAPICALL osError lasso_addResultRow(lasso_request_t token, const char ** columns, unsigned long * dataSizes,
int numColumns)

Add the column data for the next result row.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• columns: An array of column values.

• dataSizes: An array of column value lengths. Every column in columns should have an associated length.

• numColumns: The number of items in the columns and dataSizes arrays.

LCAPICALL osError lasso_addResultRow2(lasso_request_t token, lasso_type_t * cols, int num)
Add the column data for the next result row. Column data is represented as Lasso types.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

544 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• cols: An array of column values.

• num: The number of items in the cols array.

LCAPICALL osError lasso_addResultSet(lasso_request_t token)
Adds a new result set to the datasource results.

At the onset of each LCAPI datasource call, there is an initial blank result set created. This is the first result set. After
a datasource has added all the data for the first result set, if there is a second result set, the datasource should call
lasso_addResultSet to start a new set and then proceed to populate the column information and data for that set as
normal. This should be repeated for each result set. lasso_addResultSet should be called for each result set after the first.
Calling lasso_addResultSet before populating the first result set will result in the first set being empty.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

LCAPICALL osError lasso_setNumRowsFound(lasso_request_t token, int num)
Sets the number of rows found in the query.

This will not always be the same value as the number of rows added with the lasso_addResultRow call as the skip recs
and max recs parameters effect that number.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• num: the number of found rows.

LCAPICALL osError lasso_getDataSourceModuleName(lasso_request_t token, auto_lasso_value_t * val)
Returns the name the current datasource module was registered with.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• val: The resulting datasource module name which will be palced in the name portion of the struct.

LCAPICALL osError lasso_setDSPreparedPtr(lasso_request_t token, void * ptr)
Allows a datasource to set a prepared statement pointer.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

47.5. C/C++ Reference for LCAPI 545



LassoGuide, Release 9.3

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• ptr: The pointer value to set for later retrieval.

LCAPICALL osError lasso_getDSPreparedPtr(lasso_request_t token, void ** ptr)
Allows a datasource to get a previously set prepared statement pointer.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• ptr: The pointer, if it has been presiously set, will be placed in this parameter.

LCAPICALL osError lasso_getDSConnection(lasso_request_t token, lasso_dsconnection_t * conn)
Called to access the current datasource connection.

Datasource connections are set using the lasso_setDSConnection function.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• conn: A pointer in which to store the result.

LCAPICALL osError lasso_setDSConnection(lasso_request_t token, lasso_dsconnection_t conn)
Called to set the current connection for the datasource.

May recurse to deliver the datasourceCloseConnection message if there is already a valid lasso_dbconnection_t.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• conn: The connection value to set.

LCAPICALL osError lasso_getDSUserData(lasso_request_t token, void ** outPtr)
Provides access to the “user data” that was set when the datasorce was registered.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outPtr: The pointer in which the user data is returned.

546 Chapter 47. Lasso C API



LassoGuide, Release 9.3

LCAPICALL osError lasso_setActionStatement(lasso_request_t token, const char * stat)
Called to set the statement for the current action.

Datasources must call this to support the action_statement tag.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• stat: The statement value.

LCAPICALL osError lasso_setActionStatementW(lasso_request_t token, const UChar * stat)
Called to set the statement for the current action.

Datasources must call this to support the action_statement tag.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• stat: The statement value.

LCAPICALL osError lasso_getIsStatementOnly(lasso_request_t token, bool * out)
Used to check for the -statementonly inline param.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• out: A pointer in which to store the result.

Logging Functions

enum log_level_t
The various log levels.

Each log level can be configured to go to zero or more destinations.

Values:

LOG_LEVEL_ALWAYS
Always printed to window (only). Used internally in a few places.

typedef enum log_level_t log_level_t
The various log levels.

Each log level can be configured to go to zero or more destinations.

LCAPICALL osError lasso_log(log_level_t msgLevel, const char * fmt, ...)
Log a message to stdout.

47.5. C/C++ Reference for LCAPI 547



LassoGuide, Release 9.3

Defines

MACHINE_PC

MACHINE_UNIX

UCP(X)

kLPOpBegin

kLPOperatorBegin

kLPOpEnd

kLPOperatorEnd

kLPOpBeginW

kLPOperatorBeginW

kLPOpEndW

kLPOperatorEndW

FD_SETSIZE

LPW(X)

LCAPICALL

LCAPI_DEPRECATED

LCAPI_VERSION
Defines for testing the LCAPI versionCurrent Lasso Version.

LCAPI_VERSION_1
Lasso Version 5. First LCAPI release

LCAPI_VERSION_2
Lasso Version 6. Second LCAPI release

LCAPI_VERSION_3
Lasso Version 7. Third LCAPI release

LCAPI_VERSION_4
Lasso Version 8. Fourth LCAPI release

LCAPI_VERSION_9
Lasso Version 9

INITVAL(X)
Initialize a lasso_value_t or lasso_value_w_t to be blank.

It is recommended that each lasso_value_t be initialized using this macro before use.

Example:

lasso_value_t myVal;
INITVAL(&myVal);

SET_MATCHED_NAME(param)

548 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Typedefs

typedef enum lpEncodingType encodingMethod

typedef unsigned int LP_TypeDesc

typedef lasso_value_t auto_lasso_value_t
Special typedef so programmers know when Lasso will automatically dispose of the value.

typedef lasso_value_w_t auto_lasso_value_w_t
Special typedef so programmers know when Lasso will automatically dispose of the value.

typedef int tag_action_t
Types of actions tag modules could be called for.

Ignore this for now, it may be put into use in a future version but is not utliized at present.

typedef struct lasso_request_t_ * lasso_request_t
Special value passed to modules that identify the request.

The same value should be used when calling into any LassoCAPI function.

typedef struct lasso_type_t_ * lasso_type_t
Represents a type within Lasso.

This opaque value represents an instance of a type within Lasso

typedef struct lasso_dsconnection_t_ * lasso_dsconnection_t
Represents a datasource module connection.

This opaque value is only interpreted by the datasource module itself. It can be stored via lasso_setDSConnection and
retrieved via lasso_getDSConnection. Lasso will automatically send the datasource the datasourceCloseConnection
message when it is time to close the connection.

typedef osError(* lasso_ds_func)(lasso_request_t token, datasource_action_t action, const
auto_lasso_value_t *param)

Service function for Lasso Datasource modules.

A LCAPI datasource module should implement one of these and pass it to the lasso_registerDSModule or
lasso_registerDSModuleW function when the datasource module is registered. The function will be called by Lasso
when a datasource operation is to be performed.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• action: The current action for the datasource module to perform.

• param: Any additional data associated with the action.

typedef osError(* lasso_tag_func)(lasso_request_t token, tag_action_t action)
Service function for a Lasso tag.

An LCAPI tag should implement one of these and pass it to the lasso_registerTagModule or lasso_registerTagModuleW
function when the LCAPI module is registered. The function will be called by Lasso every time the tag is called in a script.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

47.5. C/C++ Reference for LCAPI 549



LassoGuide, Release 9.3

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• action: Unused. Do not rely on this parameter to hold any particular value.

typedef void(* register_module_func)(void)
LCAPI module registration callback.

All Lasso modules must export a function named “registerLassoModule”. When Lasso attempts to load an LCAPI
module, it will look for this exported funtion and, if found, call it. Within that function, the user may register any
number of datasource modules or any number of tags using the lasso_registerDSModule, lasso_registerDSModuleW,
lasso_registerTagModule or lasso_registerTagModuleW functions.

typedef char osPathname[1024]

Enums

enum SortOrder
Values:

orderAscending

orderDescending

orderCustom = 4

enum [anonymous]
Values:

kLassoGreaterThan = ‘> ‘

kLassoGreaterThanEquals = ‘>= ‘

kLassoEquals = ‘= ‘

kLassoLessThan = ‘< ‘

kLassoLessThanEquals = ‘<= ‘

kLassoBeginsWith = ‘bgwt’

kLassoEndsWith = ‘ends’

kLassoContains = ‘cont’

kLassoNotContains = ‘!cts’

kLassoNotBeginsWith = ‘!bgs’

kLassoNotEndsWith = ‘!end’

kLassoAND = ‘AND ‘

kLassoOR = ‘OR ‘

kLassoNOT = ‘NOT ‘

kLassoNo = ‘no ‘

kLassoAny = ‘any ‘

kLassoInList = ‘ nlt’

kLassoNotInList = ‘!nlt’

kLassoInFullText = ‘ ftx’

kLassoInRegExp = ‘ rxp’

kLassoNotInRegExp = ‘!rxp’

enum lpEncodingType
Values:

encodeURL

encodeRaw

encodeSmart

encodeBreak

encodeDefault

encodeStrictURL

encodeXML

encodeNone

encodeHTML

enum osError
Values:

osErrNoErr = 0

osErrAssert = -10000

osErrStreamReadError

osErrStreamWriteError

osErrMemory

osErrInvalidMemoryObject

osErrOutOfMemory

osErrOutOfStackSpace

osErrCouldNotLockMemory

550 Chapter 47. Lasso C API



LassoGuide, Release 9.3

osErrCouldNotUnlockMemory

osErrCouldNotDisposeMemory

osErrFile

osErrFileInvalid

osErrFileInvalidAccessMode

osErrCouldNotCreateOrOpenFile

osErrCouldNotCloseFile

osErrCouldNotDeleteFile

osErrFileNotFound

osErrFileAlreadyExists

osErrFileCorrupt

osErrVolumeDoesNotExist

osErrDiskFull

osErrDirectoryFull

osErrIOError

osErrInvalidPathname

osErrInvalidFilename

osErrFileLocked

osErrFileUnlocked

osErrFileIsOpen

osErrFileIsClosed

osErrBOF

osErrEOF

osErrCouldNotWriteToFile

osErrCouldNotReadFromFile

osErrResNotFound

osErrResource

osErrNetwork

osErrInvalidUsername

osErrInvalidPassword

osErrInvalidDatabase

osErrNoPermission

osErrFieldRestriction

osErrWebAddError

osErrWebUpdateError

osErrWebDeleteError

osErrInvalidParameter

osErrOverflow

osErrNilPointer

osErrUnknownError

osErrLoopAborted

osErrSyntaxError

osErrDivideByZero

osErrIllegalInstruction

osErrTagNotFound

osErrVarNotFound

osErrAborted

osErrFailure

osErrPreconditionFailed

osErrPostconditionFailed

osErrCriteriaNotMet

osErrIllegalUseOfFrozenInstance

osErrCompilationError

osErrNotImplemented

osErrSyntaxWarning

osErrWebRequiredFieldMissing = -800

osErrWebRepeatingRelatedField = -801

osErrWebNoSuchObject = -1728

osErrWebTimeout = -1712

osErrWebActionNotSupported = -802

osErrConnectionInvalid = -609

osErrWebModuleNotFound = -2000

osErrHTTPFileNotFound = 404

osErrDatasourceError = -3000

enum datasource_action_t
Types of actions datasources could be called for.

One of these will be passed as the action parameter for the lasso_ds_func.

Values:

47.5. C/C++ Reference for LCAPI 551



LassoGuide, Release 9.3

datasourceInit
Sent when a new “instance” of the datasource module is created.

datasourceTerm
Sent when the “instance” of the datasource module is destroyed.

datasourceExists

datasourceNames
Sent when Lasso attempts to gather the names of all the databases that the datasource module supports. Call
lasso_addDataSourceResult once for each supported database.

datasourceTableNames
Sent when Lasso attempts to gather the names of the tables available for the given database. The name of the
database itself will be passed in the param parameter. Call lasso_addDataSourceResult once for each available
table.

datasourceSearch
Sent when the datasource module is to perform a -search action.

datasourceAdd
Sent when the datasource module is to perform a -add action.

datasourceUpdate
Sent when the datasource module is to perform a -update action.

datasourceDelete
Sent when the datasource module is to perform a -delete action.

datasourceInfo
Sent when the datasource module is to perform a -show action.

datasourceExecSQL
Sent when the datasource module is to perform a -sql action.

datasourceRandom
Sent when the datasource module is to perform a -random action.

datasourceSchemaNames
Sent when Lasso attempts to gather the names of the schemas available for the given database. The name of the
database itself will be passed in the param parameter. Call lasso_addDataSourceResult once for each available
schema.

This is currently only utilized for LJAPI.

datasourceCloseConnection
Sent when the datasource module should close a connection previously set via the lasso_setDSConnection func-
tion.

datasourceTickle
Sent to the datasource module when -database and -table are specified in an inline, but no action, or a -nothing
action is used. The database could, perhaps, set or reset its connection to the database via lasso_setDSConnection.
Or, it could do nothing.

datasourceDuplicate

datasourceScripts

datasourceImage

datasourceFindAll
Sent when the datasource module is to perform a -findall action.

552 Chapter 47. Lasso C API



LassoGuide, Release 9.3

datasourceMatchesName
Sent to the datasource to find out if it “goes” under the given name. The name which is being tested will be passed
in the name member of the param parameter. The data member of the param parameter will be NULL and the
dataSize member will be zero. If the name matches the name the datasource goes under, the datasource should
both set the dataSize member to non-zero and return osErrNoErr. Otherwise, it is assumed that the name is not a
matching name for the datasource module.

datasourcePrepareSQL
Sent to the datasource to prepare a sql statement for later execution. This is sent when the datasource action was
-prepare. The statement text is sent to the datasource in the data member of the param parameter that is passed
to each datasource call.

datasourceUnprepareSQL
Sent to the datasource after a datasourcePrepareSQL action. This permits the datasource to perform and necessary
cleanup activities after executing a prepared statement.

datasourceMAXIMUM

datasourceNothing = -1

Functions

LCAPICALL osError lasso_allocValue(lasso_value_t * result, const char * name, unsigned int nameSize, const char
* data, unsigned int dataSize, LP_TypeDesc type)

Allocates a lasso_value_t with the indicated data.

Anything allocated with this function will NOT be garbage collected by Lasso and must be freed using lasso_freeValue.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• result: A pointer to the lasso_value_t which will be constructed.

• name: The name portion which will be copied and set.

• nameSize: The size of the name parameter in bytes.

• data: The data portion which will be copied and set.

• dataSize: The size of the data parameter in bytes.

• type: The type code for the value.

LCAPICALL osError lasso_allocValueW(lasso_value_w_t * result, const UChar * name, unsigned int nameSize, const
UChar * data, unsigned int dataSize, LP_TypeDesc type)

Allocates a lasso_value_w_t with the indicated data.

Anything allocated with this function will NOT be garbage collected by Lasso and must be freed using lasso_freeValueW.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• result: A pointer to the lasso_value_w_t which will be constructed.

• name: The name portion which will be copied and set.

• nameSize: The number of characters in the name portion.

• data: The data portion which will be copied and set.

47.5. C/C++ Reference for LCAPI 553



LassoGuide, Release 9.3

• dataSize: The number of characters in the data portion.

• type: The type code for the value.

LCAPICALL osError lasso_allocValueConv(lasso_value_t * result, const UChar * name, unsigned int nameSize,
const char * nameEncoding, const UChar * data, unsigned int dataSize,
const char * dataEncoding, LP_TypeDesc type)

Allocates a lasso_value_t with the indicated data and encoding method.

This function can be used to convert Unicode data into any of the supported encodings.

Anything allocated with this function will NOT be garbage collected by Lasso and must be freed using lasso_freeValue.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• result: A pointer to the lasso_value_w_t which will be constructed.

• name: The name portion which will be converted and set.

• nameSize: The number of characters in the name portion.

• nameEncoding: The destination encoding for the name portion.

• data: The data portion which will be converted and set.

• dataSize: The number of characters in the data portion.

• dataEncoding: The destination encoding for the data portion.

• type: The type code for the value.

LCAPICALL osError lasso_freeValue(lasso_value_t * result)
Frees a previously allocated lasso_value_t.

Do not pass an auto_lasso_value_t to this function or you will end up with a double free.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• result: The lasso_value_t whose members will be freed.

LCAPICALL osError lasso_freeValueW(lasso_value_w_t * result)
Frees a previously allocated lasso_value_w_t.

Do not pass an auto_lasso_value_w_t to this function or you will end up with a double free.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• result: The lasso_value_w_t whose members will be freed.

LCAPICALL osError lasso_registerTagModule(const char * namespaceName, const char * tagName,
lasso_tag_func func, int flags, const char * description)

Registers a new tag.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

554 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Parameters

• namespaceName: The namespace in which the tag will be registered.

• tagName: The name which the tag can be called by.

• func: The user supplied callback for the tag.

• flags: Any special flags for the tag.

• description: A description for the tag.

LCAPICALL osError lasso_registerTagModuleW(const UChar * namespaceName, const UChar * tagName,
lasso_tag_func func, int flags, const UChar * description)

LCAPICALL osError lasso_typeGetTrait(lasso_request_t token, lasso_type_t from, lasso_type_t * into)

LCAPICALL osError lasso_setResultMessage(lasso_request_t token, const char * msg)
Set result message string.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• msg: The result message string.

LCAPICALL osError lasso_setResultMessageW(lasso_request_t token, const UChar * msg)
Set result message string.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• msg: The result message string.

LCAPICALL osError lasso_typeAlloc(lasso_request_t token, const char * typeName, int paramCount, lasso_type_t
* paramsArray, lasso_type_t * outType)

Allocates a new type instance.

The name of the type to allocate is signified by the second parameter. If a type initializer is found for the given name, it
will be executed. An array of lasso_type_t parameters can be passed to the type initializer.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• typeName: The name of the type to instantiate.

• paramCount: The number of lasso_type_t parameters to pass to the initializer.

• paramsArray: An array of parameters to pass to the type initializer.

• outType: A pointer to the newly instantiated type.

47.5. C/C++ Reference for LCAPI 555



LassoGuide, Release 9.3

LCAPICALL osError lasso_typeAllocW(lasso_request_t token, const UChar * typeName, int paramCount,
lasso_type_t * paramsArray, lasso_type_t * outType)

Allocates a new type instance.

The name of the type to allocate is signified by the second parameter. If a type initializer is found for the given name, it
will be executed. An array of lasso_type_t parameters can be passed to the type initializer.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• typeName: The name of the type to instantiate.

• paramCount: The number of lasso_type_t parameters to pass to the initializer.

• paramsArray: An array of parameters to pass to the type initializer.

• outType: A pointer to the newly instantiated type.

LCAPICALL osError lasso_typeAllocCustom(lasso_request_t token, lasso_type_t * outCustom, const char * name)
Allocates a custom type within a type initializer.

This function is used within lasso_tag_funcs that were registered as being a type initializer (flag_typeInitializer). It initial-
izes a blank custom type and sets the type’s name to the provided value. The new type does not yet have a lineage and
has no members added to it. New data or tag members should be added using lasso_typeAddMember. The new type
must be the return value of the tag call, set via lasso_returnTagValue. Any inherited members will be added to the type
after the LCAPI call returns.

Warning
Do NOT call this unless you are in a type initializer. If you are not in a type initializer, the result will be a type that will
never be fully initialized.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outCustom: The resulting newly allocated custom type.

• name: The new type’s name.

LCAPICALL osError lasso_typeAllocCustomW(lasso_request_t token, lasso_type_t * outCustom, const UChar
* name)

Allocates a custom type within a type initializer.

This function is used within lasso_tag_funcs that were registered as being a type initializer (flag_typeInitializer). It initial-
izes a blank custom type and sets the type’s name to the provided value. The new type does not yet have a lineage and
has no members added to it. New data or tag members should be added using lasso_typeAddMember. The new type
must be the return value of the tag call, set via lasso_returnTagValue. Any inherited members will be added to the type
after the LCAPI call returns.

Warning
Do NOT call this unless you are in a type initializer. If you are not in a type initializer, the result will be a type that will
never be fully initialized.

556 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• outCustom: The resulting newly allocated custom type.

• name: The new type’s name.

LCAPICALL osError lasso_typeAllocFromProto(lasso_request_t token, lasso_type_t proto, lasso_type_t * out)
Allocate a new type instance based on the given type instance.

The given type’s tag members will be referenced in the new type. No data members are added to the new type.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• proto: The original type instance whose tag members will be referenced.

• out: The resulting new type instance.

LCAPICALL osError lasso_typeAddMember(lasso_request_t token, lasso_type_t to, const char * named,
lasso_type_t member)

Adds a member to a type instance.

If the new member is a tag, it will be added to the tag members for the type. Otherwise, the new member will be added
as a data member.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• to: The type instance to which the new member will be added.

• named: The name for the new member.

• member: The new member to add.

LCAPICALL osError lasso_typeAddMemberW(lasso_request_t token, lasso_type_t to, const UChar * named,
lasso_type_t member)

Adds a member to a type instance.

If the new member is a tag, it will be added to the tag members for the type. Otherwise, the new member will be added
as a data member.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

47.5. C/C++ Reference for LCAPI 557



LassoGuide, Release 9.3

• to: The type instance to which the new member will be added.

• named: The name for the new member.

• member: The new member to add.

LCAPICALL osError lasso_typeAddTagMember(lasso_request_t token, lasso_type_t to, const char * named,
lasso_type_t member)

Adds a tag member to a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• to: The type instance to which the new tag member will be added.

• named: The name for the new member.

• member: The new tag member to add.

LCAPICALL osError lasso_typeAddTagMember2(lasso_request_t token, lasso_type_t to, const char * named,
lasso_tag_func nativeTagFunction)

Adds a tag member to a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• to: The type instance to which the new tag member will be added.

• named: The name for the new member.

• nativeTagFunction: The function add.

LCAPICALL osError lasso_typeAddDataMember(lasso_request_t token, lasso_type_t to, const char * named,
lasso_type_t member)

Adds a data member to a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• to: The type instance to which the new data member will be added.

• named: The name for the new member.

• member: The new data member to add.

LCAPICALL osError lasso_typeAddTagMemberW(lasso_request_t token, lasso_type_t to, const UChar * named,
lasso_type_t member)

Adds a tag member to a type instance.

558 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• to: The type instance to which the new tag member will be added.

• named: The name for the new member.

• member: The new tag member to add.

LCAPICALL osError lasso_typeAddTagMember2W(lasso_request_t token, lasso_type_t to, const UChar * named,
lasso_tag_func nativeTagFunction)

Adds a tag member to a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• to: The type instance to which the new tag member will be added.

• named: The name for the new member.

• nativeTagFunction: The function to add.

LCAPICALL osError lasso_typeAddDataMemberW(lasso_request_t token, lasso_type_t to, const UChar * named,
lasso_type_t member)

Adds a data member to a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• to: The type instance to which the new data member will be added.

• named: The name for the new member.

• member: The new data member to add.

LCAPICALL osError lasso_typeGetDataMember(lasso_request_t token, lasso_type_t from, const char * named,
lasso_type_t * out)

Retrieves a data member from a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• from: The type instance in which to search.

• named: The name of the member to look for.

47.5. C/C++ Reference for LCAPI 559



LassoGuide, Release 9.3

• out: A pointer to a type instance in which to store the found member.

LCAPICALL osError lasso_typeGetDataMemberW(lasso_request_t token, lasso_type_t from, const UChar * named,
lasso_type_t * out)

Retrieves a data member from a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• from: The type instance in which to search.

• named: The name of the member to look for.

• out: A pointer to a type instance in which to store the found member.

LCAPICALL osError lasso_typeSetDataMember(lasso_request_t token, lasso_type_t from, const char * named,
lasso_type_t to)

Sets a data member of a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• from: The type instance in which to search.

• named: The name of the member to look for.

• to: A pointer to a type instance. The new value for the data member.

LCAPICALL osError lasso_typeSetDataMemberW(lasso_request_t token, lasso_type_t from, const UChar * named,
lasso_type_t to)

Sets a data member of a type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• from: The type instance in which to search.

• named: The name of the member to look for.

• to: A pointer to a type instance. The new value for the data member.

LCAPICALL osError lasso_setPtrMember(lasso_request_t token, lasso_type_t self, const char * name, void * data,
void(*dtor)(void *))

Allows storage of an opaque pointer value.

The pointer member is given and name and is stored as an integer in the type instance.

560 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• self: The type instance in which to add the pointer member.

• name: The name for the new member.

• data: The pointer value which will be added.

• dtor: A pointer to a function which will be called when the member is destroyed.

LCAPICALL osError lasso_setPtrMember2(lasso_request_t token, lasso_type_t from, const char * name, void
* data, void(*dtor)(void *obj), void *(*copyFunc)(void *obj))

Allows storage of an opaque pointer value.

The pointer member is given and name and is stored as an integer in the type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• from: The type instance in which to add the pointer member.

• name: The name for the new member.

• data: The pointer value which will be added.

• dtor: A pointer to a function which will be called when the member is destroyed.

• copyFunc: A pointer to a function which will be called when the member is copied.

LCAPICALL osError lasso_setPtrMemberW(lasso_request_t token, lasso_type_t self, const UChar * name, void
* data, void(*dtor)(void *))

Allows storage of an opaque pointer value.

The pointer member is given and name and is stored as an integer in the type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• self: The type instance in which to add the pointer member.

• name: The name for the new member.

• data: The pointer value which will be added.

• dtor: A pointer to a function which will be called when the member is destroyed.

LCAPICALL osError lasso_setPtrMember2W(lasso_request_t token, lasso_type_t from, const UChar * named, void
* data, void(*dtor)(void *obj), void *(*copyFunc)(void *obj))

Allows storage of an opaque pointer value.

47.5. C/C++ Reference for LCAPI 561



LassoGuide, Release 9.3

The pointer member is given and name and is stored as an integer in the type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• from: The type instance in which to add the pointer member.

• named: The name for the new member.

• data: The pointer value which will be added.

• dtor: A pointer to a function which will be called when the member is destroyed.

• copyFunc: A pointer to a function which will be called when the member is copied.

LCAPICALL osError lasso_getPtrMember(lasso_request_t token, lasso_type_t self, const char * name, void ** data)
Retrieves a previously added pointer value.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• self: The type instance from which to retrieve.

• name: The name of the previously added pointer value.

• data: A pointer to a void * in which to store the found value.s

LCAPICALL osError lasso_getPtrMemberW(lasso_request_t token, lasso_type_t self, const UChar * name, void
** data)

Retrieves a previously added pointer value.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• self: The type instance from which to retrieve.

• name: The name of the previously added pointer value.

• data: A pointer to a void * in which to store the found value.s

LCAPICALL osError lasso_getTagSelf(lasso_request_t token, lasso_type_t * self)
Returns the type instance that the current tag call was a member of.

This is used in member tags of custom types to return the target of the current call.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

562 Chapter 47. Lasso C API



LassoGuide, Release 9.3

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• self: A pointer in which to store the resulting type instance.

LCAPICALL osError lasso_typeGetName(lasso_request_t token, lasso_type_t target, auto_lasso_value_t
* outName)

Returns the name of the target type.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• target: The type instance to get the name of.

• outName: The resulting name which will be stored in the name portion of the struct.

LCAPICALL osError lasso_typeGetNameW(lasso_request_t token, lasso_type_t target, auto_lasso_value_w_t
* outName)

Returns the name of the target type.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• target: The type instance to get the name of.

• outName: The resulting name which will be stored in the name portion of the struct.

LCAPICALL osError lasso_typeIsA(lasso_request_t token, lasso_type_t target, LP_TypeDesc type)
Tests to see if a type is an instance of another type.

Test by type code.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• target: The target instance to test.

• type: The type code to test for.

LCAPICALL osError lasso_typeIsA2(lasso_request_t token, lasso_type_t target, const char * typeName)
Tests to see if a type is an instance of another type.

Test by type name.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

47.5. C/C++ Reference for LCAPI 563



LassoGuide, Release 9.3

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• target: The target instance to test.

• typeName: The type name to test for.

LCAPICALL osError lasso_typeIsA2W(lasso_request_t token, lasso_type_t target, const UChar * typeName)
Tests to see if a type is an instance of another type.

Test by type name.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• target: The target instance to test.

• typeName: The type name to test for.

LCAPICALL osError lasso_typeIsA3(lasso_request_t token, lasso_type_t target, lasso_type_t type)
Tests to see if a type is an instance of another type.

Test based on another type instance.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• target: The target instance to test.

• type: The type name to test for.

LCAPICALL osError lasso_returnTagValue(lasso_request_t token, lasso_type_t value)
Specifies the return value of the current LCAPI tag call.

Any type can be returned. A tag can only have one return value. Setting another return value will overwrite the previous.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• value: The value to return.

LCAPICALL osError lasso_returnTagValueBoolean(lasso_request_t token, bool b)
Return a boolean value from the current LCAPI tag call.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

564 Chapter 47. Lasso C API



LassoGuide, Release 9.3

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• b: The boolean value to return.

LCAPICALL osError lasso_returnTagValueInteger(lasso_request_t token, int64_t i)
Return an integer value from the current LCAPI tag call.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• i: The integer value to return.

LCAPICALL osError lasso_returnTagValueString(lasso_request_t token, const char * p, int l)
Return a string value from the current LCAPI tag call.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• p: The character data to be returned. The data should be in UTF-8 encoding.

• l: The length of the character data to return.

LCAPICALL osError lasso_returnTagValueStringW(lasso_request_t token, const UChar * p, int l)
Return a string value from the current LCAPI tag call.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• p: The character data to be returned.

• l: The length of the character data to return.

LCAPICALL osError lasso_returnTagValueDecimal(lasso_request_t token, double d)
Return a decimal value from the current LCAPI tag call.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• d: The double value to return.

47.5. C/C++ Reference for LCAPI 565



LassoGuide, Release 9.3

LCAPICALL osError lasso_returnTagValueBytes(lasso_request_t token, const char * data, int length)
Return binary data from the current LCAPI tag call.

When using this, the result of the LCAPI call will be a bytes type. This can be called as many times as needed and new
data will be appended to any previous data.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• data: The binary data to return.

• length: The number of bytes to return.

LCAPICALL osError lasso_getTagParam2(lasso_request_t token, int paramIndex, lasso_type_t * result)
Retrieves a parameter that was passed to the LCAPI tag call.

The parameter index is zero based.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• paramIndex: The zero based index of the desired parameter.

• result: The resulting parameter value.

LCAPICALL osError lasso_findTagParam2(lasso_request_t token, const char * paramName, lasso_type_t * result)
Retrieves a parameter that was passed to the LCAPI tag call.

The parameter must have been specified by keyword.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• paramName: The keyword of the desired parameter.

• result: The resulting parameter value.

LCAPICALL osError lasso_findTagParam2W(lasso_request_t token, const UChar * paramName, lasso_type_t
* result)

Retrieves a parameter that was passed to the LCAPI tag call.

The parameter must have been specified by keyword.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

566 Chapter 47. Lasso C API



LassoGuide, Release 9.3

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• paramName: The keyword of the desired parameter.

• result: The resulting parameter value.

LCAPICALL osError lasso_registerConstant2(const char * namespaceName, const char * name, lasso_type_t val)
Register a constant value.

Constants can be called just like tags, but the resulting value will only have a single instance and will have both its type
and value frozen. This is usually called at the same time that tags are registered.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• namespaceName: The namespace for the constant.

• name: The name for the constant.

• val: The value for the constant.

LCAPICALL osError lasso_registerConstant2W(const UChar * namespaceName, const UChar * name,
lasso_type_t val)

Register a constant value.

Constants can be called just like tags, but the resulting value will only have a single instance and will have both its type
and value frozen. This is usually called at the same time that tags are registered.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• namespaceName: The namespace for the constant.

• name: The name for the constant.

• val: The value for the constant.

LCAPICALL osError lasso_registerConstant(const char * name, lasso_type_t val)
Register a constant value.

Constants can be called just like tags, but the resulting value will only have a single instance and will have both its type
and value frozen. This is usually called at the same time that tags are registered.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• name: The name for the constant.

• val: The value for the constant.

LCAPICALL osError lasso_registerConstantW(const UChar * name, lasso_type_t val)
Register a constant value.

Constants can be called just like tags, but the resulting value will only have a single instance and will have both its type
and value frozen. This is usually called at the same time that tags are registered.

47.5. C/C++ Reference for LCAPI 567



LassoGuide, Release 9.3

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• name: The name for the constant.

• val: The value for the constant.

LCAPICALL osError lasso_getTagName(lasso_request_t token, auto_lasso_value_t * result)
Fetches the name of the tag that triggered this call.

For example, in the case of: [my_tag: ...] the resulting value would be “my_tag”.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• result: The resulting tag name which will be placed in the name portion of the struct.

LCAPICALL osError lasso_getTagNameW(lasso_request_t token, auto_lasso_value_w_t * result)
Fetches the name of the tag that triggered this call.

For example, in the case of: [my_tag: ...] the resulting value would be “tag”.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• result: The resulting tag name which will be placed in the name portion of the struct.

LCAPICALL osError lasso_getTagParamCount(lasso_request_t token, int * result)
Fetches the number of parameters that were passed to the tag.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• result: A pointer in which to store the result.

LCAPICALL osError lasso_getTagParam(lasso_request_t token, int paramIndex, auto_lasso_value_t * result)
Fetches the indicated parameter that was sent to the tag.

Parameter indexes start at zero. If the parameter was specified as a keyword/value pair, the keyword will be placed in
the name portion of the struct and the value in the data portion. If the parameter was provided without a keyword, the
name portion of the struct will be NULL.

All parameters values will be converted to string, regardless of the original type.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

568 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• paramIndex: The zero based index of the desired parameter.

• result: The resulting parameter data.

LCAPICALL osError lasso_getTagParamW(lasso_request_t token, int paramIndex, auto_lasso_value_w_t * result)
Fetches the indicated parameter that was sent to the tag.

Parameter indexes start at zero. If the parameter was specified as a keyword/value pair, the keyword will be placed in
the name portion of the struct and the value in the data portion. If the parameter was provided without a keyword, the
name portion of the struct will be NULL.

All parameters values will be converted to string, regardless of the original type.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• paramIndex: The zero based index of the desired parameter.

• result: The resulting parameter data.

LCAPICALL osError lasso_tagParamIsDefined(lasso_request_t token, const char * paramName)
Returns osErrNoErr if the param WAS defined.

Any other result means it wasn’t defined. Only parameters specified with a keyword should be searched for.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• paramName: The name of the keyworded parameter to search for.

LCAPICALL osError lasso_tagParamIsDefinedW(lasso_request_t token, const UChar * paramName)
Returns osErrNoErr if the param WAS defined.

Any other result means it wasn’t defined. Only parameters specified with a keyword should be searched for.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• paramName: The name of the keyworded parameter to search for.

LCAPICALL osError lasso_findTagParam(lasso_request_t token, const char * paramName, auto_lasso_value_t
* result)

Retrieves a parameter that was passed to the LCAPI tag call.

47.5. C/C++ Reference for LCAPI 569



LassoGuide, Release 9.3

The parameter must have been specified by keyword. The keyword will be placed in the name portion of the struct and
the value in the data portion. If only a keyword was provided, the data portion will be NULL.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• paramName: The keyword of the desired parameter.

• result: The resulting parameter value.

LCAPICALL osError lasso_findTagParamW(lasso_request_t token, const UChar * paramName,
auto_lasso_value_w_t * result)

Retrieves a parameter that was passed to the LCAPI tag call.

The parameter must have been specified by keyword. The keyword will be placed in the name portion of the struct and
the value in the data portion. If only a keyword was provided, the data portion will be NULL.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• paramName: The keyword of the desired parameter.

• result: The resulting parameter value.

LCAPICALL osError lasso_setVariable(lasso_request_t token, const char * named, const char * value, int index)

LCAPICALL osError lasso_setVariableW(lasso_request_t token, const UChar * named, const UChar * value,
int index)

LCAPICALL void lasso_getPlatformSpecificPath(const char * inInternalPath, osPathname outPlatformPath)
This function is a no-op in Lasso 9.

Parameters

• inInternalPath: The internal pathname.

• outPlatformPath: The resulting platform specific pathname.

LCAPICALL void lasso_getInternalPath(const char * inPlatformPath, osPathname outInternalPath)
This function is a no-op in Lasso 9.

Parameters

• inPlatformPath: the platform specific path name.

• outInternalPath: The resulting internal pathname.

LCAPICALL void lasso_fullyQualifyPath(lasso_request_t token, const char * inRelativePath, osPath-
name outFullyQualified)

This function is a no-op in Lasso 9.

If the path is already from the root it won’t be changed.

570 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• inRelativePath: The relative path.

• outFullyQualified: the resulting fully qualified path.

LCAPICALL void lasso_resolvePath(lasso_request_t token, const char * inPath, osPathname outFullPath)
This function is a no-op in Lasso 9.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• inPath: The path to resolve.

• outFullPath: The resulting full path.

LCAPICALL void lasso_resolveIncludePath(lasso_request_t token, const char * inPath, osPathname outFullPath)
This function is a no-op in Lasso 9.

Resulting path must name an item within the web-root or a blank string is returned.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• inPath: The path to resolve.

• outFullPath: The resulting full path.

LCAPICALL void lasso_internalToFullPlatformPath(lasso_request_t token, const char
* relativeOrFullInternalPath, osPathname fullPlatformPath)

This function is a no-op in Lasso 9.

Takes a path, such as one which may have been passed to any Lasso tag, and converts it into a full platform specific
path name.

Return
If the function succeeds, osErrNoErr is returned, otherwise, an error code indicating the problem is returned.

Parameters

• token: The request token which should be passed to subsequent LCAPI functions for the duration of the current
service function call.

• relativeOrFullInternalPath: The input path to convert.

• fullPlatformPath: The resulting converted path.

47.5. C/C++ Reference for LCAPI 571



LassoGuide, Release 9.3

LCAPICALL bool lasso_isFullInternalPath(const char * path)
Returns true if the path begins with a forward slash.

Return
True if the given internal path is a full path from the filesystem root.

Parameters

• path: The path to test.

Variables

const int kNumErrors = 71

const int kMaxPathLen = 1024

struct lasso_value_t
#include <LassoCAPI.h> Used for retrieving data from some LCAPI functions.

The lasso_value_t struct is used for shuffling data into and out of LassoCAPI functions.

Any LCAPI function that constructs one of these will insure that Lasso properly disposes of the data once the user’s
LassoCAPI function call is complete.

lasso_value_t is suitable for transferring binary data as long as the nameSize or dataSize members are properly set with
the size of the data in bytes.

Depending on the purpose of the function which is constructing the lasso_value_t, any combination of the name or
data members may be filled in or may be NULL. Consult the documentation of the specific function for more details.

Should be initialized using the INITVAL(X) macro before use.

Public Members

const char* name
The name portion.

May be NULL.

unsigned int nameSize
The size of the name member, in bytes.

const char* data
The value portion.

May be NULL.

unsigned int dataSize
The size of the data member, in bytes.

LP_TypeDesc type
The type code for the data member.

struct lasso_value_w_t
#include <LassoCAPI.h> Used for retrieving Unicode character data from some LCAPI functions.

The lasso_value_w_t struct is used for shuffling Unicode character data into and out of LassoCAPI functions.

Any LCAPI function that constructs one of these will insure that Lasso properly disposes of the data once the user’s
LassoCAPI function call is complete.

572 Chapter 47. Lasso C API



LassoGuide, Release 9.3

Depending on the purpose of the function which is constructing the lasso_value_t, any combination of the name or
data members may be filled in or may be NULL. Consult the documentation of the specific function for more details.

Should be initialized using the INITVAL(X) macro before use.

Public Members

const UChar* name
The name portion.

May be NULL.

unsigned int nameSize
The size of the name member, in bytes.

const UChar* data
The value portion.

May be NULL.

unsigned int dataSize
The size of the data member, in bytes.

LP_TypeDesc type
The type code for the data member.

struct lasso_request_t_
#include <LassoCAPI.h> Special value passed to modules that identify the request.

The same value should be used when calling into any LassoCAPI function.

struct lasso_type_t_
#include <LassoCAPI.h> Represents a type within Lasso.

This opaque value represents an instance of a type within Lasso

struct lasso_dsconnection_t_
#include <LassoCAPI.h> Represents a datasource module connection.

This opaque value is only interpreted by the datasource module itself. It can be stored via lasso_setDSConnection and
retrieved via lasso_getDSConnection. Lasso will automatically send the datasource the datasourceCloseConnection
message when it is time to close the connection.

namespace LPTypes

Variables

const LP_TypeDesc lpTypeString = ‘TEXT’

const LP_TypeDesc lpTypeNull = ‘null’

const LP_TypeDesc lpTypeInteger = ‘long’

const LP_TypeDesc lpTypeBoolean = ‘bool’

const LP_TypeDesc lpTypeBytes = ‘blob’

const LP_TypeDesc lpTypeDecimal = ‘doub’

const LP_TypeDesc lpTypeDateTime = ‘Date’

const LP_TypeDesc lpTypeArray = ‘arry’

47.5. C/C++ Reference for LCAPI 573



LassoGuide, Release 9.3

const LP_TypeDesc lpTypeTag = ‘code’

const LP_TypeDesc lpTypePair = ‘pair’

const LP_TypeDesc lpTypeCustom = ‘Yers’

const LP_TypeDesc kDateDataType = ‘Date’

const LP_TypeDesc kProtectionNone = ‘none’

const LP_TypeDesc kProtectionReadOnly = ‘nmod’

574 Chapter 47. Lasso C API



Chapter 48

Lasso Java API

48.1 LJAPI Overview

The Lasso Java Application Programming Interface (LJAPI) allows you to run Java code from within Lasso. This allows for custom
Java code to be created using Java’s libraries that can then be run on all platforms Lasso supports. It also gives you access to
use Java’s standard classes to create and manipulate Java objects without writing a line of Java code.

The LJAPI functionality is implemented in an LCAPI module that bridges the C/C++ Java Native Interface (JNI) to Lasso. See
the Oracle website for more information about interoperating with Java using JNI70 .

48.1.1 Requirements

• Lasso Server installed on a supported OS

• Java installed

• Any other OS-specific packages required for Java support in Lasso installed

48.1.2 Executing a Static Method

Static methods are methods that are associated with a class, but are not run on an instantiated object of that class. This example
will walk you through running the Java static class method Math.scalb. This method takes in a floating point and an integer
and returns the value of multiplying the float by 2 to the power of the integer.

Note: If you are running the example code in a shell script or via the command-line interpreter instead of in a Lasso Server in-
stance, you’ll need to load the LJAPI environment. This can be done with the following two lines of code (replace “LJAPI9.dylib”
with the name of the library for your OS’s installation). See the section Loading Libraries in Shell Scripts in the Command-Line
Tools chapter for more information.

lcapi_loadModule((sys_masterHomePath || sys_homePath) + '/LassoModules/LJAPI9.dylib')
ljapi_initialize

Static Method Code

local(class) = java_jvm_getenv->FindClass('java/lang/Math')
local(mID) = java_jvm_getenv->GetStaticMethodID(#class, 'scalb', '(FI)F')

java_jvm_getenv->CallStaticFloatMethod(#class, #mID, jfloat(4.0), jint(3))

// => 32.000000

70 http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html

575

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html


LassoGuide, Release 9.3

Static Method Walkthrough

One thing to notice is that all the communication is done using java_jvm_getenv. This method returns the java_jnienv
object for the Lasso instance, and it is this object that allows Lasso to communicate with the Java Virtual Machine (JVM).

1. The first line of code finds the Java class we want to work with and returns a Lasso jobject; storing it into the local
variable “class”. The string value that gets passed to FindClass is the fully qualified class name signature (or array type
signature). For more information, see the FindClass71 documentation.

local(class) = java_jvm_getenv->FindClass('java/lang/Math')

2. The next line of code looks up the method ID for the method we want to execute and returns it as a jmethodid type,
storing it into the “mID” variable. GetStaticMethodID takes in the class (jobject) object we found in the first line, the
name of the method as the second parameter, and the signature for that method as the third parameter. For more
information, see the GetStaticMethodID72 documentation.

local(mID) = java_jvm_getenv->GetStaticMethodID(#class, 'scalb', '(FI)F')

3. The method signature (FI)F specifies that it takes a float and an int parameter and returns a float. The easiest way to
find the signature for a method is to use the javap command on the command line. In the example below, we run
javap -s -p java.lang.Math to get all the method signatures found in the “java.lang.Math” class, and we use grep
to filter and find the “scalb” method. You’ll notice in the result that there are actually two methods with the same name
but with different signatures, and we’re using the second one:

$> javap -s -p java.lang.Math | grep -A 1 scalb
public static double scalb(double, int);
Signature: (DI)D

--
public static float scalb(float, int);
Signature: (FI)F

4. Finally, we execute the method using CallStaticFloatMethod which takes in the class object from the first step and
the method ID from the second step and then the required parameters for the method we are calling, if any. Note that
we must convert Lasso decimal objects to jfloat and Lasso integer objects to jint.

java_jvm_getenv->CallStaticFloatMethod(#class, #mID, jfloat(4.0), jint(3))

48.1.3 Instantiating a Java Object and Executing a Member Method

Member methods are methods that are associated with a class and are run on an instantiated object of that class. This example
will walk you through creating a ZipFile object and running the size method on that object to find out how many items are
in the zip file.

To run this example yourself, supply a zip file and replace the path and file name in the example with the path and name of
your zip file.

Java Object Member Method Code

local(class) = java_jvm_getenv->FindClass('java/util/zip/ZipFile')
local(mID) = java_jvm_getenv->GetMethodID(#class, '<init>', '(Ljava/lang/String;)V')
local(obj) = java_jvm_getenv->NewObject(#class, #mID, '/path/to/zipfile.zip')

71 http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16027
72 http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20950

576 Chapter 48. Lasso Java API

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16027
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20950


LassoGuide, Release 9.3

local(class) = java_jvm_getenv->GetObjectClass(#obj)
local(mID) = java_jvm_getenv->GetMethodID(#class, 'size', '()I')

java_jvm_getenv->CallIntMethod(#obj, #mID)

// => 92

Java Object Member Method Walkthrough

Once again, all the communication is done using the java_jvm_getenv method, which wraps the Lasso instance’s
java_jnienv object.

1. The first line of code gets the specified Java class and stores a Lasso jobject into the local variable “class”. The value
that gets passed to FindClass is the fully qualified class name signature (or array type signature). For more information,
see the FindClass73 documentation.

local(class) = java_jvm_getenv->FindClass('java/util/zip/ZipFile')

2. Next, the code finds the method ID for the constructor method by passing the class object we found in the first step,
“<init>” for the method name, and the method signature as the third argument:

local(mID) = java_jvm_getenv->GetMethodID(#class, '<init>', '(Ljava/lang/String;)V')

3. The method signature (Ljava/lang/String;)V specifies that it takes a string parameter and returns “void”. The easi-
est way to find the signature for a method is to use the javap command on the command line. In the example below,
we run javap -s -p java.util.zip.ZipFile to get all the method signatures found in the “java.util.zip.ZipFile”
class, and we use grep to filter and find the constructor methods. You’ll notice in the result that there are actually three
constructor methods, each with different signatures, and we are using the first one:

$> javap -s -p java.util.zip.ZipFile | grep -A 1 "public java.util.zip.ZipFile"
public java.util.zip.ZipFile(java.lang.String) throws java.io.IOException;
Signature: (Ljava/lang/String;)V

--
public java.util.zip.ZipFile(java.io.File, int) throws java.io.IOException;
Signature: (Ljava/io/File;I)V

--
public java.util.zip.ZipFile(java.io.File) throws java.util.zip.ZipException, java.io.
↪→IOException;
Signature: (Ljava/io/File;)V

4. After finding the constructor method for our class, the code instantiates an object by passing that information into
NewObject. The line of code below stores a Java object into “obj” by calling NewObject with the class information,
method ID, and any additional parameters required by the constructor (in this case, the path to the zipped file). For
more information on NewObject, see the NewObject74 documentation.

local(obj) = java_jvm_getenv->NewObject(#class, #mID, '/path/to/zipfile.zip')

5. The next line isn’t actually necessary since the “class” variable already has the class information for “java.util.zip.ZipFile”,
but we have it here to demonstrate how you could deal with wanting to call methods on Java objects that were returned
by other methods. So, GetObjectClass returns the class information for the specified object. For more information,
see the GetObjectClass75 documentation.

73 http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16027
74 http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4517
75 http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16454

48.1. LJAPI Overview 577

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16027
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4517
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16454


LassoGuide, Release 9.3

local(class) = java_jvm_getenv->GetObjectClass(#obj)

6. The next line gets the method ID for the size member method and stores it in the local variable “mID”:

local(mID) = java_jvm_getenv->GetMethodID(#class, 'size', '()I')

7. Finally, we execute the size member method by calling CallIntMethod with the Java object as the first parameter
and the method ID for size as the second parameter. Notice that the return type (int) is in the name of the method.
There are a number of these methods for various return types76 .

java_jvm_getenv->CallIntMethod(#obj, #mID)

48.2 Lasso Types and Methods for LJAPI

This chapter provides a reference to all of the types and functions in LJAPI.

48.2.1 Methods

ljapi_initialize()
Creates a Java Virtual Machine for the running Lasso thread. A Lasso Server instance calls this method when it starts up.

java_jvm_getenv(...)
This is the wrapper method for the java_jnienv object associated with the Lasso instance’s Java Virtual Machine.
This is the method you will use to access the Java Native Interface functions documented as member methods of
java_jnienv.

48.2.2 Main Lasso Type

type java_jnienv

java_jnienv()
Creates an object that is used to call Java Native Interface (JNI) functions. These functions are all documented in the JNI
documentation77 .

For your convenience, the sections below are arranged in the same order and grouping as the JNI documentation.

Version

java_jnienv->GetVersion(...)
Returns the version of the Java Native Interface.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp15951 for more information.

Class Operations

java_jnienv->FindClass(...)
Returns a reference to a Java class. It takes a string of the fully qualified class name or array type signature.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16027 for more information.

76 http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256
77 http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html

578 Chapter 48. Lasso Java API

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp15951
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16027


LassoGuide, Release 9.3

Exceptions

java_jnienv->Throw(...)
Throws a Java error (java.lang.Throwable). It takes a jobject thrown error reference and returns a jint.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16086 for more information.

java_jnienv->ThrowNew(...)
Creates and throws a Java error with the message passed to it. It takes a jobject class reference to use to create the
error, and a string with the error message. It returns a jint.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16104 for more information.

java_jnienv->ExceptionOccurred(...)
Returns whether or not a Java exception was thrown.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16124 for more information.

java_jnienv->ExceptionDescribe(...)
Outputs the error and stack trace for the Java exception.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16146 for more information.

java_jnienv->ExceptionClear(...)
Clears any exceptions that have been thrown.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16166 for more information.

java_jnienv->FatalError(...)
Throws a fatal error to the JVM. It takes a string as the error message.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16186 for more information.

java_jnienv->ExceptionCheck(...)
Returns “true” if a Java exception has been thrown, otherwise returns “false”.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16270 for more information.

Global and Local References

java_jnienv->NewGlobalRef(...)
Creates a global reference from the specified object. It takes a jobject reference to an object and returns a new job-
ject global object reference.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#NewGlobalRef for more informa-
tion.

java_jnienv->DeleteGlobalRef(...)
Removes the specified global reference. It takes a jobject reference to a global object.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#DeleteGlobalRef for more infor-
mation.

java_jnienv->DeleteLocalRef(...)
Removes the specified local reference. It takes a jobject reference to an object.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#DeleteLocalRef for more infor-
mation.

48.2. Lasso Types and Methods for LJAPI 579

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16086
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16104
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16124
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16146
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16166
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16186
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16270
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#NewGlobalRef
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#DeleteGlobalRef
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#DeleteLocalRef


LassoGuide, Release 9.3

Object Operations

java_jnienv->AllocObject(...)
Allocates a Java object without calling any of the constructor methods. It takes a jobject class reference (like the return
value of java_jnienv->FindClass). It returns a reference to the object.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16337 for more information.

java_jnienv->NewObject(...)
Allocates and constructs a Java object. It takes a jobject class reference to the new object’s class, a jmethodid refer-
ence to the constructor method to use, and any other parameters as required by the Java constructor method. It returns
a reference to the object.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4517 for more information.

java_jnienv->GetObjectClass(...)
Returns a class reference for the specified object. It takes a jobject object reference.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16454 for more information.

java_jnienv->IsInstanceOf(...)
Returns “true” if the specified object is an instance of the specified class, otherwise returns “false”. It takes a jobject
object reference and a jobject class reference.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16472 for more information.

java_jnienv->IsSameObject(...)
Returns “true” if both specified objects refer to the same Java object, otherwise returns “false”. It takes two jobject
object references.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16514 for more information.

Accessing Fields of Objects

java_jnienv->GetFieldID(...)
Returns the field ID of a Java object’s instance field. It takes a jobject class reference, a string with the value of the
field’s name, and a string of the signature for the field. It returns a jfieldid reference.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16540 for more information.

java_jnienv->GetObjectField(...)
Returns the value of the specified Java object instance field. This method should be used for field values that are Java
objects. It takes in a jobject object reference and a jfieldid reference and returns a jobject object reference.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572 for more information.

java_jnienv->GetBooleanField(...)
Returns the value of the specified Java object instance field. This method should be used for field values that are boolean
primitives. It takes in a jobject object reference and a jfieldid reference and returns a boolean.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572 for more information.

java_jnienv->GetByteField(...)
Returns the value of the specified Java object instance field. This method should be used for field values that are Java
byte primitives. It takes in a jobject object reference and a jfieldid reference and returns a jbyte.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572 for more information.

java_jnienv->GetCharField(...)
Returns the value of the specified Java object instance field. This method should be used for field values that are Java
char primitives. It takes in a jobject object reference and a jfieldid reference and returns a jchar.

580 Chapter 48. Lasso Java API

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16337
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4517
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16454
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16472
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16514
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16540
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572


LassoGuide, Release 9.3

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572 for more information.

java_jnienv->GetShortField(...)
Returns the value of the specified Java object instance field. This method should be used for field values that are Java
short primitives. It takes in a jobject object reference and a jfieldid reference and returns a jshort.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572 for more information.

java_jnienv->GetIntField(...)
Returns the value of the specified Java object instance field. This method should be used for field values that are Java
int primitives. It takes in a jobject object reference and a jfieldid reference and returns a jint.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572 for more information.

java_jnienv->GetLongField(...)
Returns the value of the specified Java object instance field. This method should be used for field values that are Java
long primitives. It takes in a jobject object reference and a jfieldid reference and returns a Lasso integer.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572 for more information.

java_jnienv->GetFloatField(...)
Returns the value of the specified Java object instance field. This method should be used for field values that are Java
float primitives. It takes in a jobject object reference and a jfieldid reference and returns a Lasso decimal.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572 for more information.

java_jnienv->GetDoubleField(...)
Returns the value of the specified Java object instance field. This method should be used for field values that are Java
double primitives. It takes in a jobject object reference and a jfieldid reference and returns a Lasso decimal.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572 for more information.

java_jnienv->SetObjectField(...)
Sets the value of the specified Java object instance field. This method should be used for fields that contain Java objects.
It takes a jobject object reference, a jfieldid reference, and the new jobject value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613 for more information.

java_jnienv->SetBooleanField(...)
Sets the value of the specified Java object instance field. This method should be used for fields that contain Java boolean
primitives. It takes a jobject object reference, a jfieldid reference, and the new boolean value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613 for more information.

java_jnienv->SetByteField(...)
Sets the value of the specified Java object instance field. This method should be used for fields that contain Java byte
primitives. It takes a jobject object reference, a jfieldid reference, and the new jbyte value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613 for more information.

java_jnienv->SetCharField(...)
Sets the value of the specified Java object instance field. This method should be used for fields that contain Java char
primitives. It takes a jobject object reference, a jfieldid reference, and the new jchar value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613 for more information.

java_jnienv->SetShortField(...)
Sets the value of the specified Java object instance field. This method should be used for fields that contain Java short
primitives. It takes a jobject object reference, a jfieldid reference, and the new jshort value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613 for more information.

48.2. Lasso Types and Methods for LJAPI 581

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16572
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613


LassoGuide, Release 9.3

java_jnienv->SetIntField(...)
Sets the value of the specified Java object instance field. This method should be used for fields that contain Java int
primitives. It takes a jobject object reference, a jfieldid reference, and the new jint value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613 for more information.

java_jnienv->SetLongField(...)
Sets the value of the specified Java object instance field. This method should be used for fields that contain Java long
primitives. It takes a jobject object reference, a jfieldid reference, and the new integer value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613 for more information.

java_jnienv->SetFloatField(...)
Sets the value of the specified Java object instance field. This method should be used for fields that contain Java float
primitives. It takes a jobject object reference, a jfieldid reference, and the new jfloat value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613 for more information.

java_jnienv->SetDoubleField(...)
Sets the value of the specified Java object instance field. This method should be used for fields that contain Java double
primitives. It takes a jobject object reference, a jfieldid reference, and the new decimal value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613 for more information.

Calling Instance Methods

java_jnienv->GetMethodID(...)
Returns a jmethodid Lasso object for the Java object’s specified instance member method. For constructor methods,
use “<init>” as the method name.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16660 for more information.

java_jnienv->CallVoidMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the method doesn’t return a value. It takes a jobject object reference,
a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256 for more information.

java_jnienv->CallObjectMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java object returned as a Lasso jobject
object reference. It takes a jobject object reference, a jmethodid, and any parameters to be passed to the instance
method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256 for more information.

java_jnienv->CallBooleanMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a boolean value. It takes a jobject object
reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256 for more information.

java_jnienv->CallByteMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java byte primitive. It takes a jobject object
reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256 for more information.

582 Chapter 48. Lasso Java API

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16613
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16660
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256


LassoGuide, Release 9.3

java_jnienv->CallCharMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java char primitive. It takes a jobject object
reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256 for more information.

java_jnienv->CallShortMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java short primitive. It takes a jobject object
reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256 for more information.

java_jnienv->CallIntMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java int primitive. It takes a jobject object
reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256 for more information.

java_jnienv->CallLongMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java long primitive. It takes a jobject object
reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256 for more information.

java_jnienv->CallFloatMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java float primitive. It takes a jobject object
reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256 for more information.

java_jnienv->CallDoubleMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java double primitive. It takes a jobject
object reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256 for more information.

java_jnienv->CallNonvirtualVoidMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when there will be no return value. It takes a jobject object reference, a
jobject class reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581 for more information.

java_jnienv->CallNonvirtualObjectMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters
to this method. This method should be used when the return value will be a Java object. It takes a jobject object
reference, a jobject class reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581 for more information.

java_jnienv->CallNonvirtualBooleanMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a boolean. It takes a jobject object reference,
a jobject class reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581 for more information.

48.2. Lasso Types and Methods for LJAPI 583

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4256
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581


LassoGuide, Release 9.3

java_jnienv->CallNonvirtualByteMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java byte primitive. It takes a jobject object
reference, a jobject class reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581 for more information.

java_jnienv->CallNonvirtualCharMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java char primitive. It takes a jobject object
reference, a jobject class reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581 for more information.

java_jnienv->CallNonvirtualShortMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java short primitive. It takes a jobject object
reference, a jobject class reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581 for more information.

java_jnienv->CallNonvirtualIntMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java int primitive. It takes a jobject object
reference, a jobject class reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581 for more information.

java_jnienv->CallNonvirtualLongMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java long primitive. It takes a jobject object
reference, a jobject class reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581 for more information.

java_jnienv->CallNonvirtualFloatMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java float primitive. It takes a jobject object
reference, a jobject class reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581 for more information.

java_jnienv->CallNonvirtualDoubleMethod(...)
Calls the specified Java instance method with the expected parameters passed as the remaining Lasso parameters to
this method. This method should be used when the return value will be a Java double primitive. It takes a jobject
object reference, a jobject class reference, a jmethodid, and any parameters to be passed to the instance method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581 for more information.

Accessing Static Fields

java_jnienv->GetStaticFieldID(...)
Returns a jfieldid reference to a Java class’s static field. It takes a jobject class reference, a string with the value of
the field’s name, and a string of the signature for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16823 for more information.

java_jnienv->GetStaticObjectField(...)
Returns the value of the specified Java class static field. This method should be used for field values that are Java objects.
It takes in a jobject class reference and a jfieldid reference and returns a jobject object reference.

584 Chapter 48. Lasso Java API

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4581
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp16823


LassoGuide, Release 9.3

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752 for more information.

java_jnienv->GetStaticBooleanField(...)
Returns the value of the specified Java class static field. This method should be used for field values that are boolean
primitives. It takes in a jobject class reference and a jfieldid reference and returns a boolean.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752 for more information.

java_jnienv->GetStaticByteField(...)
Returns the value of the specified Java class static field. This method should be used for field values that are Java byte
primitives. It takes in a jobject class reference and a jfieldid reference and returns a jbyte.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752 for more information.

java_jnienv->GetStaticCharField(...)
Returns the value of the specified Java class static field. This method should be used for field values that are Java char
primitives. It takes in a jobject class reference and a jfieldid reference and returns a jchar.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752 for more information.

java_jnienv->GetStaticShortField(...)
Returns the value of the specified Java class static field. This method should be used for field values that are Java short
primitives. It takes in a jobject class reference and a jfieldid reference and returns a jshort.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752 for more information.

java_jnienv->GetStaticIntField(...)
Returns the value of the specified Java class static field. This method should be used for field values that are Java int
primitives. It takes in a jobject class reference and a jfieldid reference and returns a jint.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752 for more information.

java_jnienv->GetStaticLongField(...)
Returns the value of the specified Java class static field. This method should be used for field values that are Java long
primitives. It takes in a jobject class reference and a jfieldid reference and returns a Lasso integer.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752 for more information.

java_jnienv->GetStaticFloatField(...)
Returns the value of the specified Java class static field. This method should be used for field values that are Java float
primitives. It takes in a jobject class reference and a jfieldid reference and returns a Lasso decimal.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752 for more information.

java_jnienv->GetStaticDoubleField(...)
Returns the value of the specified Java class static field. This method should be used for field values that are Java double
primitives. It takes in a jobject class reference and a jfieldid reference and returns a Lasso decimal.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752 for more information.

java_jnienv->SetStaticObjectField(...)
Sets the value of the specified Java class static field. This method should be used for fields that contain Java objects. It
takes a jobject class reference, a jfieldid reference, and the new jobject value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829 for more information.

java_jnienv->SetStaticBooleanField(...)
Sets the value of the specified Java class static field. This method should be used for fields that contain Java boolean
primitives. It takes a jobject class reference, a jfieldid reference, and the new boolean value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829 for more information.

48.2. Lasso Types and Methods for LJAPI 585

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20752
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829


LassoGuide, Release 9.3

java_jnienv->SetStaticByteField(...)
Sets the value of the specified Java class static field. This method should be used for fields that contain Java byte primi-
tives. It takes a jobject class reference, a jfieldid reference, and the new jbyte value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829 for more information.

java_jnienv->SetStaticCharField(...)
Sets the value of the specified Java class static field. This method should be used for fields that contain Java char primi-
tives. It takes a jobject class reference, a jfieldid reference, and the new jchar value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829 for more information.

java_jnienv->SetStaticShortField(...)
Sets the value of the specified Java class static field. This method should be used for fields that contain Java short
primitives. It takes a jobject class reference, a jfieldid reference, and the new jshort value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829 for more information.

java_jnienv->SetStaticIntField(...)
Sets the value of the specified Java class static field. This method should be used for fields that contain Java int primitives.
It takes a jobject class reference, a jfieldid reference, and the new jint value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829 for more information.

java_jnienv->SetStaticLongField(...)
Sets the value of the specified Java class static field. This method should be used for fields that contain Java long primi-
tives. It takes a jobject class reference, a jfieldid reference, and the new integer value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829 for more information.

java_jnienv->SetStaticFloatField(...)
Sets the value of the specified Java class static field. This method should be used for fields that contain Java float primi-
tives. It takes a jobject class reference, a jfieldid reference, and the new jfloat value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829 for more information.

java_jnienv->SetStaticDoubleField(...)
Sets the value of the specified Java class static field. This method should be used for fields that contain Java double
primitives. It takes a jobject class reference, a jfieldid reference, and the new decimal value for the field.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829 for more information.

Calling Static Methods

java_jnienv->GetStaticMethodID(...)
Returns a jmethodid Lasso object for the specified static method. It takes a jobject class reference, a string specifying
the name of the method, and a string of the method’s signature.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20950 for more information.

java_jnienv->CallStaticVoidMethod(...)
Calls a Java class static method that doesn’t return a value. It takes a jobject class reference, a jmethodid for the
method, and any parameters to be passed to the static method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796 for more information.

java_jnienv->CallStaticObjectMethod(...)
Calls a Java class static method that returns a Java object. It takes a jobject class reference, a jmethodid for the
method, and any parameters to be passed to the static method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796 for more information.

586 Chapter 48. Lasso Java API

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20829
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp20950
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796


LassoGuide, Release 9.3

java_jnienv->CallStaticBooleanMethod(...)
Calls a Java class static method that returns a Java boolean. It takes a jobject class reference, a jmethodid for the
method, and any parameters to be passed to the static method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796 for more information.

java_jnienv->CallStaticByteMethod(...)
Calls a Java class static method that returns a Java byte primitive. It takes a jobject class reference, a jmethodid for
the method, and any parameters to be passed to the static method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796 for more information.

java_jnienv->CallStaticCharMethod(...)
Calls a Java class static method that returns a Java char primitive. It takes a jobject class reference, a jmethodid for
the method, and any parameters to be passed to the static method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796 for more information.

java_jnienv->CallStaticShortMethod(...)
Calls a Java class static method that returns a Java short primitive. It takes a jobject class reference, a jmethodid for
the method, and any parameters to be passed to the static method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796 for more information.

java_jnienv->CallStaticIntMethod(...)
Calls a Java class static method that returns a Java int primitive. It takes a jobject class reference, a jmethodid for the
method, and any parameters to be passed to the static method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796 for more information.

java_jnienv->CallStaticLongMethod(...)
Calls a Java class static method that returns a Java long primitive. It takes a jobject class reference, a jmethodid for
the method, and any parameters to be passed to the static method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796 for more information.

java_jnienv->CallStaticFloatMethod(...)
Calls a Java class static method that returns a Java float primitive. It takes a jobject class reference, a jmethodid for
the method, and any parameters to be passed to the static method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796 for more information.

java_jnienv->CallStaticDoubleMethod(...)
Call a Java class static method that returns a Java double primitive. It takes a jobject class reference, a jmethodid for
the method, and any parameters to be passed to the static method.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796 for more information.

String Operations

java_jnienv->NewString(...)
Takes a Lasso string and returns a Lasso jobject that corresponds to a Java object of class java.lang.String.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4925 for more information.

java_jnienv->GetStringLength(...)
Returns the number of characters in the specified Java string object.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17132 for more information.

java_jnienv->GetStringChars(...)
Takes a jobject of a Java string and returns a Lasso string object.

48.2. Lasso Types and Methods for LJAPI 587

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4796
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp4925
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17132


LassoGuide, Release 9.3

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17158 for more information.

Array Operations

java_jnienv->GetArrayLength(...)
Returns the number of elements in the specified Java array.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp21732 for more information.

java_jnienv->NewObjectArray(...)
Returns ajobjectof a Java array containing Java objects of the specified class. It takes the length of the array, ajobject
class reference for the type of objects in the array, and the initial value to set each item in the array to.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp21619 for more information.

java_jnienv->GetObjectArrayElement(...)
Returns the specified element of a Java object array. It takes the jobject containing the array and an integer specifying
the index into the array.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp21671 for more information.

java_jnienv->SetObjectArrayElement(...)
Sets the value at the specified index of the specified Java object array. It takes a jobject of the array, an integer speci-
fying the index into the array, and the new jobject object.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp21699 for more information.

java_jnienv->NewBooleanArray(...)
Returns a jobject of a Java array containing Java booleans. It takes the length of the array.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318 for more information.

java_jnienv->NewByteArray(...)
Returns a jobject of a Java array containing Java byte primitives. It takes the length of the array.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318 for more information.

java_jnienv->NewCharArray(...)
Returns a jobject of a Java array containing Java char primitives. It takes the length of the array.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318 for more information.

java_jnienv->NewShortArray(...)
Returns a jobject of a Java array containing Java short primitives. It takes the length of the array.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318 for more information.

java_jnienv->NewIntArray(...)
Returns a jobject of a Java array containing Java int primitives. It takes the length of the array.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318 for more information.

java_jnienv->NewLongArray(...)
Returns a jobject of a Java array containing Java long primitives. It takes the length of the array.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318 for more information.

java_jnienv->NewFloatArray(...)
Returns a jobject of a Java array containing Java float primitives. It takes the length of the array.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318 for more information.

588 Chapter 48. Lasso Java API

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17158
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp21732
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp21619
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp21671
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp21699
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318


LassoGuide, Release 9.3

java_jnienv->NewDoubleArray(...)
Returns a jobject of a Java array containing Java double primitives. It takes the length of the array.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318 for more information.

java_jnienv->GetBooleanArrayElements(...)
Takes a jobject Java boolean array and returns a Lasso staticarray of the elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382 for more information.

java_jnienv->GetByteArrayElements(...)
Takes a jobject Java byte array and returns a Lasso staticarray of the elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382 for more information.

java_jnienv->GetCharArrayElements(...)
Takes a jobject Java char array and returns a Lasso staticarray of the elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382 for more information.

java_jnienv->GetShortArrayElements(...)
Takes a jobject Java short array and returns a Lasso staticarray of the elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382 for more information.

java_jnienv->GetIntArrayElements(...)
Takes a jobject Java int array and returns a Lasso staticarray of the elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382 for more information.

java_jnienv->GetLongArrayElements(...)
Takes a jobject Java long array and returns a Lasso staticarray of the elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382 for more information.

java_jnienv->GetFloatArrayElements(...)
Takes a jobject Java float array and returns a Lasso staticarray of the elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382 for more information.

java_jnienv->GetDoubleArrayElements(...)
Takes a jobject Java double array and returns a Lasso staticarray of the elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382 for more information.

java_jnienv->GetBooleanArrayRegion(...)
Returns the specified region of elements from a Java boolean array in a Lasso staticarray. It takes a jobject of the array,
an integer for the start index of the array region, and an integer specifying the number of elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212 for more information.

java_jnienv->GetByteArrayRegion(...)
Returns the specified region of elements from a Java byte array in a Lasso staticarray. It takes a jobject of the array, an
integer for the start index of the array region, and an integer specifying the number of elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212 for more information.

java_jnienv->GetCharArrayRegion(...)
Returns the specified region of elements from a Java char array in a Lasso staticarray. It takes a jobject of the array, an
integer for the start index of the array region, and an integer specifying the number of elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212 for more information.

java_jnienv->GetShortArrayRegion(...)
Returns the specified region of elements from a Java short array in a Lasso staticarray. It takes a jobject of the array,
an integer for the start index of the array region, and an integer specifying the number of elements.

48.2. Lasso Types and Methods for LJAPI 589

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17318
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp17382
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212


LassoGuide, Release 9.3

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212 for more information.

java_jnienv->GetIntArrayRegion(...)
Returns the specified region of elements from a Java int array in a Lasso staticarray. It takes a jobject of the array, an
integer for the start index of the array region, and an integer specifying the number of elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212 for more information.

java_jnienv->GetLongArrayRegion(...)
Returns the specified region of elements from a Java long array in a Lasso staticarray. It takes a jobject of the array, an
integer for the start index of the array region, and an integer specifying the number of elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212 for more information.

java_jnienv->GetFloatArrayRegion(...)
Returns the specified region of elements from a Java float array in a Lasso staticarray. It takes a jobject of the array, an
integer for the start index of the array region, and an integer specifying the number of elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212 for more information.

java_jnienv->GetDoubleArrayRegion(...)
Returns the specified region of elements from a Java double array in a Lasso staticarray. It takes a jobject of the array,
an integer for the start index of the array region, and an integer specifying the number of elements.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212 for more information.

java_jnienv->SetBooleanArrayRegion(...)
Replaces the specified portion of a Java boolean array with the values specified in a Lasso staticarray. It takes a jobject
of the array, an integer for the start index of the array region, an integer specifying the number of elements to replace,
and a staticarray containing the values to use.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933 for more information.

java_jnienv->SetByteArrayRegion(...)
Replaces the specified portion of a Java byte array with the values specified in a Lasso staticarray. It takes a jobject of
the array, an integer for the start index of the array region, an integer specifying the number of elements to replace, and
a staticarray containing the values to use.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933 for more information.

java_jnienv->SetCharArrayRegion(...)
Replaces the specified portion of a Java char array with the values specified in a Lasso staticarray. It takes a jobject of
the array, an integer for the start index of the array region, an integer specifying the number of elements to replace, and
a staticarray containing the values to use.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933 for more information.

java_jnienv->SetShortArrayRegion(...)
Replaces the specified portion of a Java short array with the values specified in a Lasso staticarray. It takes a jobject
of the array, an integer for the start index of the array region, an integer specifying the number of elements to replace,
and a staticarray containing the values to use.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933 for more information.

java_jnienv->SetIntArrayRegion(...)
Replaces the specified portion of a Java int array with the values specified in a Lasso staticarray. It takes a jobject of
the array, an integer for the start index of the array region, an integer specifying the number of elements to replace, and
a staticarray containing the values to use.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933 for more information.

java_jnienv->SetLongArrayRegion(...)
Replaces the specified portion of a Java long array with the values specified in a Lasso staticarray. It takes a jobject

590 Chapter 48. Lasso Java API

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp6212
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933


LassoGuide, Release 9.3

of the array, an integer for the start index of the array region, an integer specifying the number of elements to replace,
and a staticarray containing the values to use.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933 for more information.

java_jnienv->SetFloatArrayRegion(...)
Replaces the specified portion of a Java float array with the values specified in a Lasso staticarray. It takes a jobject of
the array, an integer for the start index of the array region, an integer specifying the number of elements to replace, and
a staticarray containing the values to use.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933 for more information.

java_jnienv->SetDoubleArrayRegion(...)
Replaces the specified portion of a Java double array with the values specified in a Lasso staticarray. It takes a jobject
of the array, an integer for the start index of the array region, an integer specifying the number of elements to replace,
and a staticarray containing the values to use.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933 for more information.

Monitor Operations

java_jnienv->MonitorEnter(...)
Enters into the monitor associated with the specified Java object. Requires a non-null jobject object.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp23124 for more information.

java_jnienv->MonitorExit(...)
Decrements the monitor counter for the current thread and the specified Java object. Requires a non-null jobject
object.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp5252 for more information.

Reflection Support

java_jnienv->FromReflectedMethod(...)
Converts a specified Java reflection object into a Lasso jmethodid.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#from_reflected_method for
more information.

java_jnienv->FromReflectedField(...)
Converts a specified Java reflection field object into a Lasso jfieldid.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#from_reflected_field for more in-
formation.

java_jnienv->ToReflectedMethod(...)
Converts a specified Lasso jmethodid to a Java reflection object returned as a jobject.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#to_reflected_method for more
information.

java_jnienv->ToReflectedField(...)
Converts a specified Lasso jfieldid to a Java reflection field object returned as a jobject.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#to_reflected_field for more infor-
mation.

48.2. Lasso Types and Methods for LJAPI 591

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp22933
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp23124
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#wp5252
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#from_reflected_method
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#from_reflected_field
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#to_reflected_method
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html#to_reflected_field


LassoGuide, Release 9.3

48.2.3 Return Types

type jobject

jobject()
Stores a reference to either a Java class, instantiated object, or thrown error.

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html#wp15954 for more information.

type jmethodid

jmethodid()
Stores the JNI ID for a specific method (both member methods and class methods).

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html#wp1064 for more information.

type jfieldid

jfieldid()
Stores the JNI ID for data field members of a class (both an object’s and the class’s).

See http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html#wp1064 for more information.

48.2.4 Helper Types for Java Data Primitives

type jfloat

jfloat(value::decimal)

jfloat(value::integer)

jfloat(value::jfloat)
Creates an object that can be passed to a Java method as a Java float primitive.

type jint

jint(value::integer)
Creates an object that can be passed to a Java method as a Java integer primitive.

type jshort

jshort(value::integer)
Creates an object that can be passed to a Java method as a Java short primitive.

type jchar

jchar(value::string)
Creates an object that can be passed to a Java method as a Java char primitive.

type jchararray

jchararray(value::string)
Creates an object that can be passed to a Java method as a Java array of char primitives.

type jbyte

jbyte(value::bytes)
Creates an object that can be passed to a Java method as a Java byte primitive.

type jbytearray

jbytearray(value::bytes)
Creates an object that can be passed to a Java method as a Java array of byte primitives.

592 Chapter 48. Lasso Java API

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html#wp15954
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html#wp1064
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html#wp1064


Index

Symbols
+() (array member), 215
+() (date member), 196
+() (staticarray member), 216
-() (date member), 196
–

lasso9 command line option, 351
-addapp <path>

lassoserver command line option, 350
-addr <tcp_bind_address>

lassoserver command line option, 349
-flisten <fcgi_listen_socket>

lassoserver command line option, 349
-fproxy <fcgi_proxy_socket>

lassoserver command line option, 349
-group <group>

lassoserver command line option, 349
-httproot <path>

lassoserver command line option, 350
-i

lasso9 command line option, 351
-p <tcp_listen_port>

lassoserver command line option, 349
-s <code>

lasso9 command line option, 351
-scriptextensions <ext1[;ext2] ... >

lassoserver command line option, 350
-user <user>

lassoserver command line option, 349
_init file, 343
_install file, 342
_unknowntag callback, 119

A
abort() (method), 134
abort() (web_response member), 322
accept() (net_named_pipe member), 422
accept() (net_tcp member), 418
acceptDeserializedElement() (None require), 230
acceptNoSSL() (net_tcp_ssl member), 420
action_param() (method), 431

action_params() (method), 432
action_statement() (method), 432
add() (date member), 194
add() (pdf_doc member), 261
add() (pdf_list member), 270
add() (pdf_table member), 279
addAtEnd() (web_response member), 323
addAttachment() (email_compose member), 390
addChapter() (pdf_doc member), 262
addCheckBox() (pdf_doc member), 272
addComboBox() (pdf_doc member), 272
addComment() (image member), 245
addGroup() (security_registry member), 326
addHeader() (web_response member), 320
addHiddenField() (pdf_doc member), 272
addHTMLPart() (email_compose member), 390
addJavaScript() (pdf_read member), 258
addPage() (pdf_doc member), 262
addPart() (email_compose member), 390
addPasswordField() (pdf_doc member), 272
addRadioButton() (pdf_doc member), 272
addRadioGroup() (pdf_doc member), 272
addResetButton() (pdf_doc member), 273
addSelectList() (pdf_doc member), 272
addSubmitButton() (pdf_doc member), 272
addTextArea() (pdf_doc member), 272
addTextField() (pdf_doc member), 272
addTextPart() (email_compose member), 390
addTrait() (null member), 127
addUser() (security_registry member), 326
addUserToGroup() (security_registry member), 327
AllocObject() (java_jnienv member), 580
am() (date member), 189
ampm() (date member), 189
annotate() (image member), 250
answer() (dns_response member), 412
append() (bytes member), 163
append() (string member), 150
appendChar() (string member), 150
appendChild() (xml_node member), 298
appendReplacement() (regexp member), 207
appendTail() (regexp member), 208

593



LassoGuide, Release 9.3

arc() (pdf_doc member), 282
array (type), 214
array() (method), 214
asBytes() (curl member), 363
asBytes() (string member), 153
asInteger() (date member), 189
associated block, see capture block
asStaticArray() (array member), 215
asString callback, 116
asString() (bytes member), 159
asString() (curl member), 363
asString() (decimal member), 169
asString() (integer member), 166
auth_admin() (method), 325
auth_group() (method), 325
auth_user() (method), 325
authenticate() (ldap member), 414
authorize() (email_pop member), 396
auto-collect, 83
autoCollectBuffer() (capture member), 87
autoCollectBuffer=() (capture member), 87

B
bcc() (email_parse member), 401
beginsWith() (bytes member), 158
beginsWith() (string member), 148
beginTLS() (net_tcp_ssl member), 420
bestCharset() (bytes member), 158
binary data, 157
bind() (net_named_pipe member), 422
bind() (net_tcp member), 417
bitAnd() (integer member), 166
bitClear() (integer member), 166
bitFlip() (integer member), 167
bitFormat() (dns_response member), 412
bitNot() (integer member), 166
bitOr() (integer member), 166
bitSet() (integer member), 167
bitShiftLeft() (integer member), 166
bitShiftRight() (integer member), 166
bitTest() (integer member), 167
bitXOr() (integer member), 166
blur() (image member), 247
body() (email_parse member), 400
boolean (type), 59
boolean literal, 59, 72
boolean() (method), 59
boundary() (email_parse member), 401
businessDaysBetween() (date member), 194
byte stream, 157
bytes (type), 157
bytes() (method), 157
bytes() (net_udp_packet member), 421

C
CallBooleanMethod() (java_jnienv member), 582
CallByteMethod() (java_jnienv member), 582
CallCharMethod() (java_jnienv member), 582
CallDoubleMethod() (java_jnienv member), 583
calledName() (capture member), 87
CallFloatMethod() (java_jnienv member), 583
CallIntMethod() (java_jnienv member), 583
CallLongMethod() (java_jnienv member), 583
CallNonvirtualBooleanMethod() (java_jnienv member), 583
CallNonvirtualByteMethod() (java_jnienv member), 583
CallNonvirtualCharMethod() (java_jnienv member), 584
CallNonvirtualDoubleMethod() (java_jnienv member), 584
CallNonvirtualFloatMethod() (java_jnienv member), 584
CallNonvirtualIntMethod() (java_jnienv member), 584
CallNonvirtualLongMethod() (java_jnienv member), 584
CallNonvirtualObjectMethod() (java_jnienv member), 583
CallNonvirtualShortMethod() (java_jnienv member), 584
CallNonvirtualVoidMethod() (java_jnienv member), 583
CallObjectMethod() (java_jnienv member), 582
CallShortMethod() (java_jnienv member), 583
callSite_col() (capture member), 87
callSite_file() (capture member), 87
callSite_line() (capture member), 87
callStack() (capture member), 87
CallStaticBooleanMethod() (java_jnienv member), 586
CallStaticByteMethod() (java_jnienv member), 587
CallStaticCharMethod() (java_jnienv member), 587
CallStaticDoubleMethod() (java_jnienv member), 587
CallStaticFloatMethod() (java_jnienv member), 587
CallStaticIntMethod() (java_jnienv member), 587
CallStaticLongMethod() (java_jnienv member), 587
CallStaticObjectMethod() (java_jnienv member), 586
CallStaticShortMethod() (java_jnienv member), 587
CallStaticVoidMethod() (java_jnienv member), 586
CallVoidMethod() (java_jnienv member), 582
cancel() (email_pop member), 396
capture (type), 87
capture block, 83
case keyword, 80
cc() (email_parse member), 401
charDigitValue() (string member), 146
charName() (string member), 146
charset() (email_parse member), 401
charType() (string member), 146
checked(), 503
checked() (method), 480
checkUser() (security_registry member), 327
chmod() (file member), 238
chown() (file member), 238
cipher_decrypt() (method), 226
cipher_digest() (method), 226
cipher_encrypt() (method), 226
cipher_list() (method), 226

594 Index



LassoGuide, Release 9.3

circle() (pdf_doc member), 282
clear() (date member), 186
close() (curl member), 363
close() (email_pop member), 396
close() (email_smtp member), 392
close() (file member), 237
close() (ldap member), 415
close() (net_tcp member), 418
close() (net_udp member), 421
close() (pdf_doc member), 265
close() (security_registry member), 326
close() (sys_process member), 306
closeWrite() (sys_process member), 306
code block, 83, 105
code() (ldap member), 415
column() (method), 434
column_name() (method), 438
column_names() (method), 438
command() (email_smtp member), 392
comment, 61
comments() (image member), 243
compare() (string member), 148
composite() (image member), 250
compress() (method), 231
conditional operator, 74
connect() (net_named_pipe member), 422
connect() (net_tcp member), 417
contains callback, 118
contains() (array member), 214
contains() (bytes member), 158
contains() (list member), 217
contains() (map member), 220
contains() (set member), 220
contains() (staticarray member), 216
contains() (string member), 148
content_disposition() (email_parse member), 401
content_transfer_encoding() (email_parse member), 401
content_type() (email_parse member), 401
contentType=() (curl member), 363
continuation() (capture member), 87
contrast() (image member), 247
convert() (image member), 245
cookie() (web_request member), 316
cookies() (web_request member), 316
cookies() (web_response member), 321
copyTo() (file member), 238
count() (array member), 214
countUsersByGroup() (security_registry member), 327
crc() (bytes member), 161
create() (dir member), 239
createAttribute() (xml_document member), 295
createAttributeNS() (xml_document member), 295
createCDATASection() (xml_document member), 295
createComment() (xml_document member), 295

createDocument() (xml_DOMImplementation member), 294
createDocumentFragment() (xml_document member), 295
createDocumentType() (xml_DOMImplementation member),

294
createElement() (xml_document member), 295
createElementNS() (xml_document member), 295
createEntityReference() (xml_document member), 295
createProcessingInstruction() (xml_document member), 295
createTextNode() (xml_document member), 295
crop() (image member), 246
curl (type), 363
curl() (method), 363
CURL_HTTP_VERSION_1_0() (method), 369
CURL_HTTP_VERSION_1_1() (method), 369
CURL_HTTP_VERSION_NONE() (method), 369
CURL_IPRESOLVE_V4() (method), 371
CURL_IPRESOLVE_V6() (method), 371
CURL_IPRESOLVE_WHATEVER() (method), 371
CURL_NETRC_IGNORED() (method), 366
CURL_NETRC_OPTIONAL() (method), 366
CURL_NETRC_REQUIRED() (method), 366
CURL_SSLVERSION_DEFAULT() (method), 372
CURL_SSLVERSION_SSLv2() (method), 372
CURL_SSLVERSION_SSLv3() (method), 372
CURL_SSLVERSION_TLSv1() (method), 372
CURLAUTH_ANY() (method), 367
CURLAUTH_ANYSAFE() (method), 367
CURLAUTH_BASIC() (method), 367
CURLAUTH_DIGEST() (method), 367
CURLAUTH_GSSNEGOTIATE() (method), 367
CURLAUTH_NTLM() (method), 367
CURLFTPAUTH_DEFAULT() (method), 370
CURLFTPAUTH_SSL() (method), 370
CURLFTPAUTH_TLS() (method), 370
CURLFTPSSL_ALL() (method), 372
CURLFTPSSL_CONTROL() (method), 372
CURLFTPSSL_NONE() (method), 371
CURLFTPSSL_TRY() (method), 372
CURLOPT_AUTOREFERER() (method), 367
CURLOPT_BUFFERSIZE() (method), 366
CURLOPT_CAINFO() (method), 373
CURLOPT_CAPATH() (method), 373
CURLOPT_CONNECTTIMEOUT() (method), 371
CURLOPT_COOKIE() (method), 368
CURLOPT_COOKIEFILE() (method), 368
CURLOPT_COOKIEJAR() (method), 368
CURLOPT_COOKIESESSION() (method), 369
CURLOPT_CRLF() (method), 370
CURLOPT_CUSTOMREQUEST() (method), 370
CURLOPT_EGDSOCKET() (method), 373
CURLOPT_ENCODING() (method), 367
CURLOPT_FAILONERROR() (method), 365
CURLOPT_FILETIME() (method), 370
CURLOPT_FOLLOWLOCATION() (method), 367

Index 595



LassoGuide, Release 9.3

CURLOPT_FORBID_REUSE() (method), 371
CURLOPT_FRESH_CONNECT() (method), 371
CURLOPT_FTP_ACCOUNT() (method), 370
CURLOPT_FTP_CREATE_MISSING_DIRS() (method), 370
CURLOPT_FTP_RESPONSE_TIMEOUT() (method), 370
CURLOPT_FTP_SSL() (method), 371
CURLOPT_FTP_USE_EPRT() (method), 369
CURLOPT_FTP_USE_EPSV() (method), 369
CURLOPT_FTPAPPEND() (method), 369
CURLOPT_FTPLISTONLY() (method), 369
CURLOPT_FTPPORT() (method), 369
CURLOPT_FTPSSLAUTH() (method), 370
CURLOPT_HEADER() (method), 365
CURLOPT_HTTP200ALIASES() (method), 368
CURLOPT_HTTP_VERSION() (method), 369
CURLOPT_HTTPAUTH() (method), 367
CURLOPT_HTTPGET() (method), 369
CURLOPT_HTTPHEADER() (method), 368
CURLOPT_HTTPPROXYTUNNEL() (method), 366
CURLOPT_INFILESIZE() (method), 370
CURLOPT_INFILESIZE_LARGE() (method), 370
CURLOPT_INTERFACE() (method), 366
CURLOPT_IPRESOLVE() (method), 371
CURLOPT_KRB4LEVEL() (method), 373
CURLOPT_LOW_SPEED_LIMIT() (method), 371
CURLOPT_LOW_SPEED_TIME() (method), 371
CURLOPT_MAXCONNECTS() (method), 371
CURLOPT_MAXFILESIZE() (method), 371
CURLOPT_MAXFILESIZE_LARGE() (method), 371
CURLOPT_MAXREDIRS() (method), 367
CURLOPT_NETRC() (method), 366
CURLOPT_NETRC_FILE() (method), 366
CURLOPT_NOBODY() (method), 370
CURLOPT_NOPROGRESS() (method), 365
CURLOPT_PORT() (method), 366
CURLOPT_POST() (method), 367
CURLOPT_POSTFIELDS() (method), 368
CURLOPT_POSTFIELDSIZE() (method), 368
CURLOPT_POSTFIELDSIZE_LARGE() (method), 368
CURLOPT_POSTQUOTE() (method), 369
CURLOPT_PREQUOTE() (method), 369
CURLOPT_PROXY() (method), 365
CURLOPT_PROXYAUTH() (method), 367
CURLOPT_PROXYPORT() (method), 366
CURLOPT_PROXYTYPE() (method), 366
CURLOPT_PROXYUSERPWD() (method), 366
CURLOPT_PUT() (method), 367
CURLOPT_QUOTE() (method), 369
CURLOPT_RANDOM_FILE() (method), 373
CURLOPT_RANGE() (method), 370
CURLOPT_READDATA() (method), 365
CURLOPT_REFERER() (method), 368
CURLOPT_RESUME_FROM() (method), 370
CURLOPT_RESUME_FROM_LARGE() (method), 370

CURLOPT_SSL_CIPHER_LIST() (method), 373
CURLOPT_SSL_VERIFYHOST() (method), 373
CURLOPT_SSL_VERIFYPEER() (method), 372
CURLOPT_SSLCERT() (method), 372
CURLOPT_SSLCERTTYPE() (method), 372
CURLOPT_SSLENGINE() (method), 372
CURLOPT_SSLENGINE_DEFAULT() (method), 372
CURLOPT_SSLKEY() (method), 372
CURLOPT_SSLKEYPASSWD() (method), 372
CURLOPT_SSLKEYTYPE() (method), 372
CURLOPT_SSLVERSION() (method), 372
CURLOPT_TCP_NODELAY() (method), 366
CURLOPT_TIMEOUT() (method), 371
CURLOPT_TRANSFERTEXT() (method), 370
CURLOPT_UNRESTRICTED_AUTH() (method), 367
CURLOPT_UPLOAD() (method), 371
CURLOPT_URL() (method), 365
CURLOPT_USE_SSL() (method), 371
CURLOPT_USERAGENT() (method), 368
CURLOPT_USERPWD() (method), 366
CURLOPT_VERBOSE() (method), 365
CURLOPT_WRITEDATA() (method), 365
CURLPROXY_HTTP() (method), 366
CURLPROXY_SOCKS4() (method), 366
CURLPROXY_SOCKS5() (method), 366
currentCapture() (method), 87
curveTo() (pdf_doc member), 282

D
data keyword, 109
data() (dns_response member), 412
data() (email_compose member), 391
data() (email_parse member), 401
data() (image member), 254
database_name() (method), 432
database_nameItem() (method), 437
database_names() (method), 437
database_realName() (method), 437
database_tableNameItem() (method), 437
database_tableNames() (method), 437
date (type), 179
date() (email_parse member), 401
date() (method), 179
date_add() (method), 192
date_difference() (method), 192
date_format() (method), 179
date_getLocalTimeZone() (method), 180
date_gmtToLocal() (method), 179
date_localToGMT() (method), 179
date_maximum() (method), 180
date_minimum() (method), 180
date_msec() (method), 180
date_setFormat() (method), 179
date_subtract() (method), 192

596 Index



LassoGuide, Release 9.3

day() (date member), 188
day() (duration member), 191
dayOfMonth() (date member), 188
dayOfWeek() (date member), 188
dayOfWeekInMonth() (date member), 188
dayOfYear() (date member), 188
daysBetween() (date member), 194
decimal (type), 167
decimal() (method), 168
decodeBase64() (bytes member), 161
decodeHex() (bytes member), 161
decodeHtml() (string member), 153
decodeQP() (bytes member), 161
decodeUrl() (bytes member), 161
decodeXml() (string member), 153
decompose() (string member), 150
decompress() (method), 231
decrypt_blowfish() (method), 223
define keyword, 104, 109
define_atBegin() (method), 322
define_atEnd() (method), 323
delete() (dir member), 240
delete() (email_pop member), 396
delete() (file member), 238
DeleteGlobalRef() (java_jnienv member), 579
DeleteLocalRef() (java_jnienv member), 579
delimiters, 53
depth() (image member), 243
describe() (image member), 243
detach() (capture member), 87
detach() (sys_process member), 306
detectCharset() (bytes member), 158
difference() (date member), 194
digit() (string member), 146
dir (type), 239
dir() (method), 239
dns_lookup() (method), 410
dns_response (type), 412
dns_response() (method), 412
doccomment() (tag member), 121
doccomment=() (tag member), 121
DOCUMENT_ROOT, 313, 352
done() (curl member), 363
doWithClose() (file member), 236
download() (curl member), 364
drawText() (pdf_doc member), 269
dst() (date member), 189
dstOffset() (date member), 189
duration (type), 190
duration() (method), 190

E
each() (dir member), 239
eachByte() (bytes member), 162

eachCharacter() (string member), 154
eachDir() (dir member), 239
eachDirPath() (dir member), 239
eachDirPathRecursive() (dir member), 239
eacher, 97
eachFile() (dir member), 239
eachFilePath() (dir member), 239
eachFilePathRecursive() (dir member), 239
eachLineBreak() (string member), 155
eachMatch() (string member), 155
eachPath() (dir member), 239
eachPathRecursive() (dir member), 239
eachWordBreak() (string member), 154
else keyword, 79
email_batch() (method), 391
email_compose (type), 390
email_compose() (method), 390
email_extract() (method), 406
email_findEmails() (method), 407
email_immediate() (method), 391
email_merge() (method), 389
email_mxlookup() (method), 392
email_parse (type), 400
email_parse() (method), 400
email_pop (type), 395
email_pop() (method), 395
email_queue() (method), 391
email_result() (method), 389
email_safeEmail() (method), 407
email_send() (method), 382
email_smtp (type), 392
email_smtp() (method), 392
email_status() (method), 389
email_token() (method), 388
email_translateBreaksToCRLF() (method), 407
encodeBase64() (bytes member), 161
encodeHex() (bytes member), 161
encodeHtml() (string member), 153
encodeHtmlToXml() (string member), 153
encodeMd5() (bytes member), 161
encodeQP() (bytes member), 161
encodeSql(), 486
encodeSql() (bytes member), 161
encodeSql() (string member), 153
encodeSql92(), 486
encodeSql92() (bytes member), 161
encodeSql92() (string member), 153
encodeUrl() (bytes member), 161
encodeUrl() (string member), 153
encodeXml() (string member), 153
encoding() (file member), 237
encoding=() (file member), 237
encrypt_blowfish() (method), 223
encrypt_hmac() (method), 223

Index 597



LassoGuide, Release 9.3

encrypt_md5() (method), 223
endsWith() (bytes member), 158
endsWith() (string member), 148
endTLS() (net_tcp_ssl member), 420
enhance() (image member), 248
environment variable

DOCUMENT_ROOT, 313, 352
instance, 26
LASSO9_HOME, 26, 301, 349, 350, 352, 358, 359
LASSO9_MASTER_HOME, 26, 352, 358, 359
LASSO9_PRINT_FAILURES, 352
LASSO9_PRINT_LIB_LOADS, 352
LASSO9_RETAIN_COMMENTS, 62, 121, 352
LASSOSERVER_APP_PREFIX, 346, 352
LASSOSERVER_DOCUMENT_ROOT, 235, 313, 352
LASSOSERVER_FASTCGIPORT, 352
LASSOSERVER_GROUP, 353
LASSOSERVER_USER, 352
Path, 42, 43
PATH_INFO, 313
SCRIPT_NAME, 313

equals() (string member), 148
error_code() (method), 130
error_currentError() (method), 130
error_msg() (method), 130
error_obj() (method), 130
error_pop() (method), 130
error_push() (method), 130
error_reset() (method), 130
error_setErrorCode() (method), 130
error_setErrorMessage() (method), 130
error_stack() (method), 131
ExceptionCheck() (java_jnienv member), 579
ExceptionClear() (java_jnienv member), 579
ExceptionDescribe() (java_jnienv member), 579
ExceptionOccurred() (java_jnienv member), 579
execute() (image member), 252
exists() (dir member), 240
exists() (file member), 238
exitCode() (sys_process member), 306
export16bits() (bytes member), 159
export32bits() (bytes member), 159
export64bits() (bytes member), 159
export8bits() (bytes member), 159
exportBytes() (bytes member), 159
exportFDF() (pdf_read member), 258
exportSigned16bits() (bytes member), 159
exportSigned32bits() (bytes member), 159
exportSigned64bits() (bytes member), 159
exportSigned8bits() (bytes member), 159
exportString() (bytes member), 159
extract() (xml_node member), 299
extractOne() (xml_node member), 299

F
fail() (method), 133
fail_if() (method), 133
false, 59
FatalError() (java_jnienv member), 579
field(), 500
field() (method), 434
field_name() (method), 438
field_names() (method), 438
fieldNames() (pdf_read member), 258
fieldType() (pdf_read member), 258
fieldValue() (pdf_read member), 258
file (type), 235
file() (image member), 243
file() (method), 236
file_stderr() (method), 238
file_stdin() (method), 238
file_stdout() (method), 238
fileUploads() (web_request member), 316
find() (array member), 215
find() (bytes member), 158
find() (map member), 220
find() (regexp member), 207
find() (set member), 220
find() (staticarray member), 216
find() (string member), 147
FindClass() (java_jnienv member), 578
findLast() (string member), 147
findPattern() (regexp member), 204
findPosition() (array member), 215
findPosition() (staticarray member), 216
first() (array member), 214
first() (list member), 217
first() (pair member), 213
first() (queue member), 218
first() (stack member), 219
first() (staticarray member), 216
first=() (pair member), 213
flipH() (image member), 246
flipV() (image member), 246
foldCase() (string member), 150
forEach() (file member), 237
forEachAccept() (net_tcp member), 418
forEachByte() (bytes member), 162
forEachCharacter() (string member), 154
forEachLine() (file member), 237
forEachLineBreak() (string member), 154
forEachMatch() (string member), 154
forEachWordBreak() (string member), 154
format() (date member), 185
format() (dns_response member), 412
format() (image member), 243
format() (locale member), 187
found_count() (method), 434

598 Index



LassoGuide, Release 9.3

from() (email_compose member), 391
from() (email_parse member), 401
fromName() (net_udp_packet member), 421
fromPort() (net_udp_packet member), 421
FromReflectedField() (java_jnienv member), 591
FromReflectedMethod() (java_jnienv member), 591
frozen keyword, 105
ftp_deleteFile() (method), 377
ftp_getData() (method), 377
ftp_getFile() (method), 377
ftp_getListing() (method), 377
ftp_putData() (method), 377
ftp_putFile() (method), 377
ftpDeleteFile() (curl member), 364
ftpGetListing() (curl member), 364

G
generateSeries (type), 96
generateSeries() (method), 96
get() (array member), 214
get() (bytes member), 158
get() (curl member), 364
get() (date member), 186
get() (email_parse member), 401
get() (email_pop member), 395
get() (map member), 220
get() (queue member), 218
get() (set member), 220
get() (stack member), 219
get() (staticarray member), 216
get() (string member), 148
get=() (array member), 214
get=() (map member), 220
get=() (staticarray member), 216
getAbsWidth() (pdf_table member), 278
GetArrayLength() (java_jnienv member), 588
getAttribute() (xml_element member), 297
getAttributeNode() (xml_element member), 297
getAttributeNodeNS() (xml_element member), 297
getAttributeNS() (xml_element member), 297
GetBooleanArrayElements() (java_jnienv member), 589
GetBooleanArrayRegion() (java_jnienv member), 589
GetBooleanField() (java_jnienv member), 580
GetByteArrayElements() (java_jnienv member), 589
GetByteArrayRegion() (java_jnienv member), 589
GetByteField() (java_jnienv member), 580
GetCharArrayElements() (java_jnienv member), 589
GetCharArrayRegion() (java_jnienv member), 589
GetCharField() (java_jnienv member), 580
getColor() (pdf_doc member), 264
getColor() (pdf_font member), 266
getColumnCount() (pdf_table member), 278
GetDoubleArrayElements() (java_jnienv member), 589
GetDoubleArrayRegion() (java_jnienv member), 590

GetDoubleField() (java_jnienv member), 581
getEncoding() (pdf_font member), 267
getFace() (pdf_font member), 266
GetFieldID() (java_jnienv member), 580
GetFloatArrayElements() (java_jnienv member), 589
GetFloatArrayRegion() (java_jnienv member), 590
GetFloatField() (java_jnienv member), 581
getFormat() (date member), 186
getFullFontName() (pdf_font member), 267
getGroupID() (security_registry member), 326
getHeaders() (pdf_doc member), 264
getHeaders() (pdf_read member), 258
getInclude() (web_response member), 319
GetIntArrayElements() (java_jnienv member), 589
GetIntArrayRegion() (java_jnienv member), 590
GetIntField() (java_jnienv member), 581
GetLongArrayElements() (java_jnienv member), 589
GetLongArrayRegion() (java_jnienv member), 590
GetLongField() (java_jnienv member), 581
getMargins() (pdf_doc member), 264
GetMethodID() (java_jnienv member), 582
getNamedItem() (xml_nodeMap member), 298
getNamedItemNS() (xml_nodeMap member), 298
getNumericValue() (string member), 146
GetObjectArrayElement() (java_jnienv member), 588
GetObjectClass() (java_jnienv member), 580
GetObjectField() (java_jnienv member), 580
getPageNumber() (pdf_doc member), 262
getPropertyValue() (string member), 148
getPSFontName() (pdf_font member), 267
getRange() (bytes member), 158
getRowCount() (pdf_table member), 278
GetShortArrayElements() (java_jnienv member), 589
GetShortArrayRegion() (java_jnienv member), 589
GetShortField() (java_jnienv member), 581
getSize() (pdf_doc member), 264
getSize() (pdf_font member), 266
GetStaticBooleanField() (java_jnienv member), 585
GetStaticByteField() (java_jnienv member), 585
GetStaticCharField() (java_jnienv member), 585
GetStaticDoubleField() (java_jnienv member), 585
GetStaticFieldID() (java_jnienv member), 584
GetStaticFloatField() (java_jnienv member), 585
GetStaticIntField() (java_jnienv member), 585
GetStaticLongField() (java_jnienv member), 585
GetStaticMethodID() (java_jnienv member), 586
GetStaticObjectField() (java_jnienv member), 584
GetStaticShortField() (java_jnienv member), 585
getStatus() (web_response member), 322
GetStringChars() (java_jnienv member), 587
GetStringLength() (java_jnienv member), 587
getSupportedEncodings() (pdf_font member), 267
gettype() (tag member), 121
getUser() (security_registry member), 327

Index 599



LassoGuide, Release 9.3

getUserID() (security_registry member), 327
GetVersion() (java_jnienv member), 578
getVerticalPosition() (pdf_doc member), 262
givenBlock() (capture member), 87
gmt() (date member), 189
groupCount() (regexp member), 204

H
handle() (method), 133
handle_failure() (method), 133
hasAttribute() (xml_element member), 297
hasAttributeNS() (xml_element member), 297
hasBinaryProperty() (string member), 148
hash() (string member), 153
hasMethod() (null member), 121
header() (curl member), 364
header() (email_parse member), 400
header() (web_request member), 314
header() (web_response member), 320
headers() (email_parse member), 400
headers() (email_pop member), 396
headers() (web_request member), 314
headers() (web_response member), 320
height() (image member), 243
home() (capture member), 87
hour() (date member), 188
hour() (duration member), 191
hourOfAMPM() (date member), 188
hourOfDay() (date member), 188
hoursBetween() (date member), 194

I
if conditional, 79
ignoreCase() (regexp member), 204
image (type), 242
image() (method), 242, 243
import keyword, 125
import16bits() (bytes member), 163
import32bits() (bytes member), 163
import64bits() (bytes member), 163
import8bits() (bytes member), 163
importBytes() (bytes member), 163
importFDF() (pdf_read member), 258
importNode() (xml_document member), 295
importString() (bytes member), 163
include() (method), 320
include() (web_response member), 319
include_url() (method), 374
includeBytes() (web_response member), 319
includeLibrary() (web_response member), 319
includeLibraryOnce() (web_response member), 319
includeOnce() (web_response member), 319
includes() (web_response member), 319
inherited keyword, 114

inline() (method), 425
input() (regexp member), 204
insert() (array member), 214
insert() (list member), 217
insert() (map member), 220
insert() (queue member), 218
insert() (set member), 220
insert() (stack member), 219
insertBefore() (xml_node member), 298
insertFirst() (list member), 217
insertFirst() (stack member), 219
insertFrom() (queue member), 218
insertLast() (list member), 217
insertLast() (queue member), 218
insertPage() (pdf_doc member), 263
instance

environment variable, 26
restart, 26

instance manager
restart, 27

integer (type), 165
integer() (method), 165
integer() (string member), 146
invoke callback, 118
invoke() (capture member), 87
invokeAutoCollect() (capture member), 87
isA() (null member), 120
isAlnum() (string member), 146
isAlpha() (string member), 146
isBase() (string member), 146
isBlank() (string member), 146
isCntrl() (string member), 146
isDigit() (string member), 146
isGraph() (string member), 146
IsInstanceOf() (java_jnienv member), 580
isLower() (string member), 147
isNotA() (null member), 120
isOpen() (sys_process member), 306
isPrint() (string member), 147
isPunct() (string member), 147
IsSameObject() (java_jnienv member), 580
isSpace() (string member), 147
isTitle() (string member), 147
isTrueType() (pdf_font member), 267
istype() (tag member), 121
isUAlphabetic() (string member), 146
isULowercase() (string member), 147
isUpper() (string member), 147
isUUppercase() (string member), 147
isUWhitespace() (string member), 147
isWhitespace() (string member), 147
isXDigit() (string member), 146
item() (xml_nodeList member), 297
item() (xml_nodeMap member), 298

600 Index



LassoGuide, Release 9.3

J
java_jnienv (type), 578
java_jnienv() (method), 578
java_jvm_getenv() (method), 578
javaScript() (pdf_read member), 258
jbyte (type), 592
jbyte() (method), 592
jbytearray (type), 592
jbytearray() (method), 592
jchar (type), 592
jchar() (method), 592
jchararray (type), 592
jchararray() (method), 592
jfieldid (type), 592
jfieldid() (method), 592
jfloat (type), 592
jfloat() (method), 592
jint (type), 592
jint() (method), 592
jmethodid (type), 592
jmethodid() (method), 592
jobject (type), 592
jobject() (method), 592
join() (array member), 215
join() (staticarray member), 216
jshort (type), 592
jshort() (method), 592

K
key() (serialization_element member), 230
keyColumn_name() (method), 432
keyColumn_value() (method), 432
keyField_name() (method), 432
keyField_value() (method), 432
keys() (string member), 156

L
lasso9, 54, 351
lasso9 command line option

–, 351
-i, 351
-s <code>, 351

LASSO9_HOME, 26, 301, 349, 350, 352, 358, 359
LASSO9_MASTER_HOME, 26, 352, 358, 359
LASSO9_RETAIN_COMMENTS, 62, 121
lasso_addColumnInfo (C function), 543
lasso_addColumnInfo2 (C function), 544
lasso_addDataSourceResult (C function), 536
lasso_addDataSourceResultUTF8 (C function), 536
lasso_addResultRow (C function), 544
lasso_addResultRow2 (C function), 544
lasso_addResultSet (C function), 545
lasso_allocValue (C function), 553
lasso_allocValueConv (C function), 554

lasso_allocValueW (C function), 553
lasso_arrayGetElement (C function), 534
lasso_arrayGetSize (C function), 534
lasso_arraySetElement (C function), 535
lasso_currentAction() (method), 432
lasso_datasourceIsMySQL() (method), 472
lasso_datasourceIsOracle() (method), 472
lasso_datasourceIsPostgreSQL() (method), 472
lasso_datasourceIsSQLite() (method), 472
lasso_datasourceIsSQLServer() (method), 472
lasso_datasourceIsSybase() (method), 472
lasso_findInputColumn (C function), 542
lasso_findInputColumnW (C function), 542
lasso_findTagParam (C function), 569
lasso_findTagParam2 (C function), 566
lasso_findTagParam2W (C function), 566
lasso_findTagParamW (C function), 570
lasso_freeValue (C function), 554
lasso_freeValueW (C function), 554
lasso_fullyQualifyPath (C function), 570
lasso_getDataHost (C function), 537
lasso_getDataHost2 (C function), 538
lasso_getDataHostExtra (C function), 538
lasso_getDataHostID (C function), 538
lasso_getDataHostIsDynamic (C function), 539
lasso_getDataSourceModuleName (C function), 545
lasso_getDataSourceName (C function), 537
lasso_getDSConnection (C function), 546
lasso_getDSPreparedPtr (C function), 546
lasso_getDSUserData (C function), 546
lasso_getInputColumn (C function), 541
lasso_getInputColumn2 (C function), 541
lasso_getInputColumn3 (C function), 542
lasso_getInputColumnCount (C function), 541
lasso_getInternalPath (C function), 570
lasso_getIsStatementOnly (C function), 547
lasso_getLogicalOp (C function), 543
lasso_getMaxRows (C function), 539
lasso_getPlatformSpecificPath (C function), 570
lasso_getPrimaryKeyColumn (C function), 540
lasso_getPrimaryKeyColumn2 (C function), 540
lasso_getPrimaryKeyColumn3 (C function), 540
lasso_getPrimaryKeyColumnCount (C function), 540
lasso_getPtrMember (C function), 562
lasso_getPtrMemberW (C function), 562
lasso_getReturnColumn (C function), 543
lasso_getReturnColumnCount (C function), 543
lasso_getRowID (C function), 539
lasso_getRowID2 (C function), 539
lasso_getSchemaName (C function), 537
lasso_getSkipRows (C function), 539
lasso_getSortColumn (C function), 542
lasso_getSortColumnCount (C function), 541
lasso_getTableEncoding (C function), 537

Index 601



LassoGuide, Release 9.3

lasso_getTableName (C function), 537
lasso_getTagName (C function), 568
lasso_getTagNameW (C function), 568
lasso_getTagParam (C function), 568
lasso_getTagParam2 (C function), 566
lasso_getTagParamCount (C function), 568
lasso_getTagParamW (C function), 569
lasso_getTagSelf (C function), 562
lasso_internalToFullPlatformPath (C function), 571
lasso_isFullInternalPath (C function), 571
lasso_log (C function), 547
lasso_pairGetFirst (C function), 535
lasso_pairGetSecond (C function), 535
lasso_pairSetFirst (C function), 535
lasso_pairSetSecond (C function), 536
lasso_registerConstant (C function), 567
lasso_registerConstant2 (C function), 567
lasso_registerConstant2W (C function), 567
lasso_registerConstantW (C function), 567
lasso_registerDSModule (C function), 528
lasso_registerDSModule2 (C function), 528
lasso_registerDSModule2W (C function), 528
lasso_registerDSModuleW (C function), 528
lasso_registerTagModule (C function), 554
lasso_registerTagModuleW (C function), 555
lasso_registerTypeModule (C function), 527
lasso_registerTypeModuleW (C function), 527
lasso_resolveIncludePath (C function), 571
lasso_resolvePath (C function), 571
lasso_returnTagValue (C function), 564
lasso_returnTagValueBoolean (C function), 564
lasso_returnTagValueBytes (C function), 565
lasso_returnTagValueDecimal (C function), 565
lasso_returnTagValueInteger (C function), 565
lasso_returnTagValueString (C function), 565
lasso_returnTagValueStringW (C function), 565
lasso_setActionStatement (C function), 546
lasso_setActionStatementW (C function), 547
lasso_setDSConnection (C function), 546
lasso_setDSPreparedPtr (C function), 545
lasso_setNumRowsFound (C function), 545
lasso_setPtrMember (C function), 560
lasso_setPtrMember2 (C function), 561
lasso_setPtrMember2W (C function), 561
lasso_setPtrMemberW (C function), 561
lasso_setResultMessage (C function), 555
lasso_setResultMessageW (C function), 555
lasso_setRowID (C function), 539
lasso_setRowID2 (C function), 539
lasso_setVariable (C function), 570
lasso_setVariableW (C function), 570
lasso_tagParamIsDefined (C function), 569
lasso_tagParamIsDefinedW (C function), 569
lasso_typeAddDataMember (C function), 558

lasso_typeAddDataMemberW (C function), 559
lasso_typeAddMember (C function), 557
lasso_typeAddMemberW (C function), 557
lasso_typeAddTagMember (C function), 558
lasso_typeAddTagMember2 (C function), 558
lasso_typeAddTagMember2W (C function), 559
lasso_typeAddTagMemberW (C function), 558
lasso_typeAlloc (C function), 555
lasso_typeAllocArray (C function), 531
lasso_typeAllocBoolean (C function), 531
lasso_typeAllocCustom (C function), 556
lasso_typeAllocCustomW (C function), 556
lasso_typeAllocDecimal (C function), 530
lasso_typeAllocDecimal2 (C function), 530
lasso_typeAllocFromProto (C function), 557
lasso_typeAllocInteger (C function), 529
lasso_typeAllocNull (C function), 528
lasso_typeAllocPair (C function), 530
lasso_typeAllocReference (C function), 530
lasso_typeAllocString (C function), 528
lasso_typeAllocStringConv (C function), 529
lasso_typeAllocStringW (C function), 529
lasso_typeAllocTag (C function), 531
lasso_typeAllocTagFromSource (C function), 531
lasso_typeAllocVoid (C function), 528
lasso_typeAllocW (C function), 556
lasso_typeAppendStringW (C function), 529
lasso_typeGetBoolean (C function), 533
lasso_typeGetDataMember (C function), 559
lasso_typeGetDataMemberW (C function), 560
lasso_typeGetDecimal (C function), 533
lasso_typeGetInteger (C function), 533
lasso_typeGetName (C function), 563
lasso_typeGetNameW (C function), 563
lasso_typeGetString (C function), 532
lasso_typeGetStringConv (C function), 532
lasso_typeGetStringW (C function), 533
lasso_typeGetTrait (C function), 555
lasso_typeIsA (C function), 563
lasso_typeIsA2 (C function), 563
lasso_typeIsA2W (C function), 564
lasso_typeIsA3 (C function), 564
lasso_typeSetDataMember (C function), 560
lasso_typeSetDataMemberW (C function), 560
lasso_typeSetString (C function), 534
lasso_typeSetStringW (C function), 534
lassoApp_include() (method), 344
lassoApp_include_current() (method), 344
lassoApp_link() (method), 343
LassoApps, 27
lassoc, 345, 351
lassoim(d), 350
LassoLibraries, 27
LassoModules, 27

602 Index



LassoGuide, Release 9.3

lassoserver, 349
lassoserver command line option

-addapp <path>, 350
-addr <tcp_bind_address>, 349
-flisten <fcgi_listen_socket>, 349
-fproxy <fcgi_proxy_socket>, 349
-group <group>, 349
-httproot <path>, 350
-p <tcp_listen_port>, 349
-scriptextensions <ext1[;ext2] ... >, 350
-user <user>, 349

LASSOSERVER_APP_PREFIX, 346
LASSOSERVER_DOCUMENT_ROOT, 235, 313, 352
LassoStartup, 27
last() (array member), 214
last() (list member), 217
last() (staticarray member), 216
lastAccessDate() (file member), 238
lastAccessTime() (file member), 238
layout_name() (method), 432
LCAPI, 354, 509
ldap (type), 414
ldap() (method), 414
length() (bytes member), 158
length() (string member), 145
length() (xml_nodeList member), 297
length() (xml_nodeMap member), 297
library() (method), 320
license, 23, 32
line() (pdf_doc member), 282
linkTo() (file member), 238
list (type), 217
list() (method), 217
listen() (net_named_pipe member), 422
listen() (net_tcp member), 417
listGroups() (security_registry member), 326
listGroupsByUser() (security_registry member), 326
listMethods() (null member), 120
listUsers() (security_registry member), 327
listUsersByGroup() (security_registry member), 327
LJAPI, 354, 575
ljapi_initialize() (method), 578
loadCerts() (net_tcp_ssl member), 420
local

variable, 65
locale (type), 187
locale() (method), 187
localName() (xml_node member), 296
log() (method), 302
log_always() (method), 302
log_critical() (method), 301
log_deprecated() (method), 302
log_destination_console() (method), 303
log_destination_database() (method), 304

log_destination_file() (method), 303
log_detail() (method), 302
log_level_critical() (method), 303
log_level_deprecated() (method), 303
log_level_detail() (method), 303
log_level_warning() (method), 303
log_setDestination() (method), 303
log_warning() (method), 301
loop

counting, 81
iterate, 82
while, 81

loop_abort() (method), 82
loop_continue() (method), 82
loop_count() (method), 82
loop_key() (method), 82
loop_value() (method), 82
lowercase() (string member), 151

M
map (type), 219
map() (method), 219
marker() (bytes member), 159
marker() (file member), 237
marker=() (bytes member), 159
marker=() (file member), 237
match conditional, 80
matches() (regexp member), 208
matchesStart() (regexp member), 208
matchPosition() (regexp member), 207
matchString() (regexp member), 207
math_abs() (method), 172
math_acos() (method), 175
math_add() (method), 172
math_asin() (method), 175
math_atan() (method), 175
math_atan2() (method), 175
math_ceil() (method), 172
math_convertEuro() (method), 172
math_cos() (method), 175
math_div() (method), 172
math_exp() (method), 176
math_floor() (method), 172
math_ln() (method), 176
math_log() (method), 176
math_log10() (method), 176
math_max() (method), 172
math_min() (method), 172
math_mod() (method), 172
math_mult() (method), 172
math_pow() (method), 176
math_random() (method), 173
math_rint() (method), 173
math_roman() (method), 173

Index 603



LassoGuide, Release 9.3

math_round() (method), 173
math_sin() (method), 175
math_sqrt() (method), 176
math_tan() (method), 176
maxRecords_value() (method), 432
merge() (string member), 151
methodName() (capture member), 87
millisecond() (date member), 188
minute() (date member), 188
minute() (duration member), 191
minutesBetween() (date member), 194
mode() (email_parse member), 400
modificationDate() (file member), 238
modificationTime() (file member), 238
modulate() (image member), 247
MonitorEnter() (java_jnienv member), 591
MonitorExit() (java_jnienv member), 591
month() (date member), 188
month() (duration member), 190
moveTo() (dir member), 240
moveTo() (file member), 238

N
name() (xml_attr member), 297
named pipe, 421
namespaceURI() (xml_node member), 297
net_named_pipe (type), 421
net_named_pipe() (method), 421
net_tcp (type), 417
net_tcp() (method), 417
net_tcp_ssl (type), 419
net_tcp_ssl() (method), 419
net_udp (type), 420
net_udp() (method), 420
net_udp_packet (type), 421
net_udp_packet() (method), 421
NewBooleanArray() (java_jnienv member), 588
NewByteArray() (java_jnienv member), 588
NewCharArray() (java_jnienv member), 588
NewDoubleArray() (java_jnienv member), 588
NewFloatArray() (java_jnienv member), 588
NewGlobalRef() (java_jnienv member), 579
NewIntArray() (java_jnienv member), 588
NewLongArray() (java_jnienv member), 588
NewObject() (java_jnienv member), 580
NewObjectArray() (java_jnienv member), 588
NewShortArray() (java_jnienv member), 588
NewString() (java_jnienv member), 587
no_square_brackets, 53
nodeName() (xml_node member), 296
nodeType() (xml_node member), 296
nodeValue() (xml_node member), 297
nodeValue=() (xml_node member), 298
noOp() (email_pop member), 396

normalize() (string member), 150
normalize() (xml_node member), 298
null (type), 61

O
onCompare onCompareStrict callback, 117
onCreate callback, 115
onCreate() (None require), 229
open() (email_smtp member), 392
open() (ldap member), 414
open() (sys_process member), 305
openAppend() (file member), 236
openRead() (file member), 236
openTruncate() (file member), 236
openWrite() (file member), 236
openWriteOnly() (file member), 236
output() (regexp member), 204
ownerDocument() (xml_node member), 297
ownerElement() (xml_attr member), 297

P
padLeading() (bytes member), 162
padLeading() (string member), 151
padTrailing() (bytes member), 162
padTrailing() (string member), 151
pageCount() (pdf_read member), 258
pageSize() (pdf_read member), 258
pair (type), 213
pair() (method), 213
param() (web_request member), 315
params() (web_request member), 315
parent keyword, 113
parent() (null member), 121
parentDir() (dir member), 240
parentDir() (file member), 238
parentNode() (xml_node member), 297
parseDocument() (xml_DOMImplementation member), 294
Path, 42, 43
path() (dir member), 240
path() (file member), 238
PATH_INFO, 313
pdf_barcode (type), 284
pdf_barcode() (method), 284
pdf_doc (type), 259
pdf_doc() (method), 259
pdf_font (type), 265
pdf_font() (method), 265
pdf_image (type), 281
pdf_image() (method), 281
pdf_list (type), 270
pdf_list() (method), 270
pdf_read (type), 258
pdf_read() (method), 258
pdf_serve() (method), 292

604 Index



LassoGuide, Release 9.3

pdf_table (type), 277
pdf_table() (method), 277
pdf_text (type), 268
pdf_text() (method), 268
perms() (file member), 238
pixel() (image member), 243
pm() (date member), 189
POP, 395
portal() (method), 500
position() (bytes member), 159
position=() (bytes member), 159
postFields=() (curl member), 363
postParam() (web_request member), 315
postParams() (web_request member), 315
postString() (web_request member), 315
prefix() (xml_node member), 296
private keyword, 112
protect() (method), 134
protected keyword, 112
provide keyword, 125
public keyword, 112

Q
queryParam() (web_request member), 315
queryParams() (web_request member), 315
queryString() (web_request member), 315
queue (type), 217
queue() (method), 218

R
range, see series literal
raw() (curl member), 364
rawContent() (web_response member), 321
rawContent=() (web_response member), 321
rawHeader() (web_request member), 314
rawHeaders() (email_parse member), 401
read() (serialization_reader member), 229
read() (sys_process member), 305
readBytes() (file member), 237
readError() (sys_process member), 305
readPacket() (net_udp member), 420
readSomeBytes() (curl member), 364
readSomeBytes() (net_tcp member), 418
readString() (file member), 237
readString() (sys_process member), 306
recipients() (email_compose member), 391
recipients() (email_parse member), 401
records() (method), 434
records_array() (method), 435
records_map() (method), 435
rect() (pdf_doc member), 282
referrals() (ldap member), 415
regexp (type), 204
regexp() (method), 204

remove() (array member), 214
remove() (bytes member), 162
remove() (list member), 217
remove() (map member), 220
remove() (queue member), 218
remove() (set member), 220
remove() (stack member), 219
remove() (string member), 150
removeAll() (array member), 214
removeAll() (list member), 217
removeAll() (map member), 220
removeAll() (set member), 220
removeAttribute() (xml_element member), 298
removeAttributeNode() (xml_element member), 298
removeAttributeNS() (xml_element member), 298
removeChild() (xml_node member), 298
removeFirst() (list member), 217
removeFirst() (queue member), 218
removeFirst() (stack member), 219
removeGroup() (security_registry member), 326
removeLast() (list member), 217
removeLeading() (bytes member), 162
removeLeading() (string member), 151
removeNamedItem() (xml_nodeMap member), 299
removeNamedItemNS() (xml_nodeMap member), 299
removeTrailing() (bytes member), 162
removeTrailing() (string member), 151
removeUser() (security_registry member), 327
removeUserFromAllGroups() (security_registry member), 327
removeUserFromGroup() (security_registry member), 327
repeating() (method), 500
repeating_valueItem() (method), 500
replace() (bytes member), 162
replace() (string member), 151
replaceAll() (regexp member), 205
replaceChild() (xml_node member), 298
replaceFirst() (regexp member), 205
replaceHeader() (web_response member), 320
replacePattern() (regexp member), 204
require keyword, 125
reserve() (bytes member), 157
reset() (curl member), 364
reset() (regexp member), 208
resolutionH() (image member), 243
resolutionV() (image member), 243
restart

instance, 26
instance manager, 27

restart() (capture member), 87
result() (curl member), 364
results() (ldap member), 415
resultSet() (method), 435
resultSet_count() (method), 435
retrieve() (email_pop member), 395

Index 605



LassoGuide, Release 9.3

return keyword, 85
returnHome keyword, 85
reverse() (string member), 150
RFC

RFC 3986, 365
RFC 822, 183

roll() (date member), 194
rotate() (image member), 246
rows() (method), 435
rows_array() (method), 435

S
save() (image member), 245
save() (pdf_read member), 258
scale() (image member), 246
SCRIPT_NAME, 313
search() (ldap member), 414
search_arguments() (method), 432
search_fieldItem() (method), 432
search_operatorItem() (method), 432
search_valueItem() (method), 432
second() (array member), 214
second() (date member), 188
second() (duration member), 191
second() (pair member), 213
second() (staticarray member), 216
second=() (pair member), 213
secondsBetween() (date member), 194
security_initialize() (method), 326
security_registry (type), 326
security_registry() (method), 326
selected(), 503
selected() (method), 480
self keyword, 110
send() (email_smtp member), 392
sendChunk() (web_response member), 321
sendFile() (web_response member), 321
serial number, 12, 23, 32
serialization_element (type), 230
serialization_element() (method), 230
serialization_reader (type), 229
serialization_reader() (method), 229
serializationElements() (None require), 230
serialize() (None provide), 230
series literal, 61, 96
session_abort() (method), 331
session_addVar() (method), 331
session_deleteExpired() (method), 331
session_end() (method), 331
session_id() (method), 331
session_removeVar() (method), 331
session_result() (method), 331
session_start() (method), 330
set (type), 220

set() (curl member), 364
set() (date member), 186
set() (method), 220
setAttribute() (xml_element member), 298
setAttributeNode() (xml_element member), 298
setAttributeNodeNS() (xml_element member), 298
setAttributeNS() (xml_element member), 298
setBold() (pdf_font member), 266
SetBooleanArrayRegion() (java_jnienv member), 590
SetBooleanField() (java_jnienv member), 581
SetByteArrayRegion() (java_jnienv member), 590
SetByteField() (java_jnienv member), 581
SetCharArrayRegion() (java_jnienv member), 590
SetCharField() (java_jnienv member), 581
setColor() (pdf_doc member), 282
setColor() (pdf_font member), 266
setCookie() (web_response member), 320
SetDoubleArrayRegion() (java_jnienv member), 591
SetDoubleField() (java_jnienv member), 582
setEncoding() (pdf_font member), 266
setEncoding() (sys_process member), 306
setFace() (pdf_font member), 266
setFieldValue() (pdf_read member), 258
SetFloatArrayRegion() (java_jnienv member), 591
SetFloatField() (java_jnienv member), 582
setFont() (pdf_doc member), 264
setFormat() (date member), 186
setHeaders() (web_response member), 320
SetIntArrayRegion() (java_jnienv member), 590
SetIntField() (java_jnienv member), 581
setItalic() (pdf_font member), 266
setLineWidth() (pdf_doc member), 282
SetLongArrayRegion() (java_jnienv member), 590
SetLongField() (java_jnienv member), 582
setNamedItem() (xml_nodeMap member), 298
setNamedItemNS() (xml_nodeMap member), 299
SetObjectArrayElement() (java_jnienv member), 588
SetObjectField() (java_jnienv member), 581
setPageNumber() (pdf_doc member), 262
setPageRange() (pdf_read member), 259
setPosition() (bytes member), 159
setRange() (bytes member), 162
SetShortArrayRegion() (java_jnienv member), 590
SetShortField() (java_jnienv member), 581
setSize() (bytes member), 162
setSize() (pdf_font member), 266
SetStaticBooleanField() (java_jnienv member), 585
SetStaticByteField() (java_jnienv member), 585
SetStaticCharField() (java_jnienv member), 586
SetStaticDoubleField() (java_jnienv member), 586
SetStaticFloatField() (java_jnienv member), 586
SetStaticIntField() (java_jnienv member), 586
SetStaticLongField() (java_jnienv member), 586
SetStaticObjectField() (java_jnienv member), 585

606 Index



LassoGuide, Release 9.3

SetStaticShortField() (java_jnienv member), 586
setStatus() (web_response member), 322
setTrait() (null member), 127
setUnderline() (pdf_font member), 266
sharpen() (image member), 248
shell script, 353
shown_count() (method), 435
shown_first() (method), 435
shown_last() (method), 435
shutdownRd() (net_tcp member), 418
shutdownRdWr() (net_tcp member), 418
shutdownWr() (net_tcp member), 418
size() (array member), 215
size() (bytes member), 158
size() (email_parse member), 401
size() (email_pop member), 395
size() (file member), 238
size() (map member), 220
size() (queue member), 218
size() (stack member), 219
size() (string member), 145
size=() (file member), 238
skipRecords_value() (method), 432
SMTP, 381
socket, 421
sort() (array member), 215
sort_arguments() (method), 432
sort_fieldItem() (method), 432
sort_orderItem() (method), 432
sourcefile(), 355
split() (bytes member), 160
split() (regexp member), 205
split() (string member), 156
split_thread() (method), 137
SSL, 419
stack (type), 218
stack() (method), 218
staticarray (type), 215
staticarray() (method), 215
staticarray_join() (method), 215
statusCode() (curl member), 364
string (type), 145
string() (method), 144
string_findRegExp() (method), 209
string_replaceRegExp() (method), 209
sub() (array member), 214
sub() (bytes member), 160
sub() (staticarray member), 216
sub() (string member), 145
subject() (email_parse member), 401
substring() (string member), 146
subtract() (date member), 194
swapBytes() (bytes member), 163
sys_process (type), 305

sys_process() (method), 305

T
table_name() (method), 432
tag (type), 121
tag literal, 60, 67, 102, 103, 110
tag_exists() (method), 60
tagName() (xml_element member), 297
TCP, 417
ternary operator, 74
testExitCode() (sys_process member), 306
textWidth() (pdf_font member), 267
thread

variable, 66
Throw() (java_jnienv member), 579
ThrowNew() (java_jnienv member), 579
time() (date member), 188
timezone() (date member), 189
titlecase() (string member), 151
to() (email_parse member), 401
toLower() (string member), 150
ToReflectedField() (java_jnienv member), 591
ToReflectedMethod() (java_jnienv member), 591
toTitle() (string member), 151
toUpper() (string member), 151
trait() (null member), 121
trait_serializable (trait), 229
transform() (xml_node member), 300
trim() (bytes member), 163
trim() (string member), 150
true, 59

U
UDP, 420
uncompress() (method), 231
unescape() (string member), 153
uniqueID() (email_pop member), 396
unspool() (queue member), 218
updateGroup() (security_registry member), 326
upload() (curl member), 364
uppercase() (string member), 151
url() (curl member), 363
url=() (curl member), 363
userComment=() (security_registry member), 327
userEnabled=() (security_registry member), 327
userPassword=() (security_registry member), 327

V
value() (serialization_element member), 230
value() (xml_attr member), 297
value_list(), 503
value_list() (method), 479
value_listItem(), 503
value_listItem() (method), 479

Index 607



LassoGuide, Release 9.3

values() (string member), 156
variable

local, 65
thread, 66

version() (curl member), 364
void (type), 61

W
wait() (sys_process member), 305
web_request (type), 314
web_response (type), 319
week() (date member), 188
week() (duration member), 190
weekOfMonth() (date member), 188
weekOfYear() (date member), 188
width() (image member), 243
write() (sys_process member), 306
writeBytes() (file member), 238
writeBytes() (net_tcp member), 418
writeBytes() (net_udp member), 421
writeString() (file member), 238

X
xml() (method), 293
xml_attr (type), 297
xml_document (type), 295
xml_DOMImplementation (type), 294
xml_element (type), 297
xml_node (type), 296
xml_nodeList (type), 297
xml_nodeMap (type), 297

Y
year() (date member), 188
year() (duration member), 190
yield keyword, 85
yieldHome keyword, 85

Z
zoneOffset() (date member), 189

608 Index




	List of Tables
	Foreword
	Preface
	I Getting Started with Lasso
	A Taste of Lasso
	Lasso Basics
	Lasso Language Features
	Serving Lasso
	Next Steps

	Lasso Installation
	Lasso Platform Overview
	OS X Installation
	CentOS 5/6/7 Installation
	Ubuntu Installation
	Windows Installation

	Lasso Server Management
	Lasso Instance Manager
	Instance Administration and Configuration
	Datasource Setup


	II Language Elements
	Calling Lasso
	Calling Lasso Web Pages
	Calling Lasso from the CLI

	Literals
	String Literals
	Boolean Literals
	Integer Literals
	Decimal Literals
	Tag Literals
	Staticarray Literals
	Series Literals
	Null and Void
	Comments

	Variables
	Variable Names
	Local Variables
	Thread Variables
	Type Constraints
	Decompositional Assignment

	Operators
	Assignment Operations
	Arithmetical Operations
	Boolean Operations
	Grouping
	Invocation
	Target Operation
	Method Escaping

	Control Flow
	Conditional Constructs
	Loop Constructs

	Captures
	Capture Structure
	Creating Captures
	Executing Captures
	Producing Values and Detaching
	Capture Methods

	Query Expressions
	Query Expression Structure
	Actions
	Operations
	GenerateSeries Type
	Making an Object Queriable

	Methods
	Signatures
	Defining Methods
	Multiple Dispatch

	Types
	Defining Types
	Modifying Types
	Type/Object Introspection Methods

	Traits
	Trait Logic
	Defining Traits
	Trait Composition
	Checking Traits
	Applying Traits
	Trait Manipulation Methods

	Error Handling
	Error Types
	Error Reporting
	Error Handling

	Threading
	Splitting Threads
	Thread Objects


	III Data Handling
	Strings
	String Objects
	Converting Values to Strings
	String Inspection Methods
	String Manipulation Methods
	String Encoding Methods
	String Iteration Methods
	String Export Methods

	Byte Streams
	Creating Bytes Objects
	Bytes Inspection Methods
	Bytes Export Methods
	Bytes Decoding/Encoding Methods
	Bytes Iteration Methods
	Bytes Manipulation Methods

	Math
	Creating Integer Objects
	Formatting Integer Objects
	Integer Bitwise Methods
	Creating Decimal Objects
	Formatting Decimal Objects
	Arithmetical Operations
	Basic Math Methods
	Trigonometry and Advanced Math Methods

	Date and Duration
	Date Objects
	Date Type
	Duration Type
	Date and Duration Math

	Regular Expressions
	Regular Expression Structure
	Regexp Type
	String Methods Taking Regular Expressions

	Collections
	Ordered Collection Types
	Unordered Collection Types

	Encryption
	Encryption Methods
	Cipher Methods

	Serialization and Compression
	Serializing and Deserializing Objects
	Supporting Serialization
	Compression Methods


	IV System Input and Output
	File System
	Paths
	File Type
	Dir Type

	Images and Media
	Image File Operations
	Referencing Images as Lasso Objects
	Image Information Methods
	Converting and Saving Images
	Images Manipulation Methods
	Extended ImageMagick Commands
	Serving Image and Media Files

	Portable Document Format
	Lasso and PDF Files
	Reading PDF Files
	Creating PDF Files
	Adding Content to PDFs
	Accessing PDF File Information
	Saving PDF Files
	Creating Text Content
	Creating and Using Forms
	Creating Tables
	Creating Graphics
	Creating Barcodes
	PDF File Examples
	Serving PDF Files

	XML Documents
	Creating XML Documents
	XPath
	XSLT

	Logging
	Logging Methods
	Logging to Files
	Log Routing

	Shell Commands with sys_process
	Using sys_process
	OS X and Linux Examples
	Windows Examples


	V Application Development
	Web Requests and Responses
	Web Requests
	Web Responses
	At Begin and End

	Authentication
	Authenticating Users
	Managing Users

	Sessions
	How Sessions Work
	Session Methods
	Starting a Session
	Session Tracking
	Using Sessions

	LassoApps
	LassoApp Concepts
	Constructing a LassoApp
	Serving Content
	Special Files
	LassoApp Links
	Packaging and Deploying LassoApps
	Server Configuration
	LassoApp Tips

	Command-Line Tools
	lassoserver
	lassoim(d)
	lasso9
	lassoc
	Special Environment Variables
	Lasso Shell Scripts on OS X and Linux
	Loading Libraries in Shell Scripts
	Compiling Lasso Code


	VI External Communication
	Network Requests with Curl
	Lasso Curl API
	Curl Options
	Using the Curl Type
	include_url
	FTP Methods

	Sending Email
	SMTP Email Basics
	Composing and Sending Email
	Email Merge
	Email Sending Status
	Composing and Queueing Email
	Sending SMTP Commands

	Retrieving Email
	Sending POP Commands
	Parsing Email
	Email Helper Methods

	DNS
	Domain Names
	IP Addresses
	Querying for DNS Records
	DNS Response Helper Type

	LDAP
	LDAP Searches
	LDAP Results
	LDAP Methods

	Networking Protocols and Named Pipes
	TCP
	TCP/SSL
	UDP
	Named Pipes


	VII Database Operations
	Database Interaction Fundamentals
	Using Inlines
	Inline Introspection Methods
	Inline Action Result Methods
	Database Schema Inspection Methods
	Inline Connection Options

	Searching and Displaying Data
	How Searches are Performed
	Character Encoding
	Error Reporting
	Searching Records
	Search Operators
	Returning Records
	Finding All Records
	Finding Random Records
	Displaying Data

	Adding and Updating Records
	Adding Records
	Updating Records
	Deleting Records

	SQL Data Sources
	Supported Features for SQL Data Sources
	SQL Data Source Tips
	Security Tips
	SQL Data Source Methods
	Searching Records with SQL Data Sources
	Adding and Updating Records
	Value Lists for ENUM or SET Fields
	SQL Statements
	SQL Transactions
	Prepared Statements

	ODBC Data Sources
	Supported Features for ODBC Data Sources
	ODBC Data Source Tips
	Using ODBC Data Sources

	FileMaker Data Sources
	Lasso and FileMaker
	FileMaker Queries
	Primary Key Field and Record ID
	Sorting Records
	Displaying Data


	VIII Extending Lasso
	Lasso C API
	LCAPI Overview
	Creating Lasso Methods
	Creating Lasso Types
	Creating Lasso Data Sources
	C/C++ Reference for LCAPI

	Lasso Java API
	LJAPI Overview
	Lasso Types and Methods for LJAPI


	Index

